1
|
Pekola-Kiviniemi M, Tikkakoski AJ, Koskela JK, Tahvanainen A, Mäkelä S, Jääskeläinen M, Mustonen J, Pörsti IH. Eight months of marathon school training reduced blood pressure, systemic vascular resistance and extracellular water volume. Sci Rep 2025; 15:17639. [PMID: 40399484 PMCID: PMC12095685 DOI: 10.1038/s41598-025-02357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The effects of an eight-month marathon school training program on blood pressure (BP) and underlying hemodynamics were examined in 45 participants and 43 controls. Hemodynamics were recorded using whole-body impedance cardiography, radial tonometric pulse wave analysis, and third-finger BP measurements during passive head-up tilt. The mean ages were 40.9 and 42.2 years, and body mass indexes (BMI) 25.1 and 25.8 kg/m2, respectively. Marathon training decreased mean weight (-1.6 kg), fat percentage (-2.7%), and BMI (-0.5 kg/m2) and increased maximal oxygen uptake (+3.2 ml/kg/min) and insulin sensitivity (+0.013 units) (p < 0.03 for all). During head-up tilt, systolic BP and cardiac output decreased, while diastolic BP, heart rate, and systemic vascular resistance (SVR) increased, but training did not affect these posture-induced changes. Initial aortic and third finger systolic/diastolic BP were numerically but not significantly lower in the marathon vs. control group (by 3.4/2.3 and 5.5/4.5 mmHg, respectively, p > 0.075). Final BP values were significantly lower in the marathon group (by 7.2/4.5 and 10.9/10.2 mmHg, respectively, p < 0.01). Marathon training reduced SVR by 167 dyn×s/cm5×m2(p = 0.041), and extracellular water volume by 0.34 L (p = 0.045). To conclude, aerobic exercise training appears to lower BP, a significant cardiovascular risk factor, by reducing SVR and decreasing extracellular water volume.
Collapse
Affiliation(s)
| | - Antti J Tikkakoski
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Jenni K Koskela
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | | | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Matti Jääskeläinen
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Tampere, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilkka H Pörsti
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Tampere, Finland.
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
2
|
Paterson C, Stone K, Turner L, Moinuddin A, Stoner L, Fryer S. The effect of cardiorespiratory fitness and habitual physical activity on cardiovascular responses to 2 h of uninterrupted sitting. J Appl Physiol (1985) 2024; 136:1087-1096. [PMID: 38482575 PMCID: PMC11365548 DOI: 10.1152/japplphysiol.00361.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/30/2024] Open
Abstract
Prolonged uninterrupted sitting of >3 h has been shown to acutely cause central and peripheral cardiovascular dysfunction. However, individuals rarely sit uninterrupted for >2 h, and the cardiovascular response to this time is currently unknown. In addition, while increased cardiorespiratory fitness (CRF) and habitual physical activity (HPA) are independently associated with improvements in central and peripheral cardiovascular function, it remains unclear whether they influence the response to uninterrupted sitting. This study sought to 1) determine whether 2 h of uninterrupted sitting acutely impairs carotid-femoral pulse wave velocity (cfPWV), femoral ankle PWV (faPWV), and central and peripheral blood pressure and 2) investigate the associations between CRF and HPA versus PWV changes during uninterrupted sitting. Following 2 h of uninterrupted sitting, faPWV significantly increased [mean difference (MD) = 0.26 m·s-1, standard error (SE) = 0.10, P = 0.013] as did diastolic blood pressure (MD = 2.83 mmHg, SE = 1.08, P = 0.014), however, cfPWV did not significantly change. Although our study shows 2 h of uninterrupted sitting significantly impairs faPWV, neither CRF (r = 0.105, P = 0.595) nor HPA (r = -0.228, P = 0.253) was associated with the increases.NEW & NOTEWORTHY We demonstrate that neither cardiorespiratory fitness nor habitual physical activity influence central and peripheral cardiovascular responses to a 2-h bout of uninterrupted sitting in healthy young adults.
Collapse
Affiliation(s)
- Craig Paterson
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Keeron Stone
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Louise Turner
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| | - Arsalan Moinuddin
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Simon Fryer
- School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom
| |
Collapse
|
3
|
Notarius CF, Badrov MB, Tobushi T, Keir DA, Keys E, Floras JS. Cardiovascular reflex contributions to sympathetic inhibition during low intensity dynamic leg exercise in healthy middle-age. Physiol Rep 2023; 11:e15821. [PMID: 37701968 PMCID: PMC10498156 DOI: 10.14814/phy2.15821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Aging augments resting muscle sympathetic nerve activity (MSNA) and sympatho-inhibition during mild dynamic 1-leg exercise. To elucidate which reflexes elicit exercise-induced inhibition, we recruited 19 (9 men) healthy volunteers (mean age 56 ± 9 SD years), assessed their peak oxygen uptake (VO2peak ), and, on another day, measured heart rate (HR), blood pressure (BP) and MSNA (microneurography) at rest and during 1-leg cycling (2 min each at 0 load and 30%-40% VO2peak ), 3 times: (1) seated +2 min of postexercise circulatory occlusion (PECO) (elicit muscle metaboreflex); (2) supine (stimulate cardiopulmonary baroreflexes);and (3) seated, breathing 32% oxygen (suppress peripheral chemoreceptor reflex). While seated, MSNA decreased similarly during mild and moderate exercise (p < 0.001) with no increase during PECO (p = 0.44). Supine posture lowered resting MSNA (main effect p = 0.01) BP and HR. MSNA fell further (p = 0.04) along with diastolic BP and HR during mild, not moderate, supine cycling. Hyperoxia attenuated resting (main effect p = 0.01), but not exercise MSNA. In healthy middle-age, the cardiopulmonary baroreflex and arterial chemoreflex modulate resting MSNA, but contrary to previous observations in young subjects, without counter-regulatory offset by the sympatho-excitatory metaboreflex, resulting in an augmented sympatho-inhibitory response to mild dynamic leg exercise.
Collapse
Affiliation(s)
- Catherine F. Notarius
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Mark B. Badrov
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - Tomoyuki Tobushi
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - Daniel A. Keir
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- School of KinesiologyThe University of Western OntarioLondonOntarioCanada
| | - Evan Keys
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - John S. Floras
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Holwerda SW, Gangwish ME, Luehrs RE, Nuckols VR, Thyfault JP, Miles JM, Pierce GL. Concomitantly higher resting arterial blood pressure and transduction of sympathetic neural activity in human obesity without hypertension. J Hypertens 2023; 41:326-335. [PMID: 36583358 PMCID: PMC9812452 DOI: 10.1097/hjh.0000000000003335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Central (abdominal) obesity is associated with elevated adrenergic activity and arterial blood pressure (BP). Therefore, we tested the hypothesis that transduction of spontaneous muscle sympathetic nerve activity (MSNA) to BP, that is, sympathetic transduction, is augmented in abdominal obesity (increased waist circumference) and positively related to prevailing BP. METHODS Young/middle-aged obese (32 ± 7 years; BMI: 36 ± 5 kg/m2, n = 14) and nonobese (29 ± 10 years; BMI: 23 ± 4 kg/m2, n = 14) without hypertension (24-h ambulatory average BP < 130/80 mmHg) were included. MSNA (microneurography) and beat-to-beat BP (finger cuff) were measured continuously and the increase in mean arterial pressure (MAP) during 15 cardiac cycles following MSNA bursts of different patterns (single, multiples) and amplitude (quartiles) was signal-averaged over a 10 min baseline period. RESULTS MSNA burst frequency was not significantly higher in obese vs. nonobese (21 ± 3 vs. 17 ± 3 bursts/min, P = 0.34). However, resting supine BP was significantly higher in obese compared with nonobese (systolic: 127 ± 3 vs. 114 ± 3; diastolic: 76 ± 2 vs. 64 ± 1 mmHg, both P < 0.01). Importantly, obese showed greater increases in MAP following multiple MSNA bursts (P = 0.02) and MSNA bursts of higher amplitude (P = 0.02), but not single MSNA bursts (P = 0.24), compared with nonobese when adjusting for MSNA burst frequency. The increase in MAP following higher amplitude bursts among all participants was associated with higher resting supine systolic (R = 0.48; P = 0.01) and diastolic (R = 0.48; P = 0.01) BP when controlling for MSNA burst frequency, but not when also controlling for waist circumference (P > 0.05). In contrast, sympathetic transduction was not correlated with 24-h ambulatory average BP. CONCLUSION Sympathetic transduction to BP is augmented in abdominal obesity and positively related to higher resting supine BP but not 24-h ambulatory average BP.
Collapse
Affiliation(s)
- Seth W. Holwerda
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, Kansas
- Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas
| | - Megan E. Gangwish
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel E. Luehrs
- Department of Kinesiology, North Central College, Naperville, Illinois
| | - Virginia R. Nuckols
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - John P. Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, Kansas
- Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas
| | - John M. Miles
- Department of Internal Medicine-Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, Kansas
| | - Gary L. Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
5
|
Shafer BM, Incognito AV, Vermeulen TD, Nardone M, Teixeira AL, Benbaruj J, Millar PJ, Foster GE. Muscle Metaboreflex Control of Sympathetic Activity Is Preserved after Acute Intermittent Hypercapnic Hypoxia. Med Sci Sports Exerc 2021; 53:2233-2244. [PMID: 34081056 DOI: 10.1249/mss.0000000000002716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE In normotensive patients with obstructive sleep apnea (OSA), the muscle sympathetic nerve activity (MSNA) response to exercise is increased while metaboreflex control of MSNA is decreased. We tested the hypotheses that acute intermittent hypercapnic hypoxia (IHH) in males free from OSA and associated comorbidities would augment the MSNA response to exercise but attenuate the change in MSNA during metaboreflex activation. METHODS Thirteen healthy males (age = 24 ± 4 yr) were exposed to 40 min of IHH. Before and after IHH, the pressor response to exercise was studied during 2 min of isometric handgrip exercise (at 30% maximal voluntary contraction), whereas the metaboreflex was studied during 4 min of postexercise circulatory occlusion (PECO). Mean arterial pressure (MAP), heart rate (HR), and fibular MSNA were recorded continuously. MSNA was quantified as burst frequency (BF) and total activity (TA). Mixed effects linear models were used to compare the exercise pressor and metaboreflex before and after IHH. RESULTS As expected, IHH led to significant increases in MSNA BF, TA, and MAP at baseline and throughout exercise and PECO. However, during handgrip exercise, the change from baseline in MAP, HR, MSNA BF, and TA was similar before and after IHH (All P > 0.31). During PECO, the change from baseline in MSNA BF and TA was similar after IHH, whereas the change from baseline in MAP (Δ14 mm Hg, 95% CI = 7-19, vs Δ16 mm Hg, 95% CI = 10-21; P < 0.01) was modestly increased. CONCLUSION After acute IHH, MSNA response to handgrip exercise and metaboreflex activation were preserved in healthy young males despite overall increases in resting MSNA and MAP. Chronic IHH and comorbidities often associated with OSA may be required to modulate the exercise pressor reflex and metaboreflex.
Collapse
Affiliation(s)
- Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, CANADA
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, CANADA
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, CANADA
| | - Jenna Benbaruj
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, CANADA
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
| |
Collapse
|
6
|
DeLorey DS. Sympathetic vasoconstriction in skeletal muscle: Modulatory effects of aging, exercise training, and sex. Appl Physiol Nutr Metab 2021; 46:1437-1447. [PMID: 34348066 DOI: 10.1139/apnm-2021-0399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system (SNS) is a critically important regulator of the cardiovascular system. The SNS controls cardiac output and its distribution, as well as peripheral vascular resistance and blood pressure at rest and during exercise. Aging is associated with increased blood pressure and decreased skeletal muscle blood flow at rest and in response to exercise. The mechanisms responsible for the blunted skeletal muscle blood flow response to dynamic exercise with aging have not been fully elucidated; however, increased muscle sympathetic nerve activity (MSNA), elevated vascular resistance and a decline in endothelium-dependent vasodilation are commonly reported in older adults. In contrast to aging, exercise training has been shown to reduce blood pressure and enhance skeletal muscle vascular function. Exercise training has been shown to enhance nitric oxide-dependent vascular function and may improve the vasodilatory capacity of the skeletal muscle vasculature; however, surprisingly little is known about the effect of exercise training on the neural control of circulation. The control of blood pressure and skeletal muscle blood flow also differs between males and females. Blood pressure and MSNA appear to be lower in young females compared to males. However, females experience a larger increase in MSNA with aging compared to males. The mechanism(s) for the altered SNS control of vascular function in females remain to be determined. Novelty: • This review will summarize our current understanding of the effects of aging, exercise training and sex on sympathetic vasoconstriction at rest and during exercise. • Areas where additional research is needed are also identified.
Collapse
Affiliation(s)
- Darren S DeLorey
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Alberta, Canada;
| |
Collapse
|
7
|
Klassen SA, Joyner MJ, Baker SE. The impact of ageing and sex on sympathetic neurocirculatory regulation. Semin Cell Dev Biol 2021; 116:72-81. [PMID: 33468420 PMCID: PMC8282778 DOI: 10.1016/j.semcdb.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The sympathetic nervous system represents a critical mechanism for homoeostatic blood pressure regulation in humans. This review focuses on age-related alterations in neurocirculatory regulation in men and women by highlighting human studies that examined the relationship between muscle sympathetic nerve activity (MSNA) acquired by microneurography and circulatory variables (e.g., blood pressure, vascular resistance). We frame this review with epidemiological evidence highlighting sex-specific patterns in age-related blood pressure increases in developed nations. Indeed, young women exhibit lower blood pressure than men, but women demonstrate larger blood pressure increases with age, such that by about age 60 years, blood pressure is greater in women. Sympathetic neurocirculatory mechanisms contribute to sex differences in blood pressure rises with age. Muscle sympathetic nerve activity increases with age in both sexes, but women demonstrate greater age-related increases. The circulatory adjustments imposed by MSNA - referred to as neurovascular transduction or autonomic (sympathetic) support of blood pressure - differ in men and women. For example, whereas young men demonstrate a positive relationship between resting MSNA and vascular resistance, this relationship is absent in young women due to beta-2 adrenergic vasodilation, which offsets alpha-adrenergic vasoconstriction. However, post-menopausal women demonstrate a positive relationship between MSNA and vascular resistance due to a decline in beta-2 adrenergic vasodilatory mechanisms. Emerging data suggest that greater aerobic fitness appears to modulate neurocirculatory regulation, at least in young, healthy men and women. This review also highlights recent advances in microneurographic recordings of sympathetic action potential discharge, which may nuance our understanding of age-related alterations in sympathetic neurocirculatory regulation in humans.
Collapse
Affiliation(s)
- Stephen A Klassen
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Baker
- Human and Integrative Physiology and Clinical Pharmacology Laboratory, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Vladimirova TY, Aizenshtadt LV. [Features of tinnitus in older patients with autonomic dysfunction]. Vestn Otorinolaringol 2021; 86:9-13. [PMID: 34269017 DOI: 10.17116/otorino2021860319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To establish the features of tinnitus in older age patients with autonomic dysfunction. MATERIAL AND METHODS We examined 94 patients aged 60 to 93 years (average age is 75.4±3.2 years). Patients with an imbalance of the autonomic nervous system were identified according to the questionnaire of A.M. Wayne and Kerdo's autonomic index. The questionnaires assessing the strength of subjective ear noise, the psychoemotional state of patients, the impact of tinnitus on various spheres of life were used in this study. RESULTS It was revealed that more than 50% of patients of older age groups with tinnitus had a dysfunction of the autonomic nervous system. Patients with parasympathicotonia more often noted bilateral persistent subjective ear noise than patients with sympathicotonia. CONCLUSIONS Autonomic dysfunction could be the cause of sleep disturbances, psychoemotional disorders and a decrease in the quality of life.
Collapse
|
9
|
O'Brien MW, Ramsay DJ, O'Neill CD, Petterson JL, Dogra S, Mekary S, Kimmerly DS. Aerobic fitness is inversely associated with neurohemodynamic transduction and blood pressure variability in older adults. GeroScience 2021; 43:2737-2748. [PMID: 34056679 DOI: 10.1007/s11357-021-00389-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022] Open
Abstract
Higher aerobic fitness is independently associated with better cardiovascular health in older adults. The transduction of muscle sympathetic nerve activity (MSNA) into mean arterial pressure (MAP) responses provides important insight regarding beat-by-beat neural circulatory control. Aerobic fitness is negatively associated with peak MAP responses to spontaneous MSNA in young males. Whether this relationship exists in older adults is known. We tested the hypothesis that aerobic fitness was inversely related to sympathetic neurohemodynamic transduction and blood pressure variability (BPV) in older adults. Relative peak oxygen consumption (V̇O2peak, indirect calorimetry) was assessed in 22 older adults (13 males, 65 ± 5 years, 36.3 ± 11.5 ml/kg/min). Peroneal MSNA (microneurography) and arterial pressure (finger photoplethysmography) were recorded during ≥ 10-min of rest. BPV was assessed using the average real variability index. MAP was tracked for 12 cardiac cycles following heartbeats associated with MSNA bursts (i.e., peak ΔMAP). Peak ΔMAP responses (0.9 ± 0.6 mmHg) were negatively associated (all, P < 0.04) with resting burst frequency (30 ± 11 bursts/min; R = -0.47) and burst incidence (54 ± 22 bursts/100 heartbeats; R = -0.51), but positively associated with BPV (ρ = 0.47). V̇O2peak was inversely related to the pressor responses to spontaneous bursts (R = -0.47, P = 0.03) and BPV (ρ = -0.54, P = 0.01), positively related to burst incidence (R = 0.42, P = 0.05), but unrelated to MSNA burst frequency (P = 0.20). The V̇O2peak-BPV relationship remained after controlling for burst frequency, peak ΔMAP, age, and sex. Lower V̇O2peak was associated with augmented neurohemodynamic transduction and BPV in older adults. These negative hemodynamic outcomes highlight the importance of higher aerobic fitness with ageing for optimal cardiovascular health.
Collapse
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Diane J Ramsay
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Carley D O'Neill
- Exercise Physiology and Cardiovascular Health Lab, University of Ottawa Heart Institute, Ottawa, ON, Canada.,School of Kinesiology, Acadia University, Wolfville, NS, Canada
| | - Jennifer L Petterson
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Shilpa Dogra
- School of Kinesiology, Acadia University, Wolfville, NS, Canada.,Health and Human Performance Laboratory, Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Said Mekary
- School of Kinesiology, Acadia University, Wolfville, NS, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
10
|
Tymko MM, Berthelsen LF, Skow RJ, Steele AR, Fraser GM, Steinback CD. Assessing static and dynamic sympathetic transduction using microneurography. J Appl Physiol (1985) 2021; 130:1626-1634. [PMID: 33792401 DOI: 10.1152/japplphysiol.00032.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The relationship between sympathetic nerve activity and the vasculature has been of great interest due to its potential role in various cardiovascular-related diseases. This relationship, termed "sympathetic transduction," has been quantified using several different laboratory and analytical techniques. The most common method is to assess the association between relative changes in muscle sympathetic nerve activity, measured via microneurography, and physiological outcomes (e.g., blood pressure, total peripheral resistance, blood flow, etc.) in response to a sympathetic stressor (e.g., exercise, cold stress, orthostatic stress). This approach, however, comes with its own caveats. For instance, elevations in blood pressure and heart rate during a sympathetic stressor can have an independent impact on muscle sympathetic nerve activity. Another assessment of sympathetic transduction was developed by Wallin and Nerhed in 1982, where alterations in blood pressure and heart rate were assessed immediately following bursts of muscle sympathetic nerve activity at rest. This approach has since been characterized and further innovated by others, including the breakdown of consecutive burst sequences (e.g., singlet, doublet, triplet, and quadruplet), and burst height (quartile analysis) on specific vascular outcomes (e.g., blood pressure, blood flow, vascular resistance). The purpose of this review is to provide an overview of the literature that has assessed sympathetic transduction using microneurography and various sympathetic stressors (static sympathetic transduction) and using the same or similar approach established by Wallin and Nerhed at rest (dynamic neurovascular transduction). Herein, we discuss the overlapping literature between these two methodologies and highlight the key physiological questions that remain.
Collapse
Affiliation(s)
- Michael M Tymko
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey F Berthelsen
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel J Skow
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Graham M Fraser
- The Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
The association between habitual posture and intensity-related physical activity with sympathetic neurohemodynamic transduction in young males. Clin Auton Res 2021; 31:339-341. [PMID: 33786687 DOI: 10.1007/s10286-021-00802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
|
12
|
Floras JS. From Brain to Blood Vessel: Insights From Muscle Sympathetic Nerve Recordings: Arthur C. Corcoran Memorial Lecture 2020. Hypertension 2021; 77:1456-1468. [PMID: 33775112 DOI: 10.1161/hypertensionaha.121.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiunit recordings of postganglionic sympathetic outflow to muscle yield otherwise imperceptible insights into sympathetic neural modulation of human vascular resistance and blood pressure. This Corcoran Lecture will illustrate the utility of microneurography to investigate neurogenic cardiovascular regulation; review data concerning muscle sympathetic nerve activity of women and men with normal and high blood pressure; explore 2 concepts, central upregulation of muscle sympathetic outflow and cortical autonomic neuroplasticity; present sleep apnea as an imperfect model of neurogenic hypertension; and expose the paradox of sympathetic excitation without hypertension. In awake healthy normotensive individuals, resting muscle sympathetic nerve activity increases with age, sleep fragmentation, and obstructive apnea. Its magnitude is not signaled by heart rate. Age-related changes are nonlinear and differ by sex. In men, sympathetic nerve activity increases with age but without relation to their blood pressure, whereas in women, both rise concordantly after age 40. Mean values for muscle sympathetic nerve activity burst incidence are consistently higher in cohorts with hypertension than in matched normotensives, yet women's sympathetic nerve traffic can increase 3-fold between ages 30 and 70 without causing hypertension. Thus, increased sympathetic nerve activity may be necessary but is insufficient for primary hypertension. Moreover, its inhibition does not consistently decrease blood pressure. Despite a half-century of microneurographic research, large gaps remain in our understanding of the content of the sympathetic broadcast from brain to blood vessel and its specific individual consequences for circulatory regulation and cardiovascular, renal, and metabolic risk.
Collapse
Affiliation(s)
- John S Floras
- Sinai Health and University Health Network Division of Cardiology, Toronto General Hospital Research Institute, and the Department of Medicine, University of Toronto
| |
Collapse
|
13
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|
14
|
Young BE, Greaney JL, Keller DM, Fadel PJ. Sympathetic transduction in humans: recent advances and methodological considerations. Am J Physiol Heart Circ Physiol 2021; 320:H942-H953. [PMID: 33416453 DOI: 10.1152/ajpheart.00926.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ever since their origin more than one half-century ago, microneurographic recordings of sympathetic nerve activity have significantly advanced our understanding of the generation and regulation of central sympathetic outflow in human health and disease. For example, it is now appreciated that a myriad of disease states exhibit chronic sympathetic overactivity, a significant predictor of cardiovascular morbidity and mortality. Although microneurographic recordings allow for the direct quantification of sympathetic outflow, they alone do not provide information with respect to the ensuing sympathetically mediated vasoconstriction and blood pressure (BP) response. Therefore, the study of vascular and/or BP responses to sympathetic outflow (i.e., sympathetic transduction) has now emerged as an area of growing interest within the field of neural cardiovascular control in human health and disease. To date, studies have primarily examined sympathetic transduction under two distinct paradigms: when reflexively evoking sympatho-excitation through the induction of a laboratory stressor (i.e., sympathetic transduction during stress) and/or following spontaneous bursts of sympathetic outflow occurring under resting conditions (i.e., sympathetic transduction at rest). The purpose of this brief review is to highlight how our physiological understanding of sympathetic transduction has been advanced by these studies and to evaluate the primary analytical techniques developed to study sympathetic transduction in humans. We also discuss the framework by which the assessment of sympathetic transduction during stress reflects a fundamentally different process relative to sympathetic transduction at rest and why findings from investigations using these different techniques should be interpreted as such and not necessarily be considered one and the same.
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
15
|
O'Brien MW, Ramsay D, Johnston W, Kimmerly DS. Aerobic fitness and sympathetic responses to spontaneous muscle sympathetic nerve activity in young males. Clin Auton Res 2020; 31:253-261. [PMID: 33034876 DOI: 10.1007/s10286-020-00734-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE Lower aerobic fitness increases the risk of developing hypertension. Muscle sympathetic nerve activity (MSNA) is important for the beat-by-beat regulation of blood pressure. Whether the cardiovascular consequences of lower aerobic fitness are due to augmented transduction of MSNA into vascular responses is unclear. We tested the hypothesis that aerobic fitness is inversely related to peak increases in total peripheral resistance (TPR) and mean arterial pressure (MAP) in response to spontaneous MSNA bursts in young males. METHODS Relative peak oxygen consumption (VO2peak, indirect calorimetry) was assessed in 18 young males (23 ± 3 years; 41 ± 8 ml/kg/min). MSNA (microneurography), cardiac intervals (electrocardiogram) and arterial pressure (finger photoplethysmography) were recorded continuously during supine rest. Stroke volume and cardiac output (CO) were estimated via the ModelFlow method. TPR was calculated as MAP/CO. Changes in TPR and MAP were tracked for 12 cardiac cycles following heartbeats associated with or without spontaneous bursts of MSNA. RESULTS Overall, aerobic fitness was inversely correlated to the peak ΔTPR (0.8 ± 0.7 mmHg/l/min; R = - 0.61, P = 0.007) and ΔMAP (2.3 ± 0.8 mmHg; R = - 0.69, P < 0.001), but not with the peak ΔCO (0.2 ± 0.1 l/min; P = 0.50), MSNA burst frequency (14 ± 5 bursts/min; P = 0.43) or MSNA relative burst amplitude (65 ± 12%; P = 0.13). Heartbeats without an associated burst of MSNA did not increase TPR, MAP or CO. CONCLUSION Although unrelated to traditional MSNA characteristics, aerobic fitness was inversely associated with spontaneous sympathetic neurovascular transduction in young males. This may be a potential mechanism by which aerobic fitness modulates the regulation of arterial blood pressure through the sympathetic nervous system.
Collapse
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Diane Ramsay
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - William Johnston
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
16
|
Stuckless TJR, Vermeulen TD, Brown CV, Boulet LM, Shafer BM, Wakeham DJ, Steinback CD, Ayas NT, Floras JS, Foster GE. Acute intermittent hypercapnic hypoxia and sympathetic neurovascular transduction in men. J Physiol 2020; 598:473-487. [PMID: 31805605 DOI: 10.1113/jp278941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Intermittent hypoxia leads to long-lasting increases in muscle sympathetic nerve activity and blood pressure, contributing to increased risk for hypertension in obstructive sleep apnoea patients. We determined whether augmented vascular responses to increasing sympathetic vasomotor outflow, termed sympathetic neurovascular transduction (sNVT), accompanied changes in blood pressure following acute intermittent hypercapnic hypoxia in men. Lower body negative pressure was utilized to induce a range of sympathetic vasoconstrictor firing while measuring beat-by-beat blood pressure and forearm vascular conductance. IH reduced vascular shear stress and steepened the relationship between diastolic blood pressure and sympathetic discharge frequency, suggesting greater systemic sNVT. Our results indicate that recurring cycles of acute intermittent hypercapnic hypoxia characteristic of obstructive sleep apnoea could promote hypertension by increasing sNVT. ABSTRACT Acute intermittent hypercapnic hypoxia (IH) induces long-lasting elevations in sympathetic vasomotor outflow and blood pressure in healthy humans. It is unknown whether IH alters sympathetic neurovascular transduction (sNVT), measured as the relationship between sympathetic vasomotor outflow and either forearm vascular conductance (FVC; regional sNVT) or diastolic blood pressure (systemic sNVT). We tested the hypothesis that IH augments sNVT by exposing healthy males to 40 consecutive 1 min breathing cycles, each comprising 40 s of hypercapnic hypoxia ( P ETC O 2 : +4 ± 3 mmHg above baseline; P ET O 2 : 48 ± 3 mmHg) and 20 s of normoxia (n = 9), or a 40 min air-breathing control (n = 7). Before and after the intervention, lower body negative pressure (LBNP; 3 min at -15, -30 and -45 mmHg) was applied to elicit reflex increases in muscle sympathetic nerve activity (MSNA, fibular microneurography) when clamping end-tidal gases at baseline levels. Ventilation, arterial pressure [systolic blood pressure, diastolic blood pressure, mean arterial pressure (MAP)], brachial artery blood flow ( Q ̇ BA ), FVC ( Q ̇ BA /MAP) and MSNA burst frequency were measured continuously. Following IH, but not control, ventilation [5 L min-1 ; 95% confidence interval (CI) = 1-9] and MAP (5 mmHg; 95% CI = 1-9) were increased, whereas FVC (-0.2 mL min-1 mmHg-1 ; 95% CI = -0.0 to -0.4) and mean shear rate (-21.9 s-1 ; 95% CI = -5.8 to -38.0; all P < 0.05) were reduced. Systemic sNVT was increased following IH (0.25 mmHg burst-1 min-1 ; 95% CI = 0.01-0.49; P < 0.05), whereas changes in regional forearm sNVT were similar between IH and sham. Reductions in vessel wall shear stress and, consequently, nitric oxide production may contribute to heightened systemic sNVT and provide a potential neurovascular mechanism for elevated blood pressure in obstructive sleep apnoea.
Collapse
Affiliation(s)
- Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Najib T Ayas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
17
|
Claydon VE, Moore JP, Greene ER, Appenzeller O, Hainsworth R. Evaluation of forearm vascular resistance during orthostatic stress: Velocity is proportional to flow and size doesn't matter. PLoS One 2019; 14:e0224872. [PMID: 31730662 PMCID: PMC6857923 DOI: 10.1371/journal.pone.0224872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background The upright posture imposes a significant challenge to blood pressure regulation that is compensated through baroreflex-mediated increases in heart rate and vascular resistance. Orthostatic cardiac responses are easily inferred from heart rate, but vascular resistance responses are harder to elucidate. One approach is to determine vascular resistance as arterial pressure/blood flow, where blood flow is inferred from ultrasound-based measurements of brachial blood velocity. This relies on the as yet unvalidated assumption that brachial artery diameter does not change during orthostatic stress, and so velocity is proportional to flow. It is also unknown whether the orthostatic vascular resistance response is related to initial blood vessel diameter. Methods We determined beat-to-beat heart rate (ECG), blood pressure (Portapres) and vascular resistance (Doppler ultrasound) during a combined orthostatic stress test (head-upright tilting and lower body negative pressure) continued until presyncope. Participants were 16 men (aged 38.4±2.3 years) who lived permanently at high altitude (4450m). Results The supine brachial diameter ranged from 2.9–5.6mm. Brachial diameter did not change during orthostatic stress (supine: 4.19±0.2mm; tilt: 4.20±0.2mm; -20mmHg lower body negative pressure: 4.19±0.2mm, p = 0.811). There was no significant correlation between supine brachial artery diameter and the maximum vascular resistance response (r = 0.323; p = 0.29). Forearm vascular resistance responses evaluated using brachial arterial flow and velocity were strongly correlated (r = 0.989, p<0.00001) and demonstrated high equivalency with minimal bias (-6.34±24.4%). Discussion During severe orthostatic stress the diameter of the brachial artery remains constant, supporting use of brachial velocity for accurate continuous non-invasive orthostatic vascular resistance responses. The magnitude of the orthostatic forearm vascular resistance response was unrelated to the baseline brachial arterial diameter, suggesting that upstream vessel size does not matter in the ability to mount a vasoconstrictor response to orthostasis.
Collapse
Affiliation(s)
- V. E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - J. P. Moore
- School of Sport, Health & Exercise Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - E. R. Greene
- Department of Biology and Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, United States of America
| | - O. Appenzeller
- Department of Neurology, New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, New Mexico, United States of America
| | - R. Hainsworth
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
18
|
Wakeham DJ, Lord RN, Talbot JS, Lodge FM, Curry BA, Dawkins TG, Simpson LL, Shave RE, Pugh CJA, Moore JP. Upward resetting of the vascular sympathetic baroreflex in middle-aged male runners. Am J Physiol Heart Circ Physiol 2019; 317:H181-H189. [PMID: 31050557 DOI: 10.1152/ajpheart.00106.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study focused on the influence of habitual endurance exercise training (i.e., committed runner or nonrunner) on the regulation of muscle sympathetic nerve activity (MSNA) and arterial pressure in middle-aged (50 to 63 yr, n = 23) and younger (19 to 30 yr; n = 23) normotensive men. Hemodynamic and neurophysiological assessments were performed at rest. Indices of vascular sympathetic baroreflex function were determined from the relationship between spontaneous changes in diastolic blood pressure (DBP) and MSNA. Large vessel arterial stiffness and left ventricular stroke volume also were measured. Paired comparisons were performed within each age category. Mean arterial pressure and basal MSNA bursts/min were not different between age-matched runners and nonrunners. However, MSNA bursts/100 heartbeats, an index of baroreflex regulation of MSNA (vascular sympathetic baroreflex operating point), was higher for middle-aged runners (P = 0.006), whereas this was not different between young runners and nonrunners. The slope of the DBP-MSNA relationship (vascular sympathetic baroreflex gain) was not different between groups in either age category. Aortic pulse wave velocity was lower for runners of both age categories (P < 0.03), although carotid β-stiffness was lower only for middle-aged runners (P = 0.04). For runners of both age categories, stroke volume was larger, whereas heart rate was lower (both P < 0.01). In conclusion, we suggest that neural remodeling and upward setting of the vascular sympathetic baroreflex compensates for cardiovascular adaptations after many years committed to endurance exercise training, presumably to maintain arterial blood pressure stability. NEW & NOTEWORTHY Exercise training reduces muscle sympathetic burst activity in disease; this is often extrapolated to infer a similar effect in health. We demonstrate that burst frequency of middle-aged and younger men committed to endurance training is not different compared with age-matched casual exercisers. Notably, well-trained, middle-aged runners display similar arterial pressure but higher sympathetic burst occurrence than untrained peers. We suggest that homeostatic plasticity and upward setting of the vascular sympathetic baroreflex maintains arterial pressure stability following years of training.
Collapse
Affiliation(s)
- Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Freya M Lodge
- Cardiff and Vale University Health Board, University Hospital of Wales , Cardiff , United Kingdom
| | - Bryony A Curry
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Lydia L Simpson
- Physical Activity for Health and Well-Being Centre, School of Sport, Health and Exercise Sciences, Bangor University , Bangor , United Kingdom
| | - Rob E Shave
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan , Kelowna, BC , Canada
| | - Christopher J A Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Jonathan P Moore
- Physical Activity for Health and Well-Being Centre, School of Sport, Health and Exercise Sciences, Bangor University , Bangor , United Kingdom
| |
Collapse
|
19
|
Millar PJ, Notarius CF, Haruki N, Floras JS. Heart Failure-Specific Relationship Between Muscle Sympathetic Nerve Activity and Aortic Wave Reflection. J Card Fail 2019; 25:404-408. [PMID: 30862489 DOI: 10.1016/j.cardfail.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reflected arterial waves contribute to left ventricular (LV) afterload. Heart failure patients with reduced ejection fraction (HFrEF) are afterload sensitive and sympathetically activated. We tested the hypothesis that HFrEF patients exhibit a positive relationship between sympathetic vasoconstrictor discharge and aortic wave reflection. METHODS Sixteen treated patients with HFrEF (61 ± 9 years of age, left ventricular ejection fraction 30 ± 7%, 3 women) and 16 similar-aged healthy control subjects (57 ± 7 years of age, 4 women) underwent noninvasive measurements of radial pulse waveforms (applanation tonometry) to calculate central blood pressures and aortic wave reflection characteristics: augmentation pressure (AP), augmentation index (AIx), and AIx corrected to a heart rate of 75 beats/min (AIx@75). Muscle sympathetic nerve activity (MSNA) burst frequency was recorded from the fibular nerve (microneurography). RESULTS HFrEF patients had higher AIx (26 ± 9 vs 17 ± 15%; P < .05) and MSNA burst frequency (48 ± 7 vs 39 ± 11 bursts/min; P < .05) and lower central diastolic pressure than control subjects (64 ± 8 vs 70 ± 9 mm Hg; P = 0.05). There were no between-group differences in heart rate, other measures of blood pressure (brachial and central; P > .05), AP (11 ± 5 vs 7 ± 8 mm Hg; P = 0.11), or AIx@75 (19 ± 9 vs 13 ± 11%,-P = 0.14). MSNA correlated positively with AP (r = 0.50; P < .05), AIx (r = 0.51; P < .05), and AIx@75 (r = 0.54; P < .05) in HFrEF patients but not in control subjects (r = 0.002-0.18; P > 0.49). CONCLUSIONS In patients with HFrEF, but not similarly aged healthy subjects, indices of aortic wave reflection correlate positively with MSNA. By increasing LV afterload, such neurovascular coupling could impair LV performance and worsen heart failure symptoms. Therapies that attenuate neurogenic vasoconstriction may benefit HFrEF patients by diminishing arterial wave reflection.
Collapse
Affiliation(s)
- Philip J Millar
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine F Notarius
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
GUERRA RENANS, GOYA THIAGOT, SILVA ROSYVALDOF, LIMA MARTAF, BARBOSA ELINERF, ALVES MARIAJANIEIREDENN, RODRIGUES AMANDAG, LORENZI-FILHO GERALDO, NEGRÃO CARLOSEDUARDO, UENO-PARDI LINDAM. Exercise Training Increases Metaboreflex Control in Patients with Obstructive Sleep Apnea. Med Sci Sports Exerc 2019; 51:426-435. [DOI: 10.1249/mss.0000000000001805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Coates AM, INCOGNITO ANTHONYV, SEED JEREMYD, DOHERTY CONNORJ, MILLAR PHILIPJ, BURR JAMIEF. Three Weeks of Overload Training Increases Resting Muscle Sympathetic Activity. Med Sci Sports Exerc 2018; 50:928-937. [DOI: 10.1249/mss.0000000000001514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Baynard T, Goulopoulou S, Sosnoff RF, Fernhall B, Kanaley JA. Cardiovagal modulation and efficacy of aerobic exercise training in obese individuals. Med Sci Sports Exerc 2017; 46:369-75. [PMID: 23899888 DOI: 10.1249/mss.0b013e3182a66411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Type 2 diabetes (T2D) is associated with poor exercise tolerance and peak aerobic capacity (V˙O2peak) even when compared to obese nondiabetic peers. Exercise training studies have demonstrated improvements in V˙O2peak among patients with T2D, yet there is a large amount of variability in this response. Recent evidence suggests that cardiac autonomic modulation may be an important factor when considering improvements in aerobic capacity. PURPOSE This study aimed to determine the effects of a 16-wk aerobic exercise program on V˙O2peak in obese individuals, with and without T2D, who were classified as having either high or low cardiovagal modulation (HCVM or LCVM) at baseline. METHODS Obese individuals (38 women and 19 men; body mass index = 36.1 kg·m(-2)) were studied in the fasted state. ECG recordings were obtained while seated for 3 min, before and after 4 months of exercise training (4 d·wk(-1), 65% V˙O(2peak)). The ECG recording was analyzed for HR variability in the spectral domain. Groups were split on a marker of CVM (normalized high frequency (HFnu)) at the 50th percentile, as either HCVM or LCVM. RESULTS V˙O(2peak) only increased with exercise training among those classified as having HCVM, regardless of diabetes status (T2D: HCVM = 20.3-22.5 mL·kg(-1)min(-1), LCVM = 24.3-25.0 mL·kg(-1)min(-1); obese nondiabetics: HCVM = 24.5-26.3 mL·kg(-1)min(-1), LCVM = 23.1-23.7 mL·kg(-1)min(-1)) (P < 0.05). No change in V˙O(2peak) was observed for the LCVM group. Changes in weight do not explain the change in V˙O(2peak) among the HCVM group. Glucose tolerance only improved among the LCVM group with T2D. CONCLUSIONS Obese individuals, with or without T2D, when classified as having relatively HCVM before exercise training, have a greater propensity to improve V˙O(2peak) after a 16-wk aerobic training program.
Collapse
Affiliation(s)
- Tracy Baynard
- 1Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL; 2Department of Physiology, Georgia Regents University, Augusta, GA; 3Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; and 4Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | | | | | | | | |
Collapse
|
23
|
Skaug EA, Nes B, Aspenes ST, Ellingsen Ø. Non-Smoking Tobacco Affects Endothelial Function in Healthy Men in One of the Largest Health Studies Ever Performed; The Nord-Trøndelag Health Study in Norway; HUNT3. PLoS One 2016; 11:e0160205. [PMID: 27490361 PMCID: PMC4974005 DOI: 10.1371/journal.pone.0160205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/17/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Oral tobacco (snuff) is taking a large market share in Scandinavia, especially with young users. However, long-term health effects are unknown. Small studies show association between snuff and reduced endothelial function, representing an early stage of vascular injury that often precedes manifest cardiovascular disease by several years. We therefore determined the associations between snuff and endothelial function in a large sample of healthy Norwegian men. METHODS AND DESIGN In the Fitness substudy of the Nord-Trøndelag Health Study (HUNT3), endothelial function was measured by flow-mediated dilation (FMD). Aerobic fitness was measured by peak oxygen uptake (VO2peak). A cross-sectional design including 1 592 self-reported healthy men compared these observations with records of present tobacco use, standard cardiovascular risk factors, and socioeconomic status, using general linear models. RESULTS FMD was lower in snuff users (FMD: 4.12%, 3.63, 4.61) compared to non-users (FMD: 4.52%, 4.27, 4.78) after adjustment for age (difference: -0.57%, -1.12, -0.01). After further adjustment for potential confounders, FMD still tended to be lower in snuff users than in non-users (difference: -0.53%, -1.09, 0.02). This difference was even more pronounced in the inactive snuff users (-0.83%, -1.59, -0.06) and in the low fit snuff users (-0.74%, CI -0.55, 0.079). CONCLUSIONS Oral tobacco is associated with a tendency towards reduced endothelial function, indicating vascular changes that precede cardiovascular disease. The strongest associations were found in men with low physical activity or reduced aerobic fitness.
Collapse
Affiliation(s)
- Eli-Anne Skaug
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Bjarne Nes
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Thoresen Aspenes
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Ellingsen
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olav’s Hospital, Trondheim, Norway
| |
Collapse
|
24
|
Briant LJB, Burchell AE, Ratcliffe LEK, Charkoudian N, Nightingale AK, Paton JFR, Joyner MJ, Hart EC. Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol 2016; 594:4753-68. [PMID: 27068560 DOI: 10.1113/jp272167] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS We have developed a simple analytical method for quantifying the transduction of sympathetic activity into vascular tone. This method demonstrates that as women age, the transfer of sympathetic nerve activity into vascular tone is increased, so that for a given level of sympathetic activity there is more vasoconstriction. In men, this measure decreases with age. Test-re-test analysis demonstrated that the new method is a reliable estimate of sympathetic transduction. We conclude that increased sympathetic vascular coupling contributes to the age-related increase in blood pressure that occurs in women only. This measure is a reliable estimate of sympathetic transduction in populations with high sympathetic nerve activity. Thus, it will provide information regarding whether treatment targeting the sympathetic nervous system, which interrupts the transfer of sympathetic nerve activity into vascular tone, will be effective in reducing blood pressure in hypertensive patients. This may provide insight into which populations will respond to certain types of anti-hypertensive medication. ABSTRACT Sex and age differences in the sympathetic control of resting blood pressure (BP) may be due to differences in the transduction of sympathetic nerve activity (SNA) into vascular tone. Current methods for dynamically quantifying transduction focus on the relationship between SNA and vasoconstriction during a pressor stimulus, which increases BP and may be contra-indicated in patients. We describe a simple analytical method for quantifying transduction under resting conditions. We performed linear regression analysis of binned muscle SNA burst areas against diastolic BP (DBP). We assessed whether the slope of this relationship reflects the transduction of SNA into DBP. To evaluate this, we investigated whether this measure captures differences in transduction in different populations. Specifically, we (1) quantified transduction in young men (YM), young women (YW), older men (OM) and postmenopausal women (PMW); and (2) measured changes in transduction during β-blockade using propranolol in YW, YM and PMW. YM had a greater transduction vs. OM (0.10 ± 0.01 mmHg (% s)(-1) , n = 23 vs. 0.06 ± 0.01 mmHg (% s)(-1) , n = 18; P = 0.003). Transduction was lowest in YW (0.02 ± 0.01 mmHg (% s)(-1) , n = 23) and increased during β-blockade (0.11 ± 0.01 mmHg (% s)(-1) ; P < 0.001). Transduction in PMW (0.07 ± 0.01 mmHg (% s)(-1) , n = 23) was greater compared to YW (P = 0.001), and was not altered during β-blockade (0.06 ± 0.01 mmHg (% s)(-1) ; P = 0.98). Importantly, transduction increased in women with age, but decreased in men. Transduction in women intersected that in men at 55 ± 1.5 years. This measure of transduction captures age- and sex-differences in the sympathetic regulation of DBP and may be valuable in quantifying transduction in disease. In particular, this measure may help target treatment strategies in specific hypertensive subpopulations.
Collapse
Affiliation(s)
- L J B Briant
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK
| | - A E Burchell
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK
| | - L E K Ratcliffe
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK
| | - N Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - A K Nightingale
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - J F R Paton
- School of Physiology and Pharmacology, Biomedical Sciences, University of Bristol, Bristol, UK
| | | | - E C Hart
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK.,School of Physiology and Pharmacology, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Notarius CF, Millar PJ, Floras JS. Muscle sympathetic activity in resting and exercising humans with and without heart failure. Appl Physiol Nutr Metab 2015; 40:1107-15. [PMID: 26481289 DOI: 10.1139/apnm-2015-0289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system is critical for coordinating the cardiovascular response to various types of physical exercise. In a number of disease states, including human heart failure with reduced ejection fraction (HFrEF), this regulation can be disturbed and adversely affect outcome. The purpose of this review is to describe sympathetic activity at rest and during exercise in both healthy humans and those with HFrEF and outline factors, which influence these responses. We focus predominately on studies that report direct measurements of efferent sympathetic nerve traffic to skeletal muscle (muscle sympathetic nerve activity; MSNA) using intraneural microneurographic recordings. Differences in MSNA discharge between subjects with and without HFrEF both at rest and during exercise and the influence of exercise training on the sympathetic response to exercise will be discussed. In contrast to healthy controls, MSNA increases during mild to moderate dynamic exercise in the presence of HFrEF. This increase may contribute to the exercise intolerance characteristic of HFrEF by limiting muscle blood flow and may be attenuated by exercise training. Future investigations are needed to clarify the neural afferent mechanisms that contribute to efferent sympathetic activation at rest and during exercise in HFrEF.
Collapse
Affiliation(s)
- Catherine F Notarius
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Philip J Millar
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S Floras
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
26
|
Pearson J, Lucas RAI, Schlader ZJ, Zhao J, Gagnon D, Crandall CG. Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge. Am J Physiol Regul Integr Comp Physiol 2014; 307:R822-7. [PMID: 25080499 PMCID: PMC4187179 DOI: 10.1152/ajpregu.00199.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Passive heat stress increases core and skin temperatures and reduces tolerance to simulated hemorrhage (lower body negative pressure; LBNP). We tested whether exercise-induced heat stress reduces LBNP tolerance to a greater extent relative to passive heat stress, when skin and core temperatures are similar. Eight participants (6 males, 32 ± 7 yr, 176 ± 8 cm, 77.0 ± 9.8 kg) underwent LBNP to presyncope on three separate and randomized occasions: 1) passive heat stress, 2) exercise in a hot environment (40°C) where skin temperature was moderate (36°C, active 36), and 3) exercise in a hot environment (40°C) where skin temperature was matched relative to that achieved during passive heat stress (∼38°C, active 38). LBNP tolerance was quantified using the cumulative stress index (CSI). Before LBNP, increases in core temperature from baseline were not different between trials (1.18 ± 0.20°C; P > 0.05). Also before LBNP, mean skin temperature was similar between passive heat stress (38.2 ± 0.5°C) and active 38 (38.2 ± 0.8°C; P = 0.90) trials, whereas it was reduced in the active 36 trial (36.6 ± 0.5°C; P ≤ 0.05 compared with passive heat stress and active 38). LBNP tolerance was not different between passive heat stress and active 38 trials (383 ± 223 and 322 ± 178 CSI, respectively; P = 0.12), but both were similarly reduced relative to active 36 (516 ± 147 CSI, both P ≤ 0.05). LBNP tolerance is not different between heat stresses induced either passively or by exercise in a hot environment when skin temperatures are similarly elevated. However, LBNP tolerance is influenced by the magnitude of the elevation in skin temperature following exercise induced heat stress.
Collapse
Affiliation(s)
- J. Pearson
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas; ,2School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom;
| | - R. A. I. Lucas
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas; ,3Center for Global Health Research, Umea University, Umea, Sweden; and
| | - Z. J. Schlader
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas;
| | - J. Zhao
- 4China Institute of Sport Science, Beijing, China
| | - D. Gagnon
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas;
| | - C. G. Crandall
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
27
|
Determinants of muscle metaboreflex and involvement of baroreflex in boys and young men. Eur J Appl Physiol 2012; 113:827-38. [PMID: 22983569 DOI: 10.1007/s00421-012-2493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
This study aimed to assess the arterial pressure (AP) determinants during the muscle metaboreflex in boys and men and to investigate the contribution of baroreflex and sympathovagal function to the metaboreflex-induced responses. Fourteen pre-adolescent boys and 13 men performed a protocol involving: baseline, isometric handgrip exercise, circulatory occlusion, and recovery. The same protocol was repeated without occlusion. During baseline, boys had lower beat-to-beat AP, higher heart rate (HR), and lower low/high frequency HR variability. During exercise, a parasympathetic withdrawal was evident in both groups. In adults, HR was the key contributor to the pressure response, with no changes in stroke volume, whereas in boys, the lower HR increase was counterbalanced by an increase in stroke volume, resulting in similar relative increases in AP in both groups. In recovery, boys exhibited a faster rate of HR-decay, rapid vagal reactivation, and greater decrease in TPR than men. An overshoot in baroreceptor sensitivity was observed in men. The isolated metaboreflex resulted in a similar AP elevation in both age groups (by ~15 mmHg), and attenuated spontaneous baroreceptor sensitivity. However, during the metaboreflex, pre-adolescent males exhibited a lower increase in peripheral resistance and a greater bradycardic response than adults, and a fast restoration of vagal activity to non-occlusion levels. During metaboreflex, boys were capable of eliciting a pressure response similar to the one elicited by men; however, the interplay of the mechanisms underlying the rise in AP differed between the two groups with the vagal contribution being greater in the younger participants.
Collapse
|