1
|
Bracamonte JH, Watkins L, Pat B, Dell’Italia LJ, Saucerman JJ, Holmes JW. Contributions of mechanical loading and hormonal changes to eccentric hypertrophy during volume overload: A Bayesian analysis using logic-based network models. PLoS Comput Biol 2025; 21:e1012390. [PMID: 40238825 PMCID: PMC12040246 DOI: 10.1371/journal.pcbi.1012390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 04/29/2025] [Accepted: 02/23/2025] [Indexed: 04/18/2025] Open
Abstract
Primary mitral regurgitation (MR) is a pathology that alters mechanical loading on the left ventricle, triggers an array of compensatory neurohormonal responses, and induces a distinctive ventricular remodeling response known as eccentric hypertrophy. Drug therapies may alleviate symptoms, but only mitral valve repair or replacement can provide significant recovery of cardiac function and dimensions. Questions remain about the optimal timing of surgery, with 20% of patients developing systolic dysfunction post-operatively despite being treated according to the current guidelines. Thus, better understanding of the hypertrophic process in the setting of ventricular volume overload (VO) is needed to improve and better personalize the management of MR. To address this knowledge gap, we employ a Bayesian approach to combine data from 70 studies on experimental volume overload in dogs and rats and use it to calibrate a logic-based network model of hypertrophic signaling in myocytes. The calibrated model predicts that growth in experimental VO is mostly driven by the neurohormonal response, with an initial increase in myocardial tissue stretch being compensated by subsequent remodeling fairly early in the time course of VO. This observation contrasts with a common perception that volume-overload hypertrophy is driven primarily by increased myocyte strain. The model reproduces many aspects of 43 studies not used in its calibration, including infusion of individual hypertrophic agonists alone or in combination with various drugs commonly employed to treat heart failure, as well as administration of some of those drugs in the setting of experimental volume overload. We believe this represents a promising approach to using the known structure of an intracellular signaling network to integrate information from multiple studies into quantitative predictions of the range of expected responses to potential interventions in the complex setting of cardiac hypertrophy driven by a combination of hormonal and mechanical factors.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lionel Watkins
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Betty Pat
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Louis J. Dell’Italia
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
2
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
3
|
Angiotensin II Induces Automatic Activity of the Isolated Guinea Pig Pulmonary Vein Myocardium through Activation of the IP₃ Receptor and the Na⁺-Ca 2+ Exchanger. Int J Mol Sci 2019; 20:ijms20071768. [PMID: 30974804 PMCID: PMC6479489 DOI: 10.3390/ijms20071768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
The automaticity of the pulmonary vein myocardium is known to be the major cause of atrial fibrillation. We examined the involvement of angiotensin II in the automatic activity of isolated guinea pig pulmonary vein preparations. In tissue preparations, application of angiotensin II induced an automatic contractile activity; this effect was mimicked by angiotensin I and blocked by losartan, but not by PD123,319 or carvedilol. In cardiomyocytes, application of angiotensin II induced an increase in the frequency of spontaneous Ca2+ sparks and the generation of Ca2+ transients; these effects were inhibited by losartan or xestospongin C. In tissue preparations, angiotensin II caused membrane potential oscillations, which lead to repetitive generation of action potentials. Angiotensin II increased the diastolic depolarization slope of the spontaneous or evoked action potentials. These effects of angiotensin II were inhibited by SEA0400. In tissue preparations showing spontaneous firing of action potentials, losartan, xestospongin C or SEA0400 decreased the slope of the diastolic depolarization and inhibited the firing of action potentials. In conclusion, in the guinea pig pulmonary vein myocardium, angiotensin II induces the generation of automatic activity through activation of the IP3 receptor and the Na+-Ca2+ exchanger.
Collapse
|
4
|
Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch 2018; 470:1391-1403. [PMID: 29748710 DOI: 10.1007/s00424-018-2153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.
Collapse
|
5
|
Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Quintanilla RA, Schultz HD, Marcus NJ, Amann M, Del Rio R. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter? Am J Physiol Heart Circ Physiol 2017; 314:H464-H474. [PMID: 29167119 DOI: 10.1152/ajpheart.00407.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | | | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University , Des Moines, Iowa
| | - Markus Amann
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes , Punta Arenas , Chile.,Centro de Envejecimiento y Regeneracion, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
"TRP inflammation" relationship in cardiovascular system. Semin Immunopathol 2015; 38:339-56. [PMID: 26482920 PMCID: PMC4851701 DOI: 10.1007/s00281-015-0536-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.
Collapse
|
7
|
Abstract
Dilated cardiomyopathy is characterized by dilatation of the left or right ventricle, or both ventricles. The degree of myocardial dysfunction is not attributable to abnormal loading conditions. The infectious-immune theory has long been hypothesized to explain the pathogenesis of many etiologically unrecognized dilated cardiomyopathies. Inflammations followed by immune reactions, which may be excessive, in the myocardium, evoked by external triggers such as viral infections and/or autoimmune antibodies, continue insidiously, and lead to the process of cardiac remodeling with ventricular dilatation and systolic dysfunction. This ultimately results in dilated cardiomyopathy. Hepatitis C virus-associated heart diseases are good examples of cardiac lesions definitely induced by viral infections in humans that progress to a chronic stage through complicated immune mechanisms. Therapeutic strategies for myocarditis and dilated cardiomyopathy have been obtained through analyses of the acute, subacute, and chronic phases of experimental viral myocarditis in mice. The appropriate modulation of excessive immune reactions during myocarditis, rather than their complete elimination, appears to be a key option in the prevention and treatment of dilated cardiomyopathy. The clinical application of an NF-κB decoy and immune adsorption of IgG3 cardiac autoantibodies have been used as immunomodulating therapies and may provide novel approaches for the treatment of refractory patients with dilated cardiomyopathy. Conventional therapeutic agents for chronic heart failure such as β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists in particular should be re-evaluated on the basis of their anti-inflammatory properties in the treatment of dilated cardiomyopathy.
Collapse
|
8
|
Suzuki H, Takeishi Y. Inducibility of atrial fibrillation caused by acute increase of atrial pressure in rat diseased heart with chronic atrial dilation. Int Heart J 2012; 53:257-60. [PMID: 22878806 DOI: 10.1536/ihj.53.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although acute atrial dilation facilitates the induction of atrial fibrillation (AF) in the normal heart, little is known about whether the induction of AF due to acute atrial dilation increases in the diseased heart. To clarify this, we compared the inducibility of AF by an acute increase of atrial pressure with and without chronic atrial dilation induced by volume- and pressure-overload in rats. Eight weeks after creating abdominal aortocaval shunt and aortic constriction rats (LVH rats, n = 8) or sham rats (n = 8), the hearts were perfused in Langendorff's manner. Right atrial (RA) pressure was increased from 2 cm H(2)O to 10 cm H(2)O by the height of the reservoir. Inducibility of AF was evaluated by 5 times burst pacing from the right atrium, and mean cycle length of AF (CL) and the atrial effective refractory period (AERP) were also measured. The inducibility of AF increased from 5 ± 3% at 2 cm H(2)O to 50 ± 5% at 10 cm H(2)O RA pressure in sham rats (P < 0.01), but not in LVH rats (20 ± 7% to 25 ± 6%, NS). Mean CL and AERP in LVH rats were longer than those in sham rats. In addition, the AERP decreased with an increase in RA pressure from 2 cm H(2)O to 10 cm H(2)O in sham rats, but not in LVH rats. The inducibility of AF caused by an acute increase of RA pressure did not increase in the diseased heart, suggesting that electrophysiological remodeling may play a role, at least in a compensated state, for the prevention of AF due to an acute increase of atrial pressure.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Cardiology and Hematology, Fukushima Medical University, Japan
| | | |
Collapse
|
9
|
Otake H, Suzuki H, Honda T, Maruyama Y. Influences of autonomic nervous system on atrial arrhythmogenic substrates and the incidence of atrial fibrillation in diabetic heart. Int Heart J 2009; 50:627-41. [PMID: 19809211 DOI: 10.1536/ihj.50.627] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus (DM) is clinically associated with an increased incidence of atrial fibrillation (AF), but the underlying mechanism remains unclear. We hypothesized that neural remodeling enhances AF vulnerability in diabetic hearts. Eight weeks after creating streptozotocin-induced diabetic rats (DM rats) or control rats, the hearts were perfused according to the Langendorff method. Inducibility of AF was evaluated by 5 times burst pacing from the right atrium and the atrial effective refractory period (AERP) was measured. The protocol was repeated during sympathetic nerve stimulation (SNS) or parasympathetic nerve stimulation (PNS). In tissue samples taken from the right atrium, the density of nerves positive for tyrosine hydroxylase (TH) and acetylcholinesterase (AChE) were determined. SNS significantly increased the incidence of AF in DM rats (14 +/- 6 to 30 +/- 8%, P < 0.01), but not in control rats (11 +/- 4 to 14 +/- 6%, NS). Although AERP was significantly decreased by SNS in both rats (each P < 0.01), increased heterogeneity of AERP by SNS was seen only in DM rats. PNS significantly decreased AERP and increased the incidence of AF (9 +/- 5 to 30 +/- 5% in control rats, 12 +/- 6 to 27 +/- 6% in DM rats, each P < 0.01) in both rats. The density of TH-positive nerves was heterogeneous in DM rats compared with control rats, whereas the heterogeneity of AChE-positive nerves was not different in the rats. The prevalence of AF was enhanced by adrenergic activation in diabetic hearts, in which heterogeneous sympathetic innervation was evident. These results suggest that neural remodeling may play a crucial role for increased AF vulnerability in DM.
Collapse
Affiliation(s)
- Hideki Otake
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | | | | | | |
Collapse
|
10
|
Mori T, Kurumazuka D, Matsumoto C, Shirakawa H, Kimura S, Kitada K, Kobayashi K, Matsuda H, Hayashi T, Kitaura Y, Matsumura Y. Dietary salt restriction activates mineralocorticoid receptor signaling in volume-overloaded heart failure. Eur J Pharmacol 2009; 623:84-8. [PMID: 19766104 DOI: 10.1016/j.ejphar.2009.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 09/01/2009] [Accepted: 09/10/2009] [Indexed: 12/20/2022]
Abstract
Whether a high plasma aldosterone concentration induced by strict salt restriction promotes cardiac remodeling remains controversial. Male Sprague-Dawley rats at 10weeks of age were given normal salt (NS) (1.5% NaCl) or low salt (LS) (0.05% NaCl) diets. Each animal underwent aortocaval fistula creation for volume-overloaded heart failure or sham surgery. All rats with a fistula received either vehicle or a non-hypotensive dose of spironolactone (200mg/kg/day) by gavage. Two weeks later, the LS diet significantly increased the plasma aldosterone level in the sham-operated and fistula-created rats (2677+/-662pg/ml and 2406+/-422pg/ml) compared with that in rats given the NS diet (518+/-18pg/ml and 362+/-45pg/ml, respectively). In sham-operated rats, the difference in plasma aldosterone level did not affect the extent of myocardial fibrosis (1.8+/-0.1% with LS diet vs. 1.5+/-0.3% with NS diet). However, the increase in myocardial fibrosis in fistula-created rats was more prominent with the LS diet than with the NS diet (4.7+/-0.3% vs. 3.4+/-0.1%). In addition, the fistula-created rats on the LS diet expressed significantly increased oxidative stress and transforming growth factor-beta compared with those on the NS diets (P<0.05). These increases in the fistula-created rats on the LS diet were significantly suppressed by the non-hypotensive dose of spironolactone (P<0.05). These results suggest that increased plasma aldosterone level with strict salt restriction activated the mineralocorticoid receptor signaling in volume-overloaded condition, resulting in increased myocardial fibrosis.
Collapse
Affiliation(s)
- Tatsuhiko Mori
- Department of Internal Medicine III, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Decoy oligodeoxynucleotide targeting activator protein-1 (AP-1) attenuates intestinal inflammation in murine experimental colitis. J Transl Med 2008; 88:652-63. [PMID: 18458670 DOI: 10.1038/labinvest.2008.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Various therapies are used for inflammatory bowel diseases (IBD), though none seem to be extremely effective. AP-1 is a major transcription factor that upregulates genes involved in immune and proinflammatory responses. We investigated decoy oligodeoxynucleotide (ODN) targeting AP-1 to prevent dextran sulfate sodium (DSS)-induced colitis in mice. Functional efficacies of synthetic decoy and scrambled ODNs were evaluated in vitro by a reporter gene luciferase assay and measuring flagellin-induced IL-8 expression by HCT-15 cells transfected with ODNs. Experimental colitis was induced in mice with a 2.5% DSS solution in drinking water for 7 days, and decoy or scrambled ODNs were intraperitoneally injected from days 2 to 5. Colitis was assessed by weight loss, colon length, histopathology, and detection of myeloperoxidase (MPO), IL-1beta, and TNF-alpha in colon tissue. Therapeutic effects of AP-1 and NF-kappaB decoy ODNs were compared. Transfection of AP-1 decoy ODN inhibited AP-1 transcriptional activity in reporter assays and flagellin-induced IL-8 production in vitro. In mice, AP-1 decoy ODN, but not scrambled ODN, significantly inhibited weight loss, colon shortening, and histological inflammation induced by DSS. Further, AP-1 decoy ODN decreased MPO, IL-1beta, and TNF-alpha in colonic tissue of mice with DSS-induced colitis. The AP-1 decoy therapeutic effect was comparable to that of NF-kappaB decoy ODN, which also significantly decreased intestinal inflammation. Double-strand decoy ODN targeting AP-1 effectively attenuated intestinal inflammation associated with experimental colitis in mice, indicating the potential of targeting proinflammatory transcription factors in new therapies for IBD.
Collapse
|
12
|
Inagaki H, Suzuki JI, Ogawa M, Taniyama Y, Morishita R, Isobe M. Ultrasound-microbubble-mediated NF-kappaB decoy transfection attenuates neointimal formation after arterial injury in mice. J Vasc Res 2005; 43:12-8. [PMID: 16244495 DOI: 10.1159/000089103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 08/23/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Decoy transfection is a significant methodology for suppressing gene activation. The decoy can be synthesized easily; however, the major obstacle is the difficulty involved in effective in vivo delivery. METHODS AND RESULTS We used a fluorescein-labeled decoy to investigate the ultrasound-microbubble-mediated in vivo delivery in normal and injured mouse arteries. We showed that this approach could deliver the decoy into target tissues. In addition, we performed in vivo NF-kappaB decoy transfection into murine injured arteries using the ultrasound-microbubble method. Murine femoral arteries were injured using flexible wires to establish arterial injury. Pathologically, neointima/media areas in the NF-kappaB decoy transfection using ultrasound-microbubble group showed less than those in the control groups. Immunohistochemistry revealed that enhanced expression of inflammatory factors was observed in nontreated injured arteries, while the NF-kappaB decoy suppressed the expression. CONCLUSION We revealed that ultrasound-microbubble delivery of the decoy is effective for transfection into target organs. We also indicated that NF-kappaB decoy transfection using this method has potential for the suppression of neointimal formation. Ultrasound-mediated transfection of the decoy can be beneficial for the clinical treatment of restenosis after coronary intervention and other cardiovascular diseases.
Collapse
Affiliation(s)
- Hiroshi Inagaki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Wang X, Sentex E, Saini HK, Chapman D, Dhalla NS. Upregulation of beta-adrenergic receptors in heart failure due to volume overload. Am J Physiol Heart Circ Physiol 2005; 289:H151-9. [PMID: 15734891 DOI: 10.1152/ajpheart.00066.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To examine the mechanisms of changes in beta-adrenergic signal transduction in heart failing due to volume overload, we studied the status of beta-adrenoceptors (beta-ARs), G protein-coupled receptor kinase (GRK), and beta-arrestin in heart failure due to aortocaval shunt (AVS). Heart failure in rats was induced by creating AVS for 16 wk, and beta-AR binding, GRK activity, as well as their protein content, and mRNA levels were determined in both left and right ventricles. The density and protein content for beta1-ARs, unlike those for beta2-ARs, were increased in the failing hearts. Furthermore, protein contents for GRK isoforms and beta-arrestin-1 were decreased in membranous fractions and increased in cytosolic fractions from the failing hearts. On the other hand, steady-state mRNA levels for beta1-ARs and GRK2, as well as protein content for Gbetagamma-subunits, did not change in the failing heart. Basal cardiac function was depressed; however, both in vivo and ex vivo positive inotropic responses of the failing hearts to isoproterenol were augmented. Treatment of AVS animals with imidapril (1 mg.kg(-1).day(-1)) or losartan (20 mg.kg(-1).day(-1)) retarded the progression of heart failure; partially prevented changes in beta1-ARs, GRKs, and beta-arrestin-1 in the failing myocardium; and attenuated the increase in positive inotropic effect of isoproterenol. These results indicate that upregulation of beta1-ARs is associated with subcellular redistribution of GRKs and beta-arrestin-1 in the failing heart due to volume overload. Furthermore, attenuation of alterations in beta-adrenergic system by imidapril or losartan may be due to blockade of the renin-angiotensin system in the AVS model of heart failure.
Collapse
Affiliation(s)
- Xi Wang
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, MB R2H 2A6, Canada
| | | | | | | | | |
Collapse
|