1
|
Montorsi M, Vezzoli A, Mrakic Sposta F, Gussoni M, Brizzolari A, Bosco G, Dellanoce C, Barassi A, Picconi B, Ranuncoli C, Mrakic Sposta S. Systemic Responses Towards Oxy-Inflammation, Hormones, and Mood in Breast Cancer Survivors: Preliminary Evidences from Dragon Boat Endurance Race. J Clin Med 2025; 14:2532. [PMID: 40217981 PMCID: PMC11989338 DOI: 10.3390/jcm14072532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Endurance exercise increases oxygen demand and, when not balanced by antioxidant defenses, consequently, oxidative stress and inflammatory cytokines increase too. In breast cancer survivors (BCS), post-treatment, physical capacity decreases, lowering life quality. Dragon boat (DB) paddling has shown benefits in reducing lymphedema and improving psychological well-being. This study aimed at non-invasively investigating in BCS, by means of saliva and urine samples, the systemic responses to oxy-inflammation, and appetite hormones after a DB endurance race. Methods: 15 BCS and 15 healthy women (5 (CTR) who performed the DB race too) were studied. BCS and CTR were monitored pre- and post-race. Reactive oxygen species (ROS) production, total antioxidant capacity (TAC), lipid peroxidation (8-iso), DNA oxidation (8-OH-dG), nitric oxide metabolites (NOx), inflammation markers (IL-6-10 and TNFα), appetite hormones, electrolytes concentration, psychometric, and physical scales were assessed. Results: At rest, compared to healthy women, BCS showed a significant increase in oxy-inflammation biomarkers. BCS showed a general increase in oxy-inflammation parameters compared to CTR after the DB race. In BCS, there were the following results: ROS: +80%; lipid peroxidation: +103%; DNA oxidation: +44%; interleukins-6: +179%; IL-10: +55%; TNFα: +9%, NOx: +60% increases and unbalanced appetite hormones: leptin (-32%); and ghrelin (+53%). Moreover, the dragon boat offered a holistic approach to recovery, addressing emotional and social needs supporting belonging, love, and esteem needs, reported to be about 56% of the motivations in this activity, while post-race the following increased: a sense of fatigue (+55%); tiredness (48%); a cold sensation (+15%); and +32% pain. Conclusions: This study provided evidence that, in BCS, a DB endurance race produces an important imbalance in the oxy-inflammation state, at the same time being accompanied by a positive impact on subjective mood and general wellness. Future studies should focus on long-term effects.
Collapse
Affiliation(s)
- Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy; (M.M.); (B.P.)
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (M.G.); (C.D.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (M.G.); (C.D.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (G.B.)
| | | | - Maristella Gussoni
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (M.G.); (C.D.)
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (G.B.)
- Department of Health Sciences, Università degli Studi of Milan, 20100 Milan, Italy;
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (G.B.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (M.G.); (C.D.)
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi of Milan, 20100 Milan, Italy;
| | - Barbara Picconi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy; (M.M.); (B.P.)
| | | | - Simona Mrakic Sposta
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy; (M.M.); (B.P.)
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (M.G.); (C.D.)
| |
Collapse
|
2
|
Hazuková R, Zadák Z, Pleskot M, Zdráhal P, Pumprla M, Táborský M. Oxidative DNA Damage and Arterial Hypertension in Light of Current ESC Guidelines. Int J Mol Sci 2024; 25:12557. [PMID: 39684269 DOI: 10.3390/ijms252312557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
A new insight into oxidative stress is based on oxidative deoxyribonucleic acid (DNA) damage. DNA is the pivotal biopolymer for life and health. Arterial hypertension (HT) is a globally common disease and a major risk factor for numerous cardiovascular (CV) conditions and non-cardiac complications, making it a significant health and socio-economic problem. The aetiology of HT is multifactorial. Oxidative stress is the main driver. Oxidative DNA damage (oxidised guanosine (8OHdG), strand breaks (SSBs, DSBs)) seems to be the crucial and initiating causal molecular mechanism leading to HT, acting through oxidative stress and the resulting consequences (inflammation, fibrosis, vascular remodelling, stiffness, thickness, and endothelial dysfunction). In light of the current European Society of Cardiology (ESC) guidelines with defined gaps in the evidence, this manuscript, for the first time, (1) summarizes evidence for oxidative DNA damage in HT and other CV risk factors, (2) incorporates them into the context of known mechanisms in HT genesis, (3) proposes the existing concept of HT genesis innovatively supplemented with oxidative DNA damage, and (4) mentions consequences such as promising new targets for the treatment of HT (DNA damage response (DDR) pathways).
Collapse
Affiliation(s)
- Radka Hazuková
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Zdeněk Zadák
- IIIrd Department of Internal Medicine-Gerontology and Metabolism, Medical Faculty in Hradec Králové, University Hospital Hradec Králové, Charles University Prague, 50003 Hradec Králové, Czech Republic
| | - Miloslav Pleskot
- Department of Cardiology and Internal Medicine, Profi-Kardio, s.r.o., 50801 Hořice, Czech Republic
| | - Petr Zdráhal
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Martin Pumprla
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I-Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Aerts A, Temmerman A, Vanhie A, Vanderschueren D, Antonio L. The Effect of Endurance Exercise on Semen Quality in Male Athletes: A Systematic Review. SPORTS MEDICINE - OPEN 2024; 10:72. [PMID: 38861008 PMCID: PMC11166609 DOI: 10.1186/s40798-024-00739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Endurance exercise has the potential to affect reproductive function, with amenorrhea in female athletes. However, most studies focus on women. Evidence on the association between endurance exercise and male fertility is limited. OBJECTIVE To synthesise existing literature on exercise-induced alterations in semen parameters and to assess the clinical impact on male fertility. METHODS Studies reporting on the association between semen parameters and endurance exercise in healthy men were eligible. Men attending fertility clinics were excluded. We searched MEDLINE (PubMed), Embase, SPORTDiscus, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov and International Clinical Trials Registry Platform (ICTRP) from their inception to May 28th 2022. JBI Critical Appraisal Tool was used to assess the potential risk of bias. RESULTS Thirteen studies met inclusion criteria, reporting on 280 subjects. Eight articles reported on endurance runners, three on cyclists and four on triathletes. Four studies did not find any statistically significant sperm alterations. Five reported significant changes in semen parameters, but these were not clinically relevant, as semen parameters remained well above World Health Organisation (WHO) thresholds. Four articles reported a decrease in semen quality with potential clinical consequences as they found a reduced number of sperm cells exhibiting normal morphology in cyclists and triathletes and a greater amount of DNA fragmentation in triathletes. CONCLUSION Endurance exercise can have a negative effect on semen quality, although rarely with a clinically relevant impact on male fertility. Evidence is however limited, with poor quality of the included studies. REGISTRATION PROSPERO International prospective register of systematic reviews (CRD42022336753).
Collapse
Affiliation(s)
- Alex Aerts
- Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Annelien Temmerman
- Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Arne Vanhie
- Leuven University Fertility Centre, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants (Basel) 2024; 13:437. [PMID: 38671884 PMCID: PMC11047508 DOI: 10.3390/antiox13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
5
|
Longman DP, Dolan E, Wells JCK, Stock JT. Patterns of energy allocation during energetic scarcity; evolutionary insights from ultra-endurance events. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111422. [PMID: 37031854 DOI: 10.1016/j.cbpa.2023.111422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Exercise physiologists and evolutionary biologists share a research interest in determining patterns of energy allocation during times of acute or chronic energetic scarcity.. Within sport and exercise science, this information has important implications for athlete health and performance. For evolutionary biologists, this would shed new light on our adaptive capabilities as a phenotypically plastic species. In recent years, evolutionary biologists have begun recruiting athletes as study participants and using contemporary sports as a model for studying evolution. This approach, known as human athletic palaeobiology, has identified ultra-endurance events as a valuable experimental model to investigate patterns of energy allocation during conditions of elevated energy demand, which are generally accompanied by an energy deficit. This energetic stress provokes detectable functional trade-offs in energy allocation between physiological processes. Early results from this modelsuggest thatlimited resources are preferentially allocated to processes which could be considered to confer the greatest immediate survival advantage (including immune and cognitive function). This aligns with evolutionary perspectives regarding energetic trade-offs during periods of acute and chronic energetic scarcity. Here, we discuss energy allocation patterns during periods of energetic stress as an area of shared interest between exercise physiology and evolutionary biology. We propose that, by addressing the ultimate "why" questions, namely why certain traits were selected for during the human evolutionary journey, an evolutionary perspective can complement the exercise physiology literature and provide a deeper insight of the reasons underpinning the body's physiological response to conditions of energetic stress.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, United Kingdom; Department of Anthropology, University of Western Ontario, Ontario, Canada
| |
Collapse
|
6
|
Mendes S, Leal DV, Baker LA, Ferreira A, Smith AC, Viana JL. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24076017. [PMID: 37046990 PMCID: PMC10094245 DOI: 10.3390/ijms24076017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a global health burden with high mortality and health costs. CKD patients exhibit lower cardiorespiratory and muscular fitness, strongly associated with morbidity/mortality, which is exacerbated when they reach the need for renal replacement therapies (RRT). Muscle wasting in CKD has been associated with an inflammatory/oxidative status affecting the resident cells' microenvironment, decreasing repair capacity and leading to atrophy. Exercise may help counteracting such effects; however, the molecular mechanisms remain uncertain. Thus, trying to pinpoint and understand these mechanisms is of particular interest. This review will start with a general background about myogenesis, followed by an overview of the impact of redox imbalance as a mechanism of muscle wasting in CKD, with focus on the modulatory effect of exercise on the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Sara Mendes
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Aníbal Ferreira
- Nova Medical School, 1169-056 Lisbon, Portugal
- NephroCare Portugal SA, 1750-233 Lisbon, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| |
Collapse
|
7
|
Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J 2023; 290:649-668. [PMID: 34968001 DOI: 10.1111/febs.16337] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Biological aging is the main driver of age-associated chronic diseases. In 2014, the United States National Institute of Aging (NIA) sponsored a meeting between several investigators in the field of aging biology, who identified seven biological pillars of aging and a consensus review, "Geroscience: Linking Aging to Chronic Disease," was published. The pillars of aging demonstrated the conservation of aging pathways in diverse model organisms and thus represent a useful framework with which to study human aging. In this present review, we revisit the seven pillars of aging from the perspective of exercise and discuss how regular physical exercise can modulate these pillars to stave off age-related chronic diseases and maintain functional capacity.
Collapse
Affiliation(s)
- Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian Keith Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
8
|
Running for Your Life: Metabolic Effects of a 160.9/230 km Non-Stop Ultramarathon Race on Body Composition, Inflammation, Heart Function, and Nutritional Parameters. Metabolites 2022; 12:metabo12111138. [DOI: 10.3390/metabo12111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Moderate endurance exercise leads to an improvement in cardiovascular performance, stress resilience, and blood function. However, the influence of chronic endurance exercise over several hours or days is still largely unclear. We examined the influence of a non-stop 160.9/230 km ultramarathon on body composition, stress/cardiac response, and nutrition parameters. Blood samples were drawn before (pre) and after the race (post) and analyzed for ghrelin, insulin, irisin, glucagon, cortisol, kynurenine, neopterin, and total antioxidant capacity. Additional measurements included heart function by echocardiography, nutrition questionnaires, and body impedance analyses. Of the 28 included ultra-runners (7f/21m), 16 participants dropped out during the race. The remaining 12 finishers (2f/10m) showed depletion of antioxidative capacities and increased inflammation/stress (neopterin/cortisol), while energy metabolism (insulin/glucagon/ghrelin) remained unchanged despite a high negative energy balance. Free fat mass, protein, and mineral content decreased and echocardiography revealed a lower stroke volume, left end diastolic volume, and ejection fraction post race. Optimizing nutrition (high-density protein-rich diet) during the race may attenuate the observed catabolic and inflammatory effects induced by ultramarathon running. As a rapidly growing discipline, new strategies for health prevention and extensive monitoring are needed to optimize the athletes’ performance.
Collapse
|
9
|
Effects of Intestinal Bacterial Hydrogen Gas Production on Muscle Recovery following Intense Exercise in Adult Men: A Pilot Study. Nutrients 2022; 14:nu14224875. [PMID: 36432562 PMCID: PMC9693815 DOI: 10.3390/nu14224875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to examine the effects of hydrogen gas (H2) produced by intestinal microbiota on participant conditioning to prevent intense exercise-induced damage. In this double-blind, randomized, crossover study, participants ingested H2-producing milk that induced intestinal bacterial H2 production or a placebo on the trial day, 4 h before performing an intense exercise at 75% maximal oxygen uptake for 60 min. Blood marker levels and respiratory variables were measured before, during, and after exercise. Visual analog scale scores of general and lower limb muscle soreness evaluated were 3.8- and 2.3-fold higher, respectively, on the morning after treatment than that before treatment during the placebo trial, but not during the test beverage consumption. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations and production rates significantly increased with placebo consumption; no changes were observed with test beverage consumption. After exercise, relative blood lactate levels with H2-producing milk consumption were lower than those with placebo consumption. A negative correlation was observed between the variation of 8-OHdG and the area under the curve (AUC) of breath H2 concentrations. Lipid oxidation AUC was 1.3-fold higher significantly with H2-producing milk than with placebo consumption. Conclusively, activating intestinal bacterial H2 production by consuming a specific beverage may be a new strategy for promoting recovery and conditioning in athletes frequently performing intense exercises.
Collapse
|
10
|
Mieszkowski J, Stankiewicz BE, Kochanowicz A, Niespodziński B, Borkowska AE, Sikorska K, Daniłowicz-Szymanowicz L, Brzezińska P, Antosiewicz J. Remote Ischemic Preconditioning Reduces Marathon-Induced Oxidative Stress and Decreases Liver and Heart Injury Markers in the Serum. Front Physiol 2021; 12:731889. [PMID: 34552508 PMCID: PMC8450527 DOI: 10.3389/fphys.2021.731889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical studies continue to provide evidence of organ protection by remote ischemic preconditioning (RIPC). However, there is lack of insight into impact of RIPC on exercise-induce changes in human organs' function. We here aimed to elucidate the effects of 10-day RIPC training on marathon-induced changes in the levels of serum markers of oxidative stress, and liver and heart damage. The study involved 18 male amateur runners taking part in a marathon. RIPC training was performed in the course of four cycles, by inflating and deflating a blood pressure cuff at 5-min intervals (RIPC group, n=10); the control group underwent sham training (n=8). The effects of RIPC on levels of oxidative stress, and liver and heart damage markers were investigated at rest after 10 consecutive days of training and after the marathon run. The 10-day RIPC training decreased the serum resting levels of C-reactive protein (CRP), alanine transaminase (ALT), γ-glutamyl transpeptidase (GGT), and malondialdehyde (MDA). After the marathon run, creatinine kinase MB (CK-MB), lactate dehydrogenase (LDH), cardiac troponin level (cTn), aspartate aminotransferase (AST), alkaline phosphatase (ALP), ALT, total bilirubin (BIL-T), and MDA levels were increased and arterial ketone body ratio (AKBR) levels were decreased in all participants. The changes were significantly diminished in the RIPC group compared with the control group. The GGT activity remained constant in the RIPC group but significantly increased in the control group after the marathon run. In conclusion, the study provides evidence for a protective effect of RIPC against liver and heart damage induced by strenuous exercise, such as the marathon.
Collapse
Affiliation(s)
- Jan Mieszkowski
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdańsk, Poland.,Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Błaz Ej Stankiewicz
- Department of Human Biology, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Human Biology, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andz Elika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Sikorska
- Department of Tropical and Parasitic Diseases, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Paulina Brzezińska
- Department of Gymnastics and Dance, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
|
12
|
Exercise-Induced Hyperhomocysteinemia Is Not Related to Oxidative Damage or Impaired Vascular Function in Amateur Middle-Aged Runners under Controlled Nutritional Intake. Nutrients 2021; 13:nu13093033. [PMID: 34578910 PMCID: PMC8471188 DOI: 10.3390/nu13093033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
To determine the influence of different doses of maximal acute exercise on the kinetics of plasma homocysteine (tHcy) and its relationship with oxidative status and vascular function, nine recreational runners completed a 10 km race (10K) and a marathon (M). Blood samples were collected before (Basal), immediately post-exercise (Post0), and after 24 h (Post24). Nutritional intake was controlled at each sample point. A significant increase in tHcy was observed after both races, higher after M. Basal levels were recovered at Post24 after 10K, but remained elevated at Post 24 for M. A significant decrease in GSH/GSSG ratio was observed in Post0, especially marked after M. Furthermore, this increase in pro-oxidant status remained at Post24 only after M. Other oxidative status markers failed to confirm this exercise-induced pro-oxidant status except glutathione peroxidase activity that was lower in Post24 compared to Basal in 10K and in Post0 and Post24 in M. No statistical correlation was found between oxidative markers and tHcy. No significant changes were observed in the concentration of endothelial cell adhesion molecules (VCAM-1 and E-Selectin) and VEGF. In conclusion, tHcy increases in an exercise–dose–response fashion but is not related to endothelial dysfunction mediated by oxidative stress mechanisms.
Collapse
|
13
|
Impact of Plasma Oxidative Stress Markers on Post-race Recovery in Ultramarathon Runners: A Sex and Age Perspective Overview. Antioxidants (Basel) 2021; 10:antiox10030355. [PMID: 33673404 PMCID: PMC7996940 DOI: 10.3390/antiox10030355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress has been widely studied in association to ultra-endurance sports. Although it is clearly demonstrated the increase in reactive oxygen species and free radicals after these extreme endurance exercises, the effects on the antioxidant defenses and the oxidative damage to macromolecules, remain to be fully clarified. Therefore, the aim of this study was to elucidate the impact of an ultramarathon race on the plasma markers of oxidative stress of 32 runners and their post-race recovery, with especial focused on sex and age effect. For this purpose, the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) activity, as well as the lipid peroxidation product malondialdehyde (MDA) and the carbonyl groups (CG) content were measured before the race, in the finish line and 24 and 48 h after the race. We have reported an increase of the oxidative damage to lipids and proteins (MDA and CG) after the race and 48 h later. Moreover, there was an increase of the GR activity after the race. No changes were observed in runners' plasma GPx activity throughout the study. Finally, we have observed sex and age differences regarding damage to macromolecules, but no differences were found regarding the antioxidant enzymes measured. Our results suggest that several basal plasma markers of oxidative stress might be related to the extent of muscle damage after an ultraendurance race and also might affect the muscle strength evolution.
Collapse
|
14
|
Martínez-Noguera FJ, Alcaraz PE, Ortolano-Ríos R, Dufour SP, Marín-Pagán C. Differences between Professional and Amateur Cyclists in Endogenous Antioxidant System Profile. Antioxidants (Basel) 2021; 10:antiox10020282. [PMID: 33673363 PMCID: PMC7918641 DOI: 10.3390/antiox10020282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Currently, no studies have examined the differences in endogenous antioxidant enzymes in professional and amateur cyclists and how these can influence sports performance. The aim of this study was to identify differences in endogenous antioxidants enzymes and hemogram between competitive levels of cycling and to see if differences found in these parameters could explain differences in performance. A comparative trial was carried out with 11 professional (PRO) and 15 amateur (AMA) cyclists. All cyclists performed an endogenous antioxidants analysis in the fasted state (visit 1) and an incremental test until exhaustion (visit 2). Higher values in catalase (CAT), oxidized glutathione (GSSG) and GSSG/GSH ratio and lower values in superoxide dismutase (SOD) were found in PRO compared to AMA (p < 0.05). Furthermore, an inverse correlation was found between power produced at ventilation thresholds 1 and 2 and GSSG/GSH (r = −0.657 and r = −0.635; p < 0.05, respectively) in PRO. Therefore, there is no well-defined endogenous antioxidant enzyme profile between the two competitive levels of cyclists. However, there was a relationship between GSSG/GSH ratio levels and moderate and submaximal exercise performance in the PRO cohort.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
- Correspondence: ; Tel.: +34-96-827-8566
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
| | - Raquel Ortolano-Ríos
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
| | - Stéphane P. Dufour
- Faculty of Medicine, Translational Medicine Federation (FMTS) UR 3072, University of Strasbourg, 67000 Strasbourg, France;
- Faculty of Sport Sciences, University of Strasbourg, 67084 Strasbourg, France
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Campus de los Jerónimos, Catholic University of Murcia, 30107 Murcia, Spain; (P.E.A.); (R.O.-R.); (C.M.-P.)
| |
Collapse
|
15
|
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol 2020; 35:101480. [PMID: 32179050 PMCID: PMC7284919 DOI: 10.1016/j.redox.2020.101480] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period is equally critical in providing sufficient time for metabolic and structural adaptations to occur within skeletal muscle. These cyclical periods between exhausting exercise and recovery form the basis of any effective exercise training prescription to improve muscle endurance and strength. However, imbalance between the fatigue induced from intense training/competitions, and inadequate post-exercise/competition recovery periods can lead to a decline in physical performance. In fact, prolonged periods of this imbalance may eventually lead to extended periods of performance impairment, referred to as the state of overreaching that may progress into overtraining syndrome (OTS). OTS may have devastating implications on an athlete's career and the purpose of this review is to discuss potential underlying mechanisms that may contribute to exercise-induced OTS in skeletal muscle. First, we discuss the conditions that lead to OTS, and their potential contributions to impaired skeletal muscle function. Then we assess the evidence to support or refute the major proposed mechanisms underlying skeletal muscle weakness in OTS: 1) glycogen depletion hypothesis, 2) muscle damage hypothesis, 3) inflammation hypothesis, and 4) the oxidative stress hypothesis. Current data implicates reactive oxygen and nitrogen species (ROS) and inflammatory pathways as the most likely mechanisms contributing to OTS in skeletal muscle. Finally, we allude to potential interventions that can mitigate OTS in skeletal muscle.
Collapse
Affiliation(s)
- Arthur J Cheng
- York University, Faculty of Health/ School of Kinesiology and Health Sciences, Muscle Health Research Centre/ Muscle Calcium Dynamics Lab, 351 Farquharson Life Sciences Building, Toronto, M3J 1P3, Canada
| | - Baptiste Jude
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden.
| |
Collapse
|
16
|
Mrakic-Sposta S, Gussoni M, Vezzoli A, Dellanoce C, Comassi M, Giardini G, Bruno RM, Montorsi M, Corciu A, Greco F, Pratali L. Acute Effects of Triathlon Race on Oxidative Stress Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3062807. [PMID: 32256948 PMCID: PMC7109587 DOI: 10.1155/2020/3062807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023]
Abstract
The response to strenuous exercise was investigated by reactive oxygen species (ROS) production, oxidative damage, thiol redox status, and inflammation assessments in 32 enrolled triathlon athletes (41.9 ± 7.9 yrs) during Ironman® (IR), or half Ironman® (HIR) competition. In biological samples, inflammatory cytokines, aminothiols (glutathione (GSH), homocysteine (Hcy), cysteine (Cys), and cysteinylglycine (CysGly)), creatinine and neopterin, oxidative stress (OxS) biomarkers (protein carbonyl (PC), thiobarbituric acid-reactive substances (TBARS)), and ROS were assessed. Thirteen HIR and fourteen IR athletes finished the race. Postrace, ROS (HIR +20%; IR +28%; p < 0.0001), TBARS (HIR +57%; IR +101%), PC (HIR +101%; IR +130%) and urinary neopterin (HIR +19%, IR +27%) significantly (range p < 0.05-0.0001) increased. Moreover, HIR showed an increase in total Cys +28%, while IR showed total aminothiols, Cys, Hcy, CysGly, and GSH increase by +48, +30, +58, and +158%, respectively (range p < 0.05-0.0001). ROS production was significantly correlated with TBARS and PC (R 2 = 0.38 and R 2 = 0.40; p < 0.0001) and aminothiols levels (range R 2 = 0.17-0.47; range p < 0.01-0.0001). In particular, ROS was directly correlated with the athletes' age (R 2 = 0.19; p < 0.05), with ultraendurance years of training (R 2 = 0.18; p < 0.05) and the days/week training activity (R 2 = 0.16; p < 0.05). Finally, the days/week training activity (hours/in the last 2 weeks) was found inversely correlated with the IL-6 postrace (R 2 = -0.21; p < 0.01). A strenuous performance, the Ironman® distance triathlon competition, alters the oxidant/antioxidant balance through a great OxS response that is directly correlated to the inflammatory parameters; furthermore, the obtained data suggest that an appropriate training time has to be selected in order to achieve the lowest ROS production and IL-6 concentration at the same time.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maristella Gussoni
- Institute of Science and Chemical Technology, National Council of Research (SCITEC-CNR), Milan, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Mario Comassi
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), Pisa, Italy
| | - Guido Giardini
- Neurology and Neurophysiology Department, Mountain Medicine Center Valle d' Aosta Regional Hospital Umberto Parini, Aosta, Italy
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Milan, Italy
| | - Anca Corciu
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), Pisa, Italy
| | - Fulvia Greco
- Institute of Science and Chemical Technology, National Council of Research (SCITEC-CNR), Milan, Italy
| | - Lorenza Pratali
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), Pisa, Italy
| |
Collapse
|
17
|
Tryfidou DV, McClean C, Nikolaidis MG, Davison GW. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med 2020; 50:103-127. [PMID: 31529301 PMCID: PMC6942015 DOI: 10.1007/s40279-019-01181-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exercise is widely recognised for its health enhancing benefits. Despite this, an overproduction of reactive oxygen and nitrogen species (RONS), outstripping antioxidant defence mechanisms, can lead to a state of (chronic) oxidative stress. DNA is a vulnerable target of RONS attack and, if left unrepaired, DNA damage may cause genetic instability. OBJECTIVE This meta-analysis aimed to systematically investigate and assess the overall effect of studies reporting DNA damage following acute aerobic exercise. METHODS Web of Science, PubMed, MEDLINE, EMBASE, and Scopus were searched until April 2019. Outcomes included (1) multiple time-points (TPs) of measuring DNA damage post-exercise, (2) two different quantification methods (comet assay and 8-oxo-2'-deoxyguanosine; 8-OHdG), and (3) protocols of high intensity (≥ 75% of maximum rate of oxygen consumption; VO2-max) and long distance (≥ 42 km). RESULTS Literature search identified 4316 non-duplicate records of which 35 studies were included in the meta-analysis. The evidence was strong, showcasing an increase in DNA damage immediately following acute aerobic exercise with a large-effect size at TP 0 (0 h) (SMD = 0.875; 95% CI 0.5, 1.25; p < 0.05). When comparing between comet assay and 8-OHdG at TP 0, a significant difference was observed only when using the comet assay. Finally, when isolating protocols of long-distance and high-intensity exercise, increased DNA damage was only observed in the latter. (SMD = 0.48; 95% CI - 0.16, 1.03; p = 0.15 and SMD = 1.18; 95% CI 0.71, 1.65; p < 0.05 respectively). CONCLUSIONS A substantial increase in DNA damage occurs immediately following acute aerobic exercise. This increase remains significant between 2 h and 1 day, but not within 5-28 days post-exercise. Such an increase was not observed in protocols of a long-distance. The relationship between exercise and DNA damage may be explained through the hormesis theory, which is somewhat one-dimensional, and thus limited. The hormesis theory describes how exercise modulates any advantageous or harmful effects mediated through RONS, by increasing DNA oxidation between the two end-points of the curve: physical inactivity and overtraining. We propose a more intricate approach to explain this relationship: a multi-dimensional model, to develop a better understanding of the complexity of the relationship between DNA integrity and exercise.
Collapse
Affiliation(s)
- Despoina V Tryfidou
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK
| | - Conor McClean
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK.
| |
Collapse
|
18
|
Tillmans F, Sharghi R, Noy T, Kähler W, Klapa S, Sartisohn S, Sebens S, Koch A. Effect of hyperoxia on the immune status of oxygen divers and endurance athletes. Free Radic Res 2019; 53:522-534. [PMID: 31117828 DOI: 10.1080/10715762.2019.1612890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Physical activity, particularly that, exerted by endurance athletes, impacts the immune status of the human body. Prolonged duration and high-intensity endurance training lead to increased production of reactive oxygen species (ROS) and thereby to oxidative stress. Military combat swimmers (O2-divers) are regularly exposed to hyperbaric hyperoxia (HBO) in addition to intensive endurance training intervals. They are, therefore, exposed to extreme levels of oxidative stress. Several studies support that the intensity of oxidative stress essentially determines the effect on immune status. The aim of this study was to comparatively characterise peripheral blood mononuclear cells (PBMCs) of O2-divers (military combat swimmers), endurance athletes (amateur triathletes), and healthy control volunteers with respect to DNA fragmentation, immune status and signs of inflammation. Furthermore, it was investigated how PBMCs from these groups responded acutely to exposure to HBO. We showed that DNA fragmentation was comparable in PBMCs of all three groups under basal conditions directly after HBO exposure. However, significantly higher DNA fragmentation was observed in O2-divers 18 hours after HBO, possibly indicating a slower recovery. O2-divers also exhibited a proinflammatory immune status exemplified by an elevated number of CD4+CD25+ T cells, elevated expression of proinflammatory cytokine IL-12, and diminished expression of anti-inflammatory TGF-β1 compared to controls. Supported by a decreased basal gene expression and prolonged upregulation of anti-oxidative HO-1, these data suggest that higher oxidative stress levels, as present under intermitted hyperbaric hyperoxia, e.g. through oxygen diving, promote a higher inflammatory immune status than oxidative stress through endurance training alone.
Collapse
Affiliation(s)
- Frauke Tillmans
- a Naval Institute for Maritime Medicine , Kronshagen , Germany
| | - Roshanak Sharghi
- b Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel , Kiel , Germany
| | - Tatjana Noy
- a Naval Institute for Maritime Medicine , Kronshagen , Germany
| | - Wataru Kähler
- a Naval Institute for Maritime Medicine , Kronshagen , Germany
| | - Sebastian Klapa
- a Naval Institute for Maritime Medicine , Kronshagen , Germany
| | - Simon Sartisohn
- a Naval Institute for Maritime Medicine , Kronshagen , Germany
| | - Susanne Sebens
- b Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel , Kiel , Germany
| | - Andreas Koch
- a Naval Institute for Maritime Medicine , Kronshagen , Germany
| |
Collapse
|
19
|
The absorptive effects of orobuccal non-liposomal nano-sized glutathione on blood glutathione parameters in healthy individuals: A pilot study. PLoS One 2019; 14:e0215815. [PMID: 31039164 PMCID: PMC6490881 DOI: 10.1371/journal.pone.0215815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutathione is an endogenous antioxidant found in oxidized (GSSG) and reduced (GSH) forms. Glutathione depletion is indicative of oxidative stress and occurs in various pathological conditions and following extreme exercise activity. Raising blood glutathione concentration has potential to attenuate and prevent chronic disease and also to improve recovery from exercise. There are a number of challenges to achieving this through traditional dietary supplements, and thus there is a need to develop optimized delivery methods to improve blood glutathione status. This study evaluated the effect of a novel glutathione formulation on blood glutathione parameters in healthy individuals. METHODS 15 (8 male) healthy individuals (25±5y old, 78.0±14.6kg) participated in a single-blinded randomized placebo-controlled crossover study, with a minimum one-week washout period between treatments. Participants were overnight fasted and administered 1mL of a non-liposomal nano-size glutathione solution (NLNG) containing 200mg of glutathione or 1mL of placebo lacking glutathione. The solution was held in the mouth for 90 seconds before the remainder was swallowed. Blood was collected at baseline, 5, 10, 30, 60 and 120 minutes post-treatment. Protein-bound plasma and erythrocyte lysate concentrations of GSH and GSSG were measured at all time points using previously validated procedures. Linear mixed effects models were used to compare differences between baseline and post-treatment glutathione concentrations between NLNG and placebo for each parameter. RESULTS There was a significant main effect for treatment type, such that increases in GSH concentration in erythrocyte lysate were greater following NLNG than placebo (p = 0.001). Similar significant main effects for treatment were also found for total (protein bound + erythrocyte lysate) GSH (p = 0.015) and GSSG (p = 0.037) concentration, as well as total blood glutathione pool (GSH+GSSG, p = 0.006). DISCUSSION NLNG increased multiple blood glutathione parameters compared to placebo. Future research should examine whether NLNG can attenuate oxidative stress.
Collapse
|
20
|
Bujok J, Gąsior-Głogowska M, Marszałek M, Trochanowska-Pauk N, Zigo F, Pavľak A, Komorowska M, Walski T. Applicability of FTIR-ATR Method to Measure Carbonyls in Blood Plasma after Physical and Mental Stress. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2181370. [PMID: 31032337 PMCID: PMC6457301 DOI: 10.1155/2019/2181370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/24/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Oxidative stress is a state of imbalance between the production of reactive oxygen species and antioxidant defenses. It results in the oxidation of all cellular elements and, to a large extent, proteins, causing inter alia the formation of carbonyl groups in their structures. The study focused on assessment of changes in the plasma protein-bound carbonyls in police horses after combat training and after rest and the applicability of infrared spectroscopy with a Fourier transform, utilizing the attenuated total reflectance (FTIR-ATR) in detecting plasma protein oxidation. METHODS We evaluated the influence of both the different concentrations of hydrogen peroxide and combat training on protein carbonylation in horse blood plasma. The oxidation of plasma proteins was assessed using a spectrophotometric method based on the carbonyl groups derivatization with 2,4-dinitrophenylhydrazine (DNPH). The measured values were correlated with the carbonyl groups concentrations determined by means of the FTIR-ATR method. RESULTS The linear correlation between the DNPH and FTIR-ATR methods was shown. The concentration of plasma protein-bound carbonyls significantly deceased in police horses after one-day rest when compared to the values measured directly after the combat training (a drop by 23%, p<0.05 and 29%, p<0.01 measured by DNPH and FTIR-ATR methods, respectively). These results were consistent with the proteins phosphorylation analysis. CONCLUSION The FTIR-ATR method may be applied to measure the level of plasma proteins peroxidation.
Collapse
Affiliation(s)
- Jolanta Bujok
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Marszałek
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Natalia Trochanowska-Pauk
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - František Zigo
- Department of Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 041 81 Košice, Slovakia
| | - Alexander Pavľak
- Department of Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 041 81 Košice, Slovakia
| | - Małgorzata Komorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Biosciences Research Building 118 Corrib Village, Newcastle, Galway, Ireland
| |
Collapse
|
21
|
Rai S, Chowdhury A, Reniers RLEP, Wood SJ, Lucas SJE, Aldred S. A pilot study to assess the effect of acute exercise on brain glutathione. Free Radic Res 2017; 52:57-69. [PMID: 29237310 DOI: 10.1080/10715762.2017.1411594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain is highly susceptible to oxidative stress due to its high metabolic demand. Increased oxidative stress and depletion of glutathione (GSH) are observed with aging and many neurological diseases. Exercise training has the potential to reduce oxidative stress in the brain. In this study, nine healthy sedentary males (aged 25 ± 4 years) undertook a bout of continuous moderate intensity exercise and a high-intensity interval (HII) exercise bout on separate days. GSH concentration in the anterior cingulate was assessed by magnetic resonance spectroscopy (MRS) in four participants, before and after exercise. This was a pilot study to evaluate the ability of the MRS method to detect exercise-induced changes in brain GSH in humans for the first time. MRS is a non-invasive method based on nuclear magnetic resonance, which enables the quantification of metabolites, such as GSH, in the human brain in vivo. To add context to brain GSH data, other markers of oxidative stress were also assessed in the periphery (in blood) at three time points [pre-, immediately post-, and post (∼1 hour)-exercise]. Moderate exercise caused a significant decrease in brain GSH from 2.12 ± 0.64 mM/kg to 1.26 ± 0.36 mM/kg (p = .04). Blood GSH levels increased immediately post-HII exercise, 580 ± 101 µM to 692 ± 102 µM (n = 9, p = .006). The findings from this study show that brain GSH is altered in response to acute moderate exercise, suggesting that exercise may stimulate an adaptive response in the brain. Due to the challenges in MRS methodology, this pilot study should be followed up with a larger exercise intervention trial.
Collapse
Affiliation(s)
- Sahara Rai
- a School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Birmingham , UK
| | - Alimul Chowdhury
- b Medical Physics Department , University Hospitals Birmingham NHS Foundation Trust , Birmingham , UK
| | | | - Stephen J Wood
- d Orygen , the National Centre of Excellence in Youth Mental Health , Parkville , Australia.,e Centre for Youth Mental Health, University of Melbourne , Parkville , Australia.,f School of Psychology , University of Birmingham , Birmingham , UK
| | - Samuel J E Lucas
- a School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Birmingham , UK.,g Centre for Human Brain Health, University of Birmingham and Birmingham Health Partners. , Birmingham , UK
| | - Sarah Aldred
- a School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Birmingham , UK.,g Centre for Human Brain Health, University of Birmingham and Birmingham Health Partners. , Birmingham , UK
| |
Collapse
|
22
|
Spanidis Y, Stagos D, Orfanou M, Goutzourelas N, Bar-Or D, Spandidos D, Kouretas D. Variations in Oxidative Stress Levels in 3 Days Follow-up in Ultramarathon Mountain Race Athletes. J Strength Cond Res 2017; 31:582-594. [PMID: 28212265 DOI: 10.1519/jsc.0000000000001584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.
Collapse
Affiliation(s)
- Ypatios Spanidis
- 1Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece; 2Trauma Research Department, St. Anthony Hospital, Lakewood, Colorado; 3Trauma Research Department, Swedish Medical Center, Englewood, Colorado; 4Trauma Research Department, Medical Center of Plano, Plano, Texas; 5Luoxis Diagnostics, Inc., Englewood, Colorado; and 6Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
23
|
Vaamonde D, Algar-Santacruz C, Abbasi A, García-Manso JM. Sperm DNA fragmentation as a result of ultra-endurance exercise training in male athletes. Andrologia 2017; 50. [DOI: 10.1111/and.12793] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- D. Vaamonde
- Morphological Sciences Department; School of Medicine; University of Cordoba; Cordoba Spain
- International Network on Physical Exercise and Fertility (INPEF); Cordoba Spain
| | - C. Algar-Santacruz
- Morphological Sciences Department; School of Medicine; University of Cordoba; Cordoba Spain
- Nutrir. Nutrición Médica y Ejercicio; Cordoba Spain
| | - A. Abbasi
- Institute for Memory Impairments and Neurological Disorders (MIND Institute) University of California; Irvine
| | - J. M. García-Manso
- International Network on Physical Exercise and Fertility (INPEF); Cordoba Spain
- Physical Education Department; School of Physical Activity and Sport Sciences; University of Las Palmas de Gran Canarias; Las Palmas Spain
| |
Collapse
|
24
|
Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Radic Res 2017; 51:222-236. [PMID: 28166653 DOI: 10.1080/10715762.2017.1291942] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- a Instituto de Ciências Biológicas , Universidade de Passo Fundo , Passo Fundo , Brazil.,b Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTOx) , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil
| | - Luiz Fernando Freire Royes
- b Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTOx) , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil.,c Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos , Universidade Federal de Santa Maria (UFSM) , Santa Maria , Brazil
| | - Javier Gonzalez-Gallego
- d Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , University of León , León , Spain
| | - Guilherme Bresciani
- e Grupo de Investigación en Rendimiento Físico y Salud (IRyS), Escuela de Educación Física , Pontificia Universidad Católica de Valparaiso , Valparaiso , Chile
| |
Collapse
|
25
|
Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6439037. [PMID: 27504148 PMCID: PMC4967677 DOI: 10.1155/2016/6439037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Purpose. Response to an ultraendurance competitive race on thiols redox status, reactive oxygen species (ROS) production, and oxidative stress (OxS) was investigated according to duration. Methods. Twenty-four elite runners were examined: six completed 50 km and eighteen 100 km. Blood and urine samples were collected before and immediately after the race. Erythrocytes and plasma aminothiols by high-performance liquid chromatography, total antioxidant capacity (TAC), and OxS biomarkers (protein carbonyl (PC), thiobarbituric acid-reactive substances (TBARS), 8-isoprostane (8-iso-PGF2α), and 8-OH-2-deoxyguanosine (8-OH-dG)) by immunoenzymatic assays and ROS production by Electron Paramagnetic Resonance were assessed. Results. Significant increases (P between <0.05 and <0.0001) were recorded in plasma total and oxidized aminothiols concentration and TAC (P < 0.0001) only after 100 km: plasmatic (ROS production (+12 versus +29%), PC (+54 versus +115%), and TBARS (+28 versus +55%)) and urinary (8-OH-dG.creatinine−1 (+71 versus +158%) and 8-iso-PGF2α.creatinine−1 (+43 versus +135%)) concentrations for 50 and 100 km (duration 4 h 3′ versus 8 h 42′), respectively. Conclusion. Very prolonged ultraendurance exercise causes an increase in ROS production and OxS depending on specific biomarker examined but always linearly and directly related to exercise duration. Redox status of erythrocytes was preserved. A relationship between running performance and both prerace ROS production and antioxidant-redox status was found in 100 km race.
Collapse
|
26
|
Turner JE. Is immunosenescence influenced by our lifetime "dose" of exercise? Biogerontology 2016; 17:581-602. [PMID: 27023222 PMCID: PMC4889625 DOI: 10.1007/s10522-016-9642-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
The age-associated decline in immune function, referred to as immunosenescence, is well characterised within the adaptive immune system, and in particular, among T cells. Hallmarks of immunosenescence measured in the T cell pool, include low numbers and proportions of naïve cells, high numbers and proportions of late-stage differentiated effector memory cells, poor proliferative responses to mitogens, and a CD4:CD8 ratio <1.0. These changes are largely driven by infection with Cytomegalovirus, which has been directly linked with increased inflammatory activity, poor responses to vaccination, frailty, accelerated cognitive decline, and early mortality. It has been suggested however, that exercise might exert an anti-immunosenescence effect, perhaps delaying the onset of immunological ageing or even rejuvenating aged immune profiles. This theory has been developed on the basis of evidence that exercise is a powerful stimulus of immune function. For example, in vivo antibody responses to novel antigens can be improved with just minutes of exercise undertaken at the time of vaccination. Further, lymphocyte immune-surveillance, whereby cells search tissues for antigens derived from viruses, bacteria, or malignant transformation, is thought to be facilitated by the transient lymphocytosis and subsequent lymphocytopenia induced by exercise bouts. Moreover, some forms of exercise are anti-inflammatory, and if repeated regularly over the lifespan, there is a lower morbidity and mortality from diseases with an immunological and inflammatory aetiology. The aim of this article is to discuss recent theories for how exercise might influence T cell immunosenescence, exploring themes in the context of hotly debated issues in immunology.
Collapse
Affiliation(s)
- James E Turner
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
27
|
Wadley AJ, Turner JE, Aldred S. Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic Res 2016; 50:375-84. [PMID: 26873473 DOI: 10.3109/10715762.2015.1131824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise of sufficient intensity and duration can cause acute oxidative stress. Plasma protein carbonyl (PC) moieties are abundant, chemically stable, and easily detectable markers of oxidative stress that are widely used for the interpretation of exercise-induced changes in redox balance. Despite many studies reporting acute increases in plasma PC concentration in response to exercise, some studies, including those from our own laboratory have shown decreases. This review will discuss the differences between studies reporting increases, decreases, and no change in plasma PC concentration following exercise in humans; highlighting participant physiology (i.e. training status) and study design (i.e. intensity, duration, and novelty of the exercise bout) as the main factors driving the direction of the PC response to exercise. The role of the 20S proteasome system is proposed as a possible mechanism mediating the clearance of plasma PC following exercise. Resting and exercise-induced differences in plasma protein composition and balance between tissues are also discussed. We suggest that exercise may stimulate the clearance of plasma PC present at baseline, whereas simultaneously increasing reactive oxygen species production that facilitates the formation of new PC groups. The balance between these two processes likely explains why some studies have reported no change or even decreases in plasma PC level post-exercise when other biomarkers of oxidative stress (e.g. markers of lipid peroxidation) were elevated. Future studies should determine factors that influence the balance between PC clearance and formation following acute exercise.
Collapse
Affiliation(s)
- Alex J Wadley
- a Institute of Science and the Environment , University of Worcester , Worcester , UK
| | - James E Turner
- b School of Sport, Exercise & Rehabilitation Sciences , University of Birmingham , Edgbaston , Birmingham , UK
| | - Sarah Aldred
- c Department for Health , University of Bath , Bath , UK
| |
Collapse
|
28
|
Mrakic-Sposta S, Gussoni M, Moretti S, Pratali L, Giardini G, Tacchini P, Dellanoce C, Tonacci A, Mastorci F, Borghini A, Montorsi M, Vezzoli A. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. PLoS One 2015; 10:e0141780. [PMID: 26540518 PMCID: PMC4634988 DOI: 10.1371/journal.pone.0141780] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Aiming to gain a detailed insight into the physiological mechanisms involved under extreme conditions, a group of experienced ultra-marathon runners, performing the mountain Tor des Géants® ultra-marathon: 330 km trail-run in Valle d'Aosta, 24000 m of positive and negative elevation changes, was monitored. ROS production rate, antioxidant capacity, oxidative damage and inflammation markers were assessed, adopting micro-invasive analytic techniques. METHODS Forty-six male athletes (45.04±8.75 yr, 72.6±8.4 kg, 1.76±0.05 m) were tested. Capillary blood and urine were collected before (Pre-), in the middle (Middle-) and immediately after (Post-) Race. Samples were analyzed for: Reactive Oxygen Species (ROS) production by Electron Paramagnetic Resonance; Antioxidant Capacity by Electrochemistry; oxidative damage (8-hydroxy-2-deoxy Guanosine: 8-OH-dG; 8-isoprostane: 8-isoPGF2α) and nitric oxide metabolites by enzymatic assays; inflammatory biomarkers (plasma and urine interleukin-6: IL-6-P and IL-6-U) by enzyme-linked immunosorbent assays (ELISA); Creatinine and Neopterin by HPLC, hematologic (lactate, glucose and hematocrit) and urine parameters by standard analyses. RESULTS Twenty-five athletes finished the race, while twenty-one dropped out of it. A significant increase (Post-Race vs Pre) of the ROS production rate (2.20±0.27 vs 1.65±0.22 μmol.min-1), oxidative damage biomarkers (8-OH-dG: 6.32±2.38 vs 4.16±1.25 ng.mg-1 Creatinine and 8-isoPGF2α: 1404.0±518.30 vs 822.51±448.91 pg.mg-1Creatinine), inflammatory state (IL-6-P: 66.42±36.92 vs 1.29±0.54 pg.mL-1 and IL-6-U: 1.33±0.56 vs 0.71±0.17 pg.mL1) and lactate production (+190%), associated with a decrease of both antioxidant capacity (-7%) and renal function (i.e. Creatinine level +76%) was found. CONCLUSIONS The used micro-invasive analytic methods allowed us to perform most of them before, during and immediately after the race directly in the field, by passing the need of storing and transporting samples for further analysis. Considered altogether the investigated variables showed up that exhaustive and prolonged exercise not only promotes the generation of ROS but also induces oxidative stress, transient renal impairment and inflammation.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Bioimaging and Molecular Physiology, National Council of Research (CNR), Segrate (Milan), Italy
| | - Maristella Gussoni
- Department of Pathophysiology and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Sarah Moretti
- Institute of Bioimaging and Molecular Physiology, National Council of Research (CNR), Segrate (Milan), Italy
| | - Lorenza Pratali
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Guido Giardini
- Neurology and Neurophysiology Department. Mountain Medicine Center Valle d’Aosta Regional Hospital Umberto Parini, Aosta, Italy
| | | | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Francesca Mastorci
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Andrea Borghini
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | | | - Alessandra Vezzoli
- Institute of Bioimaging and Molecular Physiology, National Council of Research (CNR), Segrate (Milan), Italy
- * E-mail:
| |
Collapse
|
29
|
Effects of physical activity upon the liver. Eur J Appl Physiol 2014; 115:1-46. [DOI: 10.1007/s00421-014-3031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
|
30
|
Ultra-endurance exercise: unanswered questions in redox biology and immunology. Biochem Soc Trans 2014; 42:989-95. [DOI: 10.1042/bst20140120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultra-endurance races are extreme exercise events that can take place over large parts of a day, several consecutive days or over weeks and months interspersed by periods of rest and recovery. Since the first ultra-endurance races in the late 1970s, around 1000 races are now held worldwide each year, and more than 100000 people take part. Although these athletes appear to be fit and healthy, there have been occasional reports of severe complications following ultra-endurance exercise. Thus there is concern that repeated extreme exercise events could have deleterious effects on health, which might be brought about by the high levels of ROS (reactive oxygen species) produced during exercise. Studies that have examined biomarkers of oxidative damage following ultra-endurance exercise have found measurements to be elevated for several days, which has usually been interpreted to reflect increased ROS production. Levels of the antioxidant molecule GSH (reduced glutathione) are depleted for 1 month or longer following ultra-endurance exercise, suggesting an impaired capacity to cope with ROS. The present paper summarizes studies that have examined the oxidative footprint of ultra-endurance exercise in light of current thinking in redox biology and the possible health implications of such extreme exercise.
Collapse
|
31
|
Naghii MR, Hedayati M. Whole body vibration as a safe exercise training method induces no impaired alterations on rat plasma antioxidant biomarkers. ACTA ACUST UNITED AC 2013; 100:321-8. [PMID: 23681051 DOI: 10.1556/aphysiol.100.2013.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UNLABELLED Whole body vibration (WBV) has been regarded as an exercise training method and as a non-pharmacological supportive treatment option appearing to be efficient in chronic disease conditions, such as bone disorders and for cardio-respiratory fitness. Since, data on the safety and efficacy of vibration on oxidative stress parameters are lacking, it was decided to assess the effects of WBV on the plasma antioxidant biomarkers in adult male Wistar rat model. METHODS Male Wistar rats weighing 140-180 g, were divided into control and vibration group. Vibration training consisted of vertical sinusoidal whole body vibration for 8 weeks, followed by blood collection. RESULTS The vibrated rats weighed more than the control group (1353.0 ± 21.0 vs. 157.0 ± 36.0g, P < 0.048). The plasma Cu and Zn concentrations, vitamin C, uric acid, the activities of antioxidant enzymes, total antioxidant capacity, and malondialdehyde (MDA) levels were similar in the vibration group. No major differences was observed for selected plasma antioxidant parameters . DISCUSSION The potential effects of physiological responses of WBV on several physiological systems are without deteriorations concerning plasma antioxidant status.
Collapse
Affiliation(s)
- M R Naghii
- Baqiyatallah (a.s.) University of Medical Sciences Exercise Physiology Research Center & Health School Tehran Iran
| | | |
Collapse
|
32
|
Turner JE, Bennett SJ, Campbell JP, Bosch JA, Aldred S, Griffiths HR. The antioxidant enzyme peroxiredoxin-2 is depleted in lymphocytes seven days after ultra-endurance exercise. Free Radic Res 2013; 47:821-8. [DOI: 10.3109/10715762.2013.828836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|