1
|
Dunn RA, Luk HY, Appell CR, Jiwan NC, Keefe MS, Rolloque JJS, Sekiguchi Y. Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure. Cell Stress Chaperones 2024; 29:472-482. [PMID: 38735625 PMCID: PMC11131061 DOI: 10.1016/j.cstres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024] Open
Abstract
Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [Tamb], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (Tamb, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (FlatHEAT [Tamb, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (Trec) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-FlatHEAT and post-FlatHEAT. Mean Trec during FlatHEAT between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (P = 0.68), with no mean heart rate differences during FlatHEAT between hot (172 ± 15 beats min-1) and thermoneutral conditions (174 ± 8 beats min-1; P = 0.58). Hsp72 concentration change from baseline to immediately pre-FlatHEAT was significantly lower in hot (-51.4%) compared to thermoneutral (+24.2%; P = 0.025) DHR, with Hsp72 change from baseline to immediately post-FlatHEAT also lower in hot (-52.6%) compared to thermoneutral conditions (+26.3%; P = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.
Collapse
Affiliation(s)
- Ryan A Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Casey R Appell
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Nigel C Jiwan
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Marcos S Keefe
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jan-Joseph S Rolloque
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hawley JA, Lundby C, Cotter JD, Burke LM. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metab 2018; 27:962-976. [PMID: 29719234 DOI: 10.1016/j.cmet.2018.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of molecular techniques to exercise biology has provided novel insight into the complexity and breadth of intracellular signaling networks involved in response to endurance-based exercise. Here we discuss several strategies that have high uptake by athletes and, on mechanistic grounds, have the potential to promote cellular adaptation to endurance training in skeletal muscle. Such approaches are based on the underlying premise that imposing a greater metabolic load and provoking extreme perturbations in cellular homeostasis will augment acute exercise responses that, when repeated over months and years, will amplify training adaptation.
Collapse
Affiliation(s)
- John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia.
| | - Carsten Lundby
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; Department of Sport Nutrition, Australian Institute of Sport, Belconnen, ACT, Australia
| |
Collapse
|
4
|
Heart rate variability and plasma nephrines in the evaluation of heat acclimatisation status. Eur J Appl Physiol 2017; 118:165-174. [PMID: 29127509 PMCID: PMC5754393 DOI: 10.1007/s00421-017-3758-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/31/2017] [Indexed: 11/03/2022]
Abstract
Purpose Heat adaptation (HA) is critical to performance and health in a hot environment. Transition from short-term heat acclimatisation (STHA) to long-term heat acclimatisation (LTHA) is characterised by decreased autonomic disturbance and increased protection from thermal injury. A standard heat tolerance test (HTT) is recommended for validating exercise performance status, but any role in distinguishing STHA from LTHA is unreported. The aims of this study were to (1) define performance status by serial HTT during structured natural HA, (2) evaluate surrogate markers of autonomic activation, including heart rate variability (HRV), in relation to HA status. Methods Participants (n = 13) were assessed by HTT (60-min block-stepping, 50% VO2peak) during STHA (Day 2, 6 and 9) and LTHA (Day 23). Core temperature (Tc) and heart rate (HR) were measured every 5 min. Sampling for HRV indices (RMSSD, LF:HF) and sympathoadrenal blood measures (cortisol, nephrines) was undertaken before and after (POST) each HTT. Results Significant (P < 0.05) interactions existed for Tc, logLF:HF, cortisol and nephrines (two-way ANOVA; HTT by Day). Relative to LTHA, POST results differed significantly for Tc (Day 2, 6 and 9), HR (Day 2), logRMSSD (Day 2 and Day 6), logLF:HF (Day 2 and Day 6), cortisol (Day 2) and nephrines (Day 2 and Day 9). POST differences in HRV (Day 6 vs. 23) were + 9.9% (logRMSSD) and − 18.6% (logLF:HF). Conclusions Early reductions in HR and cortisol characterised STHA, whereas LTHA showed diminished excitability by Tc, HRV and nephrine measures. Measurement of HRV may have potential to aid real-time assessment of readiness for activity in the heat. Electronic supplementary material The online version of this article (10.1007/s00421-017-3758-y) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Tuttle JA, Chrismas BCR, Gibson OR, Barrington JH, Hughes DC, Castle PC, Metcalfe AJ, Midgley AW, Pearce O, Kabir C, Rayanmarakar F, Al-Ali S, Lewis MP, Taylor L. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis. Front Physiol 2017; 8:473. [PMID: 28747888 PMCID: PMC5506191 DOI: 10.3389/fphys.2017.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University LondonLondon, United Kingdom
| | - James H Barrington
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom.,School of Exercise and Health Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill UniversityOrmskirk, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | | | - Sami Al-Ali
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,ASPETAR, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar
| |
Collapse
|
6
|
Akerman AP, Tipton M, Minson CT, Cotter JD. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither? Temperature (Austin) 2016; 3:412-436. [PMID: 28349082 PMCID: PMC5356617 DOI: 10.1080/23328940.2016.1216255] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.
Collapse
Affiliation(s)
- Ashley Paul Akerman
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| | - Michael Tipton
- Extreme Environments Laboratory, Department of Sport & Exercise Science, University of Portsmouth , UK
| | | | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| |
Collapse
|
7
|
Kuhlenhoelter AM, Kim K, Neff D, Nie Y, Blaize AN, Wong BJ, Kuang S, Stout J, Song Q, Gavin TP, Roseguini BT. Heat therapy promotes the expression of angiogenic regulators in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2016; 311:R377-91. [PMID: 27357800 DOI: 10.1152/ajpregu.00134.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023]
Abstract
Heat therapy has been shown to promote capillary growth in skeletal muscle and in the heart in several animal models, but the effects of this therapy on angiogenic signaling in humans are unknown. We evaluated the acute effect of lower body heating (LBH) and unilateral thigh heating (TH) on the expression of angiogenic regulators and heat shock proteins (HSPs) in healthy young individuals. Exposure to LBH (n = 18) increased core temperature (Tc) from 36.9 ± 0.1 to 37.4 ± 0.1°C (P < 0.01) and average leg skin temperature (Tleg) from 33.1 ± 0.1 to 39.6 ± 0.1°C (P < 0.01), but did not alter the levels of circulating angiogenic cytokines and bone marrow-derived proangiogenic cells (CD34(+)CD133(+)). In skeletal muscle, the change in mRNA expression from baseline of vascular endothelial growth factor (VEGF), angiopoietin 2 (ANGPT2), chemokines CCL2 and CX3CL1, platelet factor-4 (PF4), and several members of the HSP family was higher 30 min after the intervention in the individuals exposed to LBH (n = 11) compared with the control group (n = 12). LBH also reduced the expression of transcription factor FOXO1 (P = 0.03). Exposure to TH (n = 14) increased Tleg from 32.8 ± 0.2 to 40.3 ± 0.1°C (P < 0.05) but Tc remained unaltered (36.8 ± 0.1°C at baseline and 36.9 ± 0.1°C at 90 min). This intervention upregulated the expression of VEGF, ANGPT1, ANGPT2, CCL2, and HSPs in skeletal muscle but did not affect the levels of CX3CL1, FOXO-1, and PF4. These findings suggest that both LBH and TH increase the expression of factors associated with capillary growth in human skeletal muscle.
Collapse
Affiliation(s)
| | - Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Dustin Neff
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Yaohui Nie
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana; Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - A Nicole Blaize
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Julianne Stout
- Indiana University School of Medicine-Lafayette, West Lafayette, Indiana; and
| | - Qifan Song
- Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
8
|
Wang J, Wang S, Zhang W, Wang T, Li P, Zhao X, Niu C, Liu Y, Wang X, Ma Q. Proteomic profiling of heat acclimation in cerebrospinal fluid of rabbit. J Proteomics 2016; 144:113-22. [PMID: 27208788 DOI: 10.1016/j.jprot.2016.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Heat acclimation (AC) is a phenotypic adaptation to the high ambient temperatures. So far, the physiological effects of AC have been well studied, but the molecular mechanisms underlying it, especially the proteomic studies have been rarely reported. Conducting a protein profile of cerebrospinal fluid (CSF) can facilitate the understanding of molecular pathways involved in AC and identifying stress-specific proteins as a laboratory biomarker. In this study we carried out proteomic profiling of the AC in CSF of rabbit, which would allow a deep insight into molecular signals underlying the AC. For this purpose, rabbits were subjected to AC (dry bulb temperature of (36±1)°C, wet bulb temperature of (29±0.5)°C, black-bulb temperature of (40±1.0)°C, 100min per day for 21days, untreated rabbits were used as controls. We adopted a gel-free proteomic approach (iTRAQ) method to identify protein composition in CSF of rabbits with AC. In total, 1310 proteins were identified. Among which 127 were significant up-regulated and 77 were down-regulated. According to the functions, all AC-induced proteins were classified into 8 categories, including plasma protein factors, metabolism-related proteins, energy metabolism-related proteins, cell surface/intercellular matrix proteins, stress related proteins, tumor-related proteins, as well as housekeeping proteins and putative proteins. Meanwhile, a total of 21 pathways were found involved in the developing of AC. Further analysis indicated that proteins mostly close to AC were grouped into two signal pathways, the immune-related signal pathways and the carbohydrate/lipoprotein metabolism-related signal pathways. Our study was first to carry out the whole proteomic picture of AC, and screen out the critical signaling pathways involved in this physical procedure. BIOLOGICAL SIGNIFICANCE This study reported the comparative proteomic analysis of cerebrospinal fluid of rabbits between heat acclimation and normal conditions using the gel-free proteomic mass-spectrometry approach with isotope-labeled samples (iTRAQ) techniques. Mass spectrometry analysis of the proteins from heat acclimated rabbits resulted in the identification of a total of 1310 proteins, among these, 204 proteins were related to the formation of heat acclimation. These proteins were assigned to 8 categories according to their functions. Additionally, 21 pathways involved in infectious diseases, metabolism, immunology, blood circulation, transcriptional regulation and renin-angiotensin were identified by pathway analysis in heat acclimation. This study was the first to use rabbits as a model for unraveling the molecular pathways underlying the establishment of integrative heat acclimation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Shang Wang
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Wencheng Zhang
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Tao Wang
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Peiyao Li
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xiaoling Zhao
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Chao Niu
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Ying Liu
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xinxing Wang
- Department of Tropical Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Qiang Ma
- Department of Occupational Health, Tianjin Institute of Health and Environmental Medicine, Tianjin, China.
| |
Collapse
|
9
|
Minson CT, Cotter JD. CrossTalk proposal: Heat acclimatization does improve performance in a cool condition. J Physiol 2015; 594:241-3. [PMID: 26668072 DOI: 10.1113/jp270879] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
We believe available data support the thesis that HA can improve performance in cool conditions, and perhaps with less expense and fewer side-effects than hypoxia (Dempsey & Morgan, 2015), but its utility is unresolved and may be modest or absent in some settings and individuals. A few key issues are becoming clear, however. First, HA must be of sufficient stimulus and duration, with key evidence indicating longer is better. Second, individual variability in response to HA as an ergogenic aid needs to be considered. Third, key training aspects such as speed and intensity may need to be maintained, and ideally performed in a cooler environment to maximize gains and minimize fatigue (including the effects of matched absolute versus relative work rates on adaptations). Alternatively, passive heating should be considered (e.g. immediately after training). Fourth, there is no evidence that HA impairs cool weather performance, and thus HA is a useful strategy when the competitive environmental conditions are potentially hot or unknown. Fifth, much remains unknown about ideal timing for competition following HA and its decay. Lastly, an ergogenic effect of HA has yet to be studied in truly elite athletes.
Collapse
Affiliation(s)
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Sugimoto N, Shido O, Matsuzaki K, Katakura M, Hitomi Y, Tanaka M, Sawaki T, Fujita Y, Kawanami T, Masaki Y, Okazaki T, Nakamura H, Koizumi S, Yachie A, Umehara H. Long-term heat exposure prevents hypoxia-induced apoptosis in mouse fibroblast cells. Cell Biochem Biophys 2015; 70:301-7. [PMID: 24648161 DOI: 10.1007/s12013-014-9912-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Long-term continuous exposure to high ambient temperatures induces complete heat acclimation in humans and animals. However, to date, the effects of long-term exposure to heat stress on cells have not been fully evaluated. In this study, we investigated an adaptive physiological process induced in culture cells by continuous exposure to mild heat stress for 60 days. The results of this investigation provide evidence that after long-term heat acclimation in cells, (1) heat shock protein levels are increased, (2) hypoxia inducible factor-1α (HIF-1α) expression is upregulated, and (3) heat shock-induced and hypoxia-induced apoptoses are attenuated. These results suggest that the hypoxia response pathway is an intrinsic part of the heat acclimation repertoire and that the HIF-1 pathway following long-term heat acclimation induces cells with cross tolerance against hypoxia.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gibson OR, Mee JA, Taylor L, Tuttle JA, Watt PW, Maxwell NS. Isothermic and fixed-intensity heat acclimation methods elicit equal increases in Hsp72 mRNA. Scand J Med Sci Sports 2015; 25 Suppl 1:259-68. [DOI: 10.1111/sms.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- O. R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - J. A. Mee
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - L. Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - J. A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - P. W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - N. S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| |
Collapse
|
12
|
Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:849809. [PMID: 25874231 PMCID: PMC4385626 DOI: 10.1155/2015/849809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/21/2014] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V̇O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72.
Collapse
|
13
|
Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross tolerance to hypoxia: Bridging the gap between cellular and systemic responses. Temperature (Austin) 2014; 1:107-14. [PMID: 27583292 PMCID: PMC4977168 DOI: 10.4161/temp.29800] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022] Open
Abstract
Recent research has suggested a potential for some of the physiological and cellular responses to heat acclimation to carry over to improved tolerance of the novel stresses of another environment. This cross-tolerance is evident in heat-acclimated animals that exhibit enhanced tolerance to either hypoxic or ischemic stress, and is primarily attributed to shared cellular stress response pathways. These pathways include Hypoxia-Inducible Factor-1 (HIF-1) and Heat Shock Proteins (HSP). Whether these shared cellular stress response pathways translate to systemic cross-tolerance (improved exercise tolerance, reduced risk of environment-associated illness) has not been clearly shown, particularly in humans. This review highlights the HIF-1 and HSP pathways and their relationship with systemic acclimation responses, and further examines the potential cellular and systemic adaptations that may result in cross-tolerance between hot and hypoxic environments.
Collapse
Affiliation(s)
- Brett R Ely
- University of Oregon; Department of Human Physiology; Eugene, OR USA
| | - Andrew T Lovering
- University of Oregon; Department of Human Physiology; Eugene, OR USA
| | - Michal Horowitz
- The Hebrew University of Jerusalem; Laboratory of Environmental Physiology; Faculty of Dental Medicine; Jerusalem, Israel
| | | |
Collapse
|
14
|
Cotter JD, Tipton MJ. Moving in extreme environments: what's extreme and who decides? EXTREME PHYSIOLOGY & MEDICINE 2014; 3:11. [PMID: 24921041 PMCID: PMC4052285 DOI: 10.1186/2046-7648-3-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/17/2014] [Indexed: 11/10/2022]
Abstract
Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving, extreme loading, chronic unloading and high altitude. Ramifications include factors such as health and safety, productivity, enjoyment and autonomy, acute and chronic protection and optimising adaptation.
Collapse
Affiliation(s)
- James David Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Michael J Tipton
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth PO1 2ER, UK
| |
Collapse
|
15
|
Sugimoto N, Matsuzaki K, Ishibashi H, Tanaka M, Sawaki T, Fujita Y, Kawanami T, Masaki Y, Okazaki T, Sekine J, Koizumi S, Yachie A, Umehara H, Shido O. Upregulation of aquaporin expression in the salivary glands of heat-acclimated rats. Sci Rep 2014; 3:1763. [PMID: 23942196 PMCID: PMC3743064 DOI: 10.1038/srep01763] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
It is known that aquaporin (AQP) 5 expression in the apical membrane of acinar cells in salivary glands is important for the secretion of saliva in rodents and humans. Although heat acclimation enhances saliva secretion in rodents, the molecular mechanism of how heat induces saliva secretion has not been determined. Here, we found that heat acclimation enhanced the expression of AQP5 and AQP1 in rat submandibular glands concomitant with the promotion of the HIF-1α pathway, leading to VEGF induction and CD31-positive angiogenesis. The apical membrane distribution of AQP5 in serous acinar cells enhanced after heat acclimation, while AQP1 expression was restricted to the endothelial cells in the submandibular glands. A network of AQPs may be involved in heat-acclimated regulation in saliva secretion. Because AQPs probably plays a crucial role in saliva secretion in humans, these findings may lead to a novel strategy for treating saliva hyposecretion.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- 1] Department of Physiology, Graduate School of Medical Science, Kanazawa University [2] Department of Environmental Physiology, School of Medicine, Shimane University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Hom LL, Lee ECH, Apicella JM, Wallace SD, Emmanuel H, Klau JF, Poh PYS, Marzano S, Armstrong LE, Casa DJ, Maresh CM. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress Chaperones 2012; 17:29-39. [PMID: 21796498 PMCID: PMC3227846 DOI: 10.1007/s12192-011-0283-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/09/2011] [Accepted: 07/13/2011] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.
Collapse
Affiliation(s)
- Lindsay L. Hom
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Elaine Choung-Hee Lee
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04634 USA
- PO Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672 USA
| | - Jenna M. Apicella
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Sean D. Wallace
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Holly Emmanuel
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Jennifer F. Klau
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Paula Y. S. Poh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Stefania Marzano
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Lawrence E. Armstrong
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Douglas J. Casa
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| | - Carl M. Maresh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
18
|
Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr Physiol 2011; 1:1883-928. [DOI: 10.1002/cphy.c100082] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|