1
|
Ou H, Liu D, Zhao G, Gong C, Li Y, Zhao Q. Association between AT1 receptor gene polymorphism and left ventricular hypertrophy and arterial stiffness in essential hypertension patients: a prospective cohort study. BMC Cardiovasc Disord 2022; 22:571. [PMID: 36577936 PMCID: PMC9795750 DOI: 10.1186/s12872-022-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AT1 receptor gene (AGTR1) is related to essential hypertension (EH), and left ventricular hypertrophy (LVH) and arterial stiffness are common complications of EH. This study aimed to explore the association between AGTR1 genotype and LVH and arterial stiffness in EH patients. METHODS A total of 179 EH patients were recruited in this study. Oral exfoliated cells were collected from each patient, and the genetic polymorphism of AGTR1(rs4524238) was assessed using a gene sequencing platform. The outcomes were LVH and arterial stiffness. RESULTS Among 179 patients, 114 were with AGTR1 genotype of GG (57 males, aged 59.54 ± 13.49 years) and 65 were with AGTR1 genotype of GA or AA (36 males, aged 61.28 ± 12.79 years). Patients with AGTR1 genotype of GG were more likely to have LVH (47 [41.23%] vs. 14 [21.54%], P = 0.006) and arterial stiffness (30 [26.32%] vs. 8 [12.31%], P = 0.036). The AGTR1 polymorphism frequency was in accordance with Hardy-Weinberg equilibrium (P = 0.291). The multivariate logistic regression showed that AGTR1 genotype of GA or AA was independently associated with lower risk of LVH (OR = 0.344, 95%CI 160~0.696, P = 0.003) and arterial stiffness (OR = 0.371, 95%CI 0.155~0.885, P = 0.025) after adjusting for gender, age, and diabetes. CONCLUSION EH patients with the AGTR1 genotype of GA or AA were at lower risk for LVH and arterial stiffness than those with the GG genotype.
Collapse
Affiliation(s)
- Hangjun Ou
- grid.452244.1Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Danan Liu
- grid.452244.1Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Guangjian Zhao
- grid.452244.1Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Caiwei Gong
- grid.452244.1Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Yunyun Li
- grid.452244.1Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| | - Quanwei Zhao
- grid.452244.1Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China
| |
Collapse
|
2
|
Sierra APR, Martínez Galán BS, de Sousa CAZ, de Menezes DC, Branquinho JLDO, Neves RL, Arata JG, Bittencourt CA, Barbeiro HV, de Souza HP, Pesquero JB, Cury-Boaventura MF. Exercise Induced-Cytokines Response in Marathon Runners: Role of ACE I/D and BDKRB2 +9/-9 Polymorphisms. Front Physiol 2022; 13:919544. [PMID: 36117688 PMCID: PMC9479100 DOI: 10.3389/fphys.2022.919544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) have a different site of interaction and modulate vascular tone and inflammatory response as well on exercise adaptation, which is modulated by exercise-induced cytokines. The aim of the study was to evaluate the role of ACE I/D and BDKRB2 +9/−9 polymorphism on exercise-induced cytokine response. Seventy-four male marathon finishers, aged 30 to 55 years, participated in this study. Plasma levels of exercise-induced cytokines were determined 24 h before, immediately after, and 24 h and 72 h after the São Paulo International Marathon. Plasma concentrations of MCP-1, IL-6 and FGF-21 increased after marathon in all genotypes of BDKRB2. IL-10, FSTL and BDNF increased significantly after marathon in the genotypes with the presence of the −9 allele. FSTL and BDNF concentrations were higher in the −9/−9 genotype compared to the +9/+9 genotype before (p = 0.006) and after the race (p = 0.023), respectively. Apelin, IL-15, musclin and myostatin concentrations were significantly reduced after the race only in the presence of −9 allele. Marathon increased plasma concentrations of MCP1, IL-6, BDNF and FGF-21 in all genotypes of ACE I/D polymorphism. Plasma concentrations of IL-8 and MIP-1alpha before the race (p = 0.015 and p = 0.031, respectively), of MIP-1alpha and IL-10 after the race (p = 0.033 and p = 0.047, respectively) and VEGF 72 h after the race (p = 0.018) were lower in II homozygotes compared to runners with the presence of D allele. One day after the race we also observed lower levels of MIP-1alpha in runners with II homozygotes compared to DD homozygotes (p = 0.026). Before the marathon race myostatin concentrations were higher in DD compared to II genotypes (p = 0.009). Myostatin, musclin, IL-15, IL-6 and apelin levels decreased after race in genotypes with the presence of D allele. After the race ACE activity was negatively correlated with MCP1 (r = −56, p < 0.016) and positively correlated with IL-8, IL-10 and MIP1-alpha (r = 0.72, p < 0.0007, r = 0.72, p < 0.0007, r = 0.47, p < 0.048, respectively). The runners with the −9/−9 genotype have greater response in exercise-induced cytokines related to muscle repair and cardioprotection indicating that BDKRB2 participate on exercise adaptations and runners with DD genotype have greater inflammatory response as well as ACE activity was positively correlated with inflammatory mediators. DD homozygotes also had higher myostatin levels which modulates protein homeostasis.
Collapse
Affiliation(s)
| | - Bryan Steve Martínez Galán
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Cesar Augustus Zocoler de Sousa
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Duane Cardoso de Menezes
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Raquel Leão Neves
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- *Correspondence: Maria Fernanda Cury-Boaventura,
| |
Collapse
|
3
|
Di Credico A, Gaggi G, Vamvakis A, Serafini S, Ghinassi B, Di Baldassarre A, Izzicupo P. Bioelectrical Impedance Vector Analysis of Young Elite Team Handball Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12972. [PMID: 34948582 PMCID: PMC8701441 DOI: 10.3390/ijerph182412972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Team handball is a highly dynamic sport where physical demands differ between categories and roles. Thus, physical characteristics are fundamental for the final performance. This study aims to (a) characterize a sample of young male and female elite team handball players with a non-athletic reference population; (b) to generate their 50%, 75%, and 95% percentiles of the bioelectrical variables. The study included 55 young elite team handball players (Males, n = 37, age = 17.0 ± 1.2 yrs, height = 185.8 ± 7.3 cm, weight = 82.0 ± 11.0 kg, body mass index (BMI) = 23.7 ± 2.5; Females, n = 18, age = 17.8 ± 0.9 yrs, height = 171.2 ± 6.4 cm, weight = 67.4 ± 7.2 kg, BMI = 23.0 ± 2.0). Height and bioelectrical variables were assessed in a state of euhydration and standard conditions. Bioelectrical impedance vector analysis (BIVA) was used to characterize the bioelectrical vector (BIA vector) distribution pattern for each group. Compared to the reference values, BIA vector showed statistically significant differences in males U17 (n = 19, T2 = 51.0, p < 0.0001), males U19 (n = 18, T2 = 82.0, p < 0.0001) and females U19 (n = 18, T2 = 85.8, p < 0.0001). Male groups were also bioelectrically different (T2 = 13.7, p = 0.0036). BIVA showed specific bioelectrical characteristics in young male and female elite handball players. This study provides an original data set of bioelectrical impedance reference values of young male and female elite team handball players. Our result might help to interpret individual bioimpedance vectors and define target regions for young handball players.
Collapse
Affiliation(s)
- Andrea Di Credico
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (G.G.); (S.S.); (B.G.); (P.I.)
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (G.G.); (S.S.); (B.G.); (P.I.)
- Beth Israel Deaconess Medical Center, Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anastasios Vamvakis
- 3rd Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54649 Thessaloniki, Greece;
| | - Sofia Serafini
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (G.G.); (S.S.); (B.G.); (P.I.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (G.G.); (S.S.); (B.G.); (P.I.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (G.G.); (S.S.); (B.G.); (P.I.)
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.C.); (G.G.); (S.S.); (B.G.); (P.I.)
| |
Collapse
|
4
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|
5
|
Ghinassi B, Di Baldassarre A, D’Addazio G, Traini T, Andrisani M, Di Vincenzo G, Gaggi G, Piattelli M, Caputi S, Sinjari B. Gingival Response to Dental Implant: Comparison Study on the Effects of New Nanopored Laser-Treated vs. Traditional Healing Abutments. Int J Mol Sci 2020; 21:ijms21176056. [PMID: 32842709 PMCID: PMC7504205 DOI: 10.3390/ijms21176056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
The health of peri-implant soft tissues is important for the long-term success rate of dental implants and the surface topography is pivotal in influencing it. Thus, the aim of this study was to evaluate, in human patients, the inflammatory mucosal microenvironment in the tissue surrounding a new, nanoscale, laser-treated healing abutment characterized by engineered nanopores versus a standard machined-surface. Analyses of anti- and pro-inflammatory markers, cytokeratins, desmosomal proteins and scanning electron microscopy were performed in 30 soft-tissue biopsies retrieved during second-stage surgery. The results demonstrate that the soft tissue surrounding the laser-treated surface was characterized by a lower grade of inflammation than the one facing the machined-surface, which, in turn, showed a disrupted epithelium and altered desmosomes. Moreover, higher adhesion of the epithelial cells on the laser-treated surface was detected compared to the machined one. In conclusion, the laser-treated surface topography seems to play an important role not only in cell adhesion, but also on the inflammatory makers’ expression of the soft tissue microenvironment. Thus, from a clinical point of view, the use of this kind of topography may be of crucial importance not only on healing abutments but also on prosthetic ones.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Human Anatomy and Cell Differentation Lab, Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (B.G.); (A.D.B.)
| | - Angela Di Baldassarre
- Human Anatomy and Cell Differentation Lab, Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (B.G.); (A.D.B.)
| | - Gianmaria D’Addazio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Tonino Traini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Andrisani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
| | - Giorgio Di Vincenzo
- Department of Periodontics & Implant Dentistry, New York University, E 40th St #508, New York, NY 10016, USA;
| | - Giulia Gaggi
- Human Anatomy and Cell Differentation Lab, Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Maurizio Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Bruna Sinjari
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Effect of Physical Exercise on the Release of Microparticles with Angiogenic Potential. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular communication has a fundamental role in both human physiological and pathological states and various mechanisms are involved in the crosstalk between organs. Among these, microparticles (MPs) have an important involvement. MPs are a subtype of extracellular vesicles produced by a variety of cells following activation or apoptosis. They are normally present in physiological conditions, but their concentration varies in pathological states such as cardiovascular disease, diabetes mellitus, or cancer. Acute and chronic physical exercise are able to modify MPs amounts as well. Among various actions, exercise-responsive MPs affect angiogenesis, the process through which new blood vessels grow from pre-existing vessels. Usually, the neo vascular growth has functional role; but an aberrant neovascularization accompanies several oncogenic, ischemic, or inflammatory diseases. In addition, angiogenesis is one of the key adaptations to physical exercise and training. In the present review, we report evidence regarding the effect of various typologies of exercise on circulating MPs that are able to affect angiogenesis.
Collapse
|
7
|
Epigenetic Features of Human Perinatal Stem Cells Redefine Their Stemness Potential. Cells 2020; 9:cells9051304. [PMID: 32456308 PMCID: PMC7290760 DOI: 10.3390/cells9051304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Human perinatal stem cells (SCs) can be isolated from fetal annexes without ethical or safety limitations. They are generally considered multipotent; nevertheless, their biological characteristics are still not fully understood. The aim of this study was to investigate the pluripotency potential of human perinatal SCs as compared to human induced pluripotent stem cells (hiPSCs). Despite the low expression of the pluripotent factors NANOG, OCT4, SOX2, and C-KIT in perinatal SC, we observed minor differences in the promoters DNA-methylation profile of these genes with respect to hiPSCs; we also demonstrated that in perinatal SCs miR-145-5p had an inverse trend in comparison to these stemness markers, suggesting that NANOG, OCT4, and SOX2 were regulated at the post-transcriptional level. The reduced expression of stemness markers was also associated with shorter telomere lengths and shift of the oxidative metabolism between hiPSCs and fetal annex-derived cells. Our findings indicate the differentiation ability of perinatal SCs might not be restricted to the mesenchymal lineage due to an epigenetic barrier, but other regulatory mechanisms such as telomere shortening or metabolic changes might impair their differentiation potential and challenge their clinical application.
Collapse
|
8
|
The Length and Number of Sedentary Bouts Predict Fibrinogen Levels in Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093051. [PMID: 32353951 PMCID: PMC7246768 DOI: 10.3390/ijerph17093051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022]
Abstract
Menopause is associated with adverse changes in coagulation homeostasis. We aimed to investigate the association between objectively measured sedentary behavior (SB) and SB bouts (i.e., number and length of SB bouts) vs. fibrinogen levels in post-menopausal women. Fifty-three post-menopausal women (age 59.8 ± 6.2 years, BMI 27.3 ± 4.4) wore a multisensory device (Sensewear Mini Armband, BodyMedia, Inc., Pittsburgh, PA) for 5 days, to measure SB and physical activity (PA). Blood samples were collected to measure serum fibrinogen. Fibrinogen was directly correlated with SB (r = −0.48, p < 0.01), lying down during awake time (r = −0.50, p < 0.01), and both medium (11–30 mins) and very long bouts (>1 h) of SB (r = −0.59, p < 0.01; r = −0.51, p < 0.01, respectively), and inversely correlated with moderate to vigorous-intensity physical activity (r = −0.39, p < 0.01). Furthermore, fibrinogen was also directly correlated with BMI (r = −0.28, p < 0.05). In postmenopausal women without prevalent cardiovascular disease, the number of prolonged and uninterrupted sedentary bouts is directly correlated with increased fibrinogen levels, regardless of PA and BMI. This result suggests the importance of delivering new strategies to counteract the increase of sedentariness and inactivity of the postmenopausal population.
Collapse
|
9
|
Cardiomyocytes Derived from Human CardiopoieticAmniotic Fluids. Sci Rep 2018; 8:12028. [PMID: 30104705 PMCID: PMC6089907 DOI: 10.1038/s41598-018-30537-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/01/2018] [Indexed: 02/08/2023] Open
Abstract
Human amniotic fluid (hAF) cells share characteristics of both embryonic and adult stem cells. They proliferate rapidly and can differentiate into cells of all embryonic germ layers but do not form teratomas. Embryoid-bodies obtained from hAF have cardiac differentiation potential, but terminal differentiation to cardiomyocytes (CMs) has not yet been described. Our purpose was to promote cardiac differentiation in hAFcells. Cells were exposed to inducing factors for up to 15 days. Only the subset of hAF cells expressing the multipotency markers SSEA4, OCT4 and CD90 (CardiopoieticAF cells) responded to the differentiation process by increasing the expression of the cardiac transcription factors Nkx2.5 and GATA4, sarcomeric proteins (cTnT, α-MHC, α-SA), Connexin43 and atrial and ventricular markers. Furthermore, differentiated cells were positive for the calcium pumps CACNA1C and SERCA2a, with approximately 30% of CardiopoieticAF-derived CM-like cells responding to caffeine or adrenergic stimulation. Some spontaneous rare beating foci were also observed. In conclusion, we demonstrated that CardiopoieticAF cells might differentiate toward the cardiac lineage giving rise to CM-like cells characterized by several cardiac-specific molecular, structural, and functional properties.
Collapse
|
10
|
Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells 2018; 7:cells7060048. [PMID: 29799480 PMCID: PMC6025241 DOI: 10.3390/cells7060048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.
Collapse
|
11
|
Izzicupo P, D’Amico MA, Di Blasio A, Napolitano G, Nakamura FY, Di Baldassarre A, Ghinassi B. Aerobic Training Improves Angiogenic Potential Independently of Vascular Endothelial Growth Factor Modifications in Postmenopausal Women. Front Endocrinol (Lausanne) 2017; 8:363. [PMID: 29312152 PMCID: PMC5742914 DOI: 10.3389/fendo.2017.00363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the effect of walking-training on the balance between pro- and antiangiogenic signals and on the angiogenic potential in postmenopausal women. MATERIALS AND METHODS Thirty-four postmenopausal women (56.18 ± 4.24 years) participated in a 13 weeks program of walking-training. Anthropometric measures, vascular endothelial growth factor (VEGF), interleukin (IL)-1α, IL-1β, IL-2, IL-8, IL-10, IL-12p70, tumor necrosis factor-α (TNF-α), C-reactive protein, insulin, IGF-1, cortisol, dehydroepiandrosterone sulfate (DHEA-S), leptin, visfatin, resistin, and adiponectin were evaluated before and after training. Moreover, serum samples were tested for their ability to chemo-attract endothelial cells and to support the in vitro formation of capillary-like structures. RESULTS After training, the levels of IL-8, TNF-α, leptin, and resistin were significantly lower, levels of DHEA-S and adiponectin increased, serum angiogenic properties improved, whereas no changes in anthropometric parameters or VEGF were detected. CONCLUSION Walking training reduces inflammatory status and leads to a significant improvement in serum angiogenic properties in the absence of modifications in body composition and VEGF level.
Collapse
Affiliation(s)
- Pascal Izzicupo
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| | - Maria A. D’Amico
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| | - Andrea Di Blasio
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| | - Giorgio Napolitano
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| | - Fabio Y. Nakamura
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti - Pescara, Chieti, Italy
| |
Collapse
|
12
|
Arbab-Zadeh A, Perhonen M, Howden E, Peshock RM, Zhang R, Adams-Huet B, Haykowsky MJ, Levine BD. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation 2014; 130:2152-61. [PMID: 25281664 DOI: 10.1161/circulationaha.114.010775] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. METHODS AND RESULTS Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake ( max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (P<0.00001), associated with an increase in both maximal cardiac output and stroke volume. Left and right ventricular mass increased progressively with training duration and intensity and reached levels similar to those observed in elite endurance athletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. CONCLUSIONS One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and intensity of exercise. Thereafter, the left ventricle dilates and restores the baseline mass-to-volume ratio. In contrast, the right ventricle responds to endurance training with eccentric remodeling at all levels of training.
Collapse
Affiliation(s)
- Armin Arbab-Zadeh
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Merja Perhonen
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Erin Howden
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Ronald M Peshock
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Rong Zhang
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Beverly Adams-Huet
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Mark J Haykowsky
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.)
| | - Benjamin D Levine
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (A.A.-Z., M.P., E.H., R.Z.); University of Texas Southwestern Medical Center, Dallas (R.M.P., R.Z., B.A.-H., B.D.L.); and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada (M.H.).
| |
Collapse
|
13
|
Freire IV, Machado M, Ribeiro ÍJS, Hackney AC, Barbosa AAL, Pereira R. The D allele of angiotensin-converting enzyme gene is associated with greater hemodynamic response to resistance exercises. J Renin Angiotensin Aldosterone Syst 2014; 16:1251-9. [DOI: 10.1177/1470320314540733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ivna V Freire
- Human Genetics Laboratory, Department of Biological Sciences, State University of Southwest Bahia, Brazil
| | - Marco Machado
- Laboratory of Human Movement Studies, Universitary Fundation of Itaperuna, Brazil
- Laboratory of Physiology and Biokinetics, Universidade Iguaçu at Itaperuna, Brazil
| | | | - Anthony C Hackney
- Endocrine Section, Applied Physiology Laboratory, University of North Carolina at Chapel Hill, USA
| | - Ana AL Barbosa
- Human Genetics Laboratory, Department of Biological Sciences, State University of Southwest Bahia, Brazil
| | - Rafael Pereira
- Human Genetics Laboratory, Department of Biological Sciences, State University of Southwest Bahia, Brazil
| |
Collapse
|
14
|
Abstract
The increasing globalization of sport has resulted in athletes from a wide range of ethnicities emerging onto the world stage. Fuelled by the untimely death of a number of young professional athletes, data generated from the parallel increase in preparticipation cardiovascular evaluation has indicated that ethnicity has a substantial influence on cardiac adaptation to exercise. From this perspective, the group most intensively studied comprises athletes of African or Afro-Caribbean ethnicity (black athletes), an ever-increasing number of whom are competing at the highest levels of sport and who often exhibit profound electrical and structural cardiac changes in response to exercise. Data on other ethnic cohorts are emerging, but remain incomplete. This Review describes our current knowledge on the impact of ethnicity on cardiac adaptation to exercise, starting with white athletes in whom the physiological electrical and structural changes--collectively termed the 'athlete's heart'--were first described. Discussion of the differences in the cardiac changes between ethnicities, with a focus on black athletes, and of the challenges that these variations can produce for the evaluating physician is also provided. The impact of ethnically mediated changes on preparticipation cardiovascular evaluation is highlighted, particularly with respect to false positive results, and potential genetic mechanisms underlying racial differences in cardiac adaptation to exercise are described.
Collapse
Affiliation(s)
- Nabeel Sheikh
- Division of Clinical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Sanjay Sharma
- Division of Clinical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
15
|
Di Cagno A, Sapere N, Piazza M, Aquino G, Iuliano E, Intrieri M, Calcagno G. ACE and AGTR1 Polymorphisms in Elite Rhythmic Gymnastics. Genet Test Mol Biomarkers 2013; 17:99-103. [DOI: 10.1089/gtmb.2012.0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alessandra Di Cagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- Department of Health Sciences, University of Rome “Foro Italico,” Rome, Italy
| | - Nadia Sapere
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Marina Piazza
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, Florence, Italy
| | - Giovanna Aquino
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Enzo Iuliano
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
16
|
Association of genome variations in the renin-angiotensin system with physical performance. Hum Genomics 2012; 6:24. [PMID: 23176367 PMCID: PMC3543191 DOI: 10.1186/1479-7364-6-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to determine the genotype distribution and allelic frequencies of ACE (I/D), AGTR1 (A +1166 C), BDKRB2 (+9/−9) and LEP (G–2548A) genomic variations in 175 Greek athletes who excelled at a national and/or international level and 169 healthy Greek adults to identify whether some particular combinations of these loci might serve as predictive markers for superior physical condition. Results The D/D genotype of the ACE gene (p = 0.034) combined with the simultaneous existence of BDKRB2 (+9/−9) (p = 0.001) or LEP (G/A) (p = 0.021) genotypes was the most prevalent among female athletes compared to female controls. A statistical trend was also observed in BDKRB2 (+9/−9) and LEP (G–2548A) heterozygous genotypes among male and female Greek athletes, and in ACE (I/D) only in male athletes. Finally, both male and female athletes showed the highest rates in the AGTR1 (A/A) genotype. Conclusions Our results suggest that the co-existence of ACE (D/D), BDKRB2 (+9/−9) or LEP (G/A) genotypes in female athletes might be correlated with a superior level of physical performance.
Collapse
|
17
|
Gallina S, Di Francescomarino S, Di Mauro M, Izzicupo P, D'Angelo E, D'Amico M, Pennelli A, Amicarelli F, Di Baldassarre A. NAD(P)H oxidase p22(phox) polymorphism and cardiovascular function in amateur runners. Acta Physiol (Oxf) 2012; 206:20-8. [PMID: 22747689 DOI: 10.1111/j.1748-1716.2012.02456.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 05/30/2012] [Indexed: 01/20/2023]
Abstract
AIM NAD(P)H system represents the major source of superoxide production at cardiovascular (CV) level. It has several genetic variants: in particular, the C242T polymorphism of its p22(phox) subunit is associated with a different oxidase activity, being the T allele related to a lower superoxide production. Although several authors investigated the protective effect of T allele in CV diseases, only few data are available on its functional role in physiological conditions. The aim of our study was to investigate the relationship between the p22(phox) C242T polymorphism and CV function in amateur runners. METHODS Seventy-three male amateur runners were screened for CYBA polymorphism. CV analysis was performed by echocardiographic-Doppler examination and by PulsePen tonometer assessment. RESULTS The genetic subgroups (CC and CT/TT) did not differ for VM O(2max) and cardiac dimension. Nevertheless, T carriers (n = 40) were characterized by a more efficient myocardial contraction and left ventricular (LV) filling, as evidenced by significant higher values of the midwall fractional shortening, systolic excursion of the tricuspid annular plane and of early/late diastolic wave velocities ratio and by a lower E wave deceleration time. Pulse wave velocity and augmentation index, parameters related to the arterial stiffness, were higher in CC subjects compared with CT/TT also when the analysis was adjusted for weight and diastolic pressure. CONCLUSION In amateur runners, CYBA variants may influence both systolic and diastolic function and arterial stiffness. We suppose that the lower oxidative activity that characterizes 242T subjects may positively influence the excitation-contraction and arterial-ventricular coupling mechanisms, thus leading to a more efficient CV function.
Collapse
Affiliation(s)
- S. Gallina
- Department of Neuroscience and Imaging; University of Chieti-Pescara; Chieti; Italy
| | | | - M. Di Mauro
- Department of Neuroscience and Imaging; University of Chieti-Pescara; Chieti; Italy
| | - P. Izzicupo
- Department of Medicine and Aging Sciences; University of Chieti-Pescara; Chieti; Italy
| | - E. D'Angelo
- Department of Neuroscience and Imaging; University of Chieti-Pescara; Chieti; Italy
| | - M.A. D'Amico
- Department of Medicine and Aging Sciences; University of Chieti-Pescara; Chieti; Italy
| | - A. Pennelli
- Department of Biomedical Sciences; University of Chieti-Pescara; Chieti; Italy
| | - F. Amicarelli
- Department of Biomedical Sciences and Technologies; University of L'Aquila; L'Aquila; Italy
| | - A. Di Baldassarre
- Department of Medicine and Aging Sciences; University of Chieti-Pescara; Chieti; Italy
| |
Collapse
|
18
|
Angiotensin-converting enzyme gene deletion allele increases the risk of left ventricular hypertrophy: evidence from a meta-analysis. Mol Biol Rep 2012; 39:10063-75. [DOI: 10.1007/s11033-012-1875-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/22/2012] [Indexed: 12/30/2022]
|
19
|
Abstract
BACKGROUND The A1166C polymorphism is located within the microRNA-155 binding site of the human angiotensin II (Ang II) type-1 receptor (AGTR1) gene. The C allele interferes with the base-pairing complementariness between AGTR1 mRNA and microRNA-155 and thereby increases AGTR1 protein expression in vitro. We hypothesized that left ventricular (LV) mass is associated with the AGTR1 A1166C polymorphism. METHODS Among 708 individuals (mean age, 49.4 years; 51.8% women) randomly recruited in a white European population, we measured LV structure by two-dimensional guided M-mode echocardiography, the AGTR1 A1166C polymorphism and the 24-h urinary aldosterone. We applied a mixed model to assess phenotype-genotype associations while adjusting for covariables and accounting for relatedness. RESULTS The AA (49.1%), AC (42.8%), and CC (8.1%) genotypes were in Hardy-Weinberg equilibrium. Using a recessive model, CC homozygotes compared to A-allele carriers showed significant increases (P < 0.021) in LV mass index (+5.78 ± 2.25 g/m(2)), mean wall thickness (MWT) (+0.48 ± 0.15 mm), interventricular septum (IVS) (+0.60 ± 0.18 mm) and posterior wall thickness (PWT) (+0.34 ± 0.15 mm), but lower 24-h urinary aldosterone excretion (geometric mean, 22.4 vs. 19.0 nmol; P = 0.050). Sensitivity analyses in 552 participants untreated for hypertension were confirmatory. CONCLUSIONS LV mass index is associated with the AGTR1 A1166C polymorphism. Further research should clarify to what extent this association might be mediated via different expression of AGTR1 as modulated by microRNA-155.
Collapse
|
20
|
|
21
|
Puthucheary Z, Skipworth JRA, Rawal J, Loosemore M, Van Someren K, Montgomery HE. The ACE gene and human performance: 12 years on. Sports Med 2011; 41:433-48. [PMID: 21615186 DOI: 10.2165/11588720-000000000-00000] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some 12 years ago, a polymorphism of the angiotensin I-converting enzyme (ACE) gene became the first genetic element shown to impact substantially on human physical performance. The renin-angiotensin system (RAS) exists not just as an endocrine regulator, but also within local tissue and cells, where it serves a variety of functions. Functional genetic polymorphic variants have been identified for most components of RAS, of which the best known and studied is a polymorphism of the ACE gene. The ACE insertion/deletion (I/D) polymorphism has been associated with improvements in performance and exercise duration in a variety of populations. The I allele has been consistently demonstrated to be associated with endurance-orientated events, notably, in triathlons. Meanwhile, the D allele is associated with strength- and power-orientated performance, and has been found in significant excess among elite swimmers. Exceptions to these associations do exist, and are discussed. In theory, associations with ACE genotype may be due to functional variants in nearby loci, and/or related genetic polymorphism such as the angiotensin receptor, growth hormone and bradykinin genes. Studies of growth hormone gene variants have not shown significant associations with performance in studies involving both triathletes and military recruits. The angiotensin type-1 receptor has two functional polymorphisms that have not been shown to be associated with performance, although studies of hypoxic ascent have yielded conflicting results. ACE genotype influences bradykinin levels, and a common gene variant in the bradykinin 2 receptor exists. The high kinin activity haplotye has been associated with increased endurance performance at an Olympic level, and similar results of metabolic efficiency have been demonstrated in triathletes. Whilst the ACE genotype is associated with overall performance ability, at a single organ level, the ACE genotype and related polymorphism have significant associations. In cardiac muscle, ACE genotype has associations with left ventricular mass changes in response to stimulus, in both the health and diseased states. The D allele is associated with an exaggerated response to training, and the I allele with the lowest cardiac growth response. In light of the I-allele association with endurance performance, it seems likely that other regulatory mechanisms exist. Similarly in skeletal muscle, the D allele is associated with greater strength gains in response to training, in both healthy individuals and chronic disease states. As in overall performance, those genetic polymorphisms related to the ACE genotype, such as the bradykinin 2 gene, also influence skeletal muscle strength. Finally, the ACE genotype may influence metabolic efficiency, and elite mountaineers have demonstrated an excess of I alleles and I/I genotype frequency in comparison to controls. Interestingly, this was not seen in amateur climbers. Corroboratory evidence exists among high-altitude settlements in both South America and India, where the I allele exists in greater frequency in those who migrated from the lowlands. Unfortunately, if the ACE genotype does influence metabolic efficiency, associations with peak maximal oxygen consumption have yet to be rigorously demonstrated. The ACE genotype is an important but single factor in the determinant of sporting phenotype. Much of the mechanisms underlying this remain unexplored despite 12 years of research.
Collapse
Affiliation(s)
- Zudin Puthucheary
- University College London Institute for Human Health and Performance, London, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Elshamaa MF, Sabry SM, Bazaraa HM, Koura HM, Elghoroury EA, Kantoush NA, Thabet EH, Abd-El Haleem DA. Genetic polymorphism of ACE and the angiotensin II type1 receptor genes in children with chronic kidney disease. J Inflamm (Lond) 2011; 8:20. [PMID: 21859496 PMCID: PMC3167745 DOI: 10.1186/1476-9255-8-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 08/23/2011] [Indexed: 01/20/2023] Open
Abstract
AIM AND METHODS We investigated the association between polymorphisms of the angiotensin converting enzyme-1 (ACE-1) and angiotensin II type one receptor (AT1RA1166C) genes and the causation of renal disease in 76 advanced chronic kidney disease (CKD) pediatric patients undergoing maintenance hemodialysis (MHD) or conservative treatment (CT). Serum ACE activity and creatine kinase-MB fraction (CK-MB) were measured in all groups. Left ventricular mass index (LVMI) was calculated according to echocardiographic measurements. Seventy healthy controls were also genotyped. RESULTS The differences of D allele and DI genotype of ACE were found significant between MHD group and the controls (p = 0.0001). ACE-activity and LVMI were higher in MHD, while CK-MB was higher in CT patients than in all other groups. The combined genotype DD v/s ID+II comparison validated that DD genotype was a high risk genotype for hypertension .~89% of the DD CKD patients were found hypertensive in comparison to ~ 61% of patients of non DD genotype(p = 0.02). The MHD group showed an increased frequency of the C allele and CC genotype of the AT1RA1166C polymorphism (P = 0.0001). On multiple linear regression analysis, C-allele was independently associated with hypertension (P = 0.04). CONCLUSION ACE DD and AT1R A/C genotypes implicated possible roles in the hypertensive state and in renal damage among children with ESRD. This result might be useful in planning therapeutic strategies for individual patients.
Collapse
Affiliation(s)
| | - Samar M Sabry
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hafez M Bazaraa
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala M Koura
- Pediatric Department, National Research Centre, Cairo, Egypt
| | - Eman A Elghoroury
- Clinical & Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Nagwa A Kantoush
- Clinical & Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Eman H Thabet
- Clinical & Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|