1
|
Bogaard HJ, de Man FS. Beta-Blockers in Pulmonary Arterial Hypertension: Physiology Getting in Biology's Way. Chest 2025; 167:935-938. [PMID: 40210311 DOI: 10.1016/j.chest.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 04/12/2025] Open
Affiliation(s)
- Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Frances S de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zamanian MY, Maleki S, Oghenemaro EF, Singh M, Mohammadi M, Alkhayyat AH, Sapaev IB, Kaur P, Shirsalimi N, Nagarwal A. Omentin-1 as a promising biomarker and therapeutic target in hypertension and heart failure: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04008-y. [PMID: 40126671 DOI: 10.1007/s00210-025-04008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
Omentin-1, a novel adipocytokine predominantly secreted by visceral adipose tissue, has emerged as a significant factor in cardiovascular health, particularly regarding hypertension (HTN) and heart failure (HF). This manuscript investigates the multifaceted roles of omentin-1 in these conditions, emphasizing its protective effects on vascular function and its potential as both a biomarker and therapeutic target. Clinical studies indicate that reduced circulating levels of omentin-1 are associated with metabolic syndrome (MetS) and increased cardiovascular risk, while animal studies demonstrate its ability to ameliorate endothelial dysfunction and lower blood pressure. Omentin-1 exerts its beneficial effects through various signaling pathways, including AMP-activated protein kinase (AMPK) and protein kinase B (Akt), thereby promoting vasodilation, enhancing insulin sensitivity, and mitigating inflammation. In the context of HF, particularly heart failure with preserved ejection fraction (HFpEF), omentin-1 levels exhibit a negative correlation with diastolic dysfunction and inflammatory markers, suggesting its role in cardiac protection. Additionally, the manuscript discusses the implications of omentin-1 in managing obesity-related cardiovascular diseases and its potential utility as a prognostic marker for adverse outcomes in HF patients. Collectively, omentin-1 represents a promising avenue for research in cardiovascular health, with the potential to inform novel therapeutic strategies aimed at improving outcomes in patients with HTN and HF. Further research is necessary to elucidate the details of omentin-1 function and evaluate its potential in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Saba Maleki
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Guilan Province, Iran
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Maryam Mohammadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hussen Alkhayyat
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ibrokhim B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- Scientific Researcher, University of Tashkent for Applied Sciences, Str. Gavhar 1, 100149, Tashkent, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Niyousha Shirsalimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Amritesh Nagarwal
- Department of Cardiology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| |
Collapse
|
3
|
Lopes Soares L, Portes AMO, Costa SFF, Leite LB, Natali AJ. Autonomic Dysregulation in Pulmonary Hypertension: Role of Physical Exercise. Hypertension 2024; 81:2228-2236. [PMID: 39234679 DOI: 10.1161/hypertensionaha.124.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pulmonary hypertension (PH) is a rare and severe condition characterized by increased pressure in the pulmonary circulation, often resulting in right ventricular failure and death. The autonomic nervous system (ANS) plays a crucial role in the cardiovascular and pulmonary controls. Dysfunction of ANS has been implicated in the pathogenesis of cardiopulmonary diseases. Conversely, dysfunctions in ANS can arise from these diseases, impacting cardiac and pulmonary autonomic functions and contributing to disease progression. The complex interaction between ANS dysfunction and PH plays a crucial role in the disease progression, making it essential to explore interventions that modulate ANS, such as physical exercise, to improve the treatment and prognosis of patients with PH. This review addresses autonomic dysfunctions found in PH and their implications for the cardiopulmonary system. Furthermore, we discuss how physical exercise, a significant modulator of ANS, may contribute to the prognosis of PH. Drawing from evidence of aerobic and resistance exercise training in patients and experimental models of PH, potential cardiovascular benefits of exercise are presented. Finally, we highlight emerging therapeutic targets and perspectives to better cope with the complex condition. A comprehensive understanding of the interaction between ANS and PH, coupled with targeted physical exercise interventions, may pave the way for innovative therapeutic strategies and significantly improve the treatment and prognosis of vulnerable patients.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | | | | | - Luciano Bernardes Leite
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| |
Collapse
|
4
|
Tsai J, Malik S, Tjen-A-Looi SC. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life (Basel) 2024; 14:1265. [PMID: 39459565 PMCID: PMC11509317 DOI: 10.3390/life14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor-vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease's different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost.
Collapse
Affiliation(s)
- Jason Tsai
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| | | | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| |
Collapse
|
5
|
Andersen S, Axelsen JS, Nielsen‐Kudsk AH, Schwab J, Jensen CD, Ringgaard S, Andersen A, Smal R, Llucià‐Valldeperas A, Handoko de Man F, Igreja B, Pires N. Effects of dopamine β-hydroxylase inhibition in pressure overload-induced right ventricular failure. Pulm Circ 2024; 14:e70008. [PMID: 39539945 PMCID: PMC11558268 DOI: 10.1002/pul2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Activation of the sympathetic nervous system is observed in pulmonary arterial hypertension patients. This study investigates whether inhibiting the conversion of dopamine into noradrenaline by dopamine β-hydroxylase (DβH) inhibition with BIA 21-5337 improved right ventricular (RV) function or remodeling in pressure overload-induced RV failure. RV failure was induced in male Wistar rats by pulmonary trunk banding (PTB). Two weeks after the procedure, PTB rats were randomized to vehicle (n = 8) or BIA 21-5337 (n = 11) treatment. An additional PTB group treated with ivabradine (n = 11) was included to control for the potential heart rate-reducing effects of BIA 21-5337. A sham group (n = 6) received vehicle treatment. After 5 weeks of treatment, RV function was assessed by echocardiography, magnetic resonance imaging, and invasive pressure-volume measurements before rats were euthanized. RV myocardium was analyzed to evaluate RV remodeling. PTB caused a fourfold increase in RV afterload which led to RV dysfunction, remodeling, and failure. Treatment with BIA 21-5337 reduced adrenal gland DβH activity and 24-h urinary noradrenaline levels confirming relevant physiological response to the treatment. At end-of-study, there were no differences in RV function or RV remodeling between BIA 21-5337 and vehicle-treated rats. In conclusion, treatment with BIA 21-5337 did not have any beneficial-nor adverse-effects on the development of RV failure after PTB despite reduced adrenal gland DβH activity.
Collapse
Affiliation(s)
- Stine Andersen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Julie Sørensen Axelsen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anders H. Nielsen‐Kudsk
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Janne Schwab
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Caroline D. Jensen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research CentreAarhus UniversityAarhusDenmark
| | - Asger Andersen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rowan Smal
- Department of PulmonologyAmsterdam University Medical CentreAmsterdamThe Netherlands
| | | | | | - Bruno Igreja
- Department of ResearchBIAL, Portela & Cª, S.A.CoronadoS. Romão e S. MamedePortugal
| | - Nuno Pires
- Department of ResearchBIAL, Portela & Cª, S.A.CoronadoS. Romão e S. MamedePortugal
| |
Collapse
|
6
|
Kulkarni S, Wilkinson IB. Adrenoceptors and Hypertension. Handb Exp Pharmacol 2024; 285:297-332. [PMID: 38890192 DOI: 10.1007/164_2024_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hypertension is a very prevalent condition associated with high mortality and morbidity, secondary to changes resulting in blood vessels and resultant end-organ damage. Haemodynamic changes, including an initial rise in cardiac output followed by an increase in total peripheral resistance, denote the early changes associated with borderline or stage 1 hypertension, especially in young men. Increased sodium reabsorption leading to kidney damage is another mechanism proposed as one of the initial triggers for essential hypertension. The underlying pathophysiological mechanisms include catecholamine-induced α1- and ß1-adrenoceptor stimulation, and renin-angiotensin-aldosterone system activation leading to endothelial dysfunction which is believed to lead to persistent blood pressure elevation.α1 blockers, α2 agonists, and ß blockers were among the first oral anti-hypertensives. They are no longer first-line therapy after outcome trials did not demonstrate any benefits over and above other agents, despite similar blood pressure reductions. Angiotensin-converting enzyme inhibitors (or angiotensin receptor blockers), calcium channel blockers, and thiazide-like diuretics are now considered the first line of therapy, although adrenoceptor agents still have a role as second- or third-line therapy. The chapter also highlights hypertension in specific medical conditions such as pregnancy, phaeochromocytoma, hyperthyroidism, portal hypertension, pulmonary arterial hypertension, and ocular hypertension, to provide an overview for clinicians and researchers interested in the role of adrenoceptors in the pathophysiology and management of hypertension.
Collapse
Affiliation(s)
- Spoorthy Kulkarni
- Department of Experimental Medicine and Immunotherapeutics, Vascular Research Clinic, ACCI Level 3, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ian B Wilkinson
- Department of Experimental Medicine and Immunotherapeutics, Vascular Research Clinic, ACCI Level 3, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Bai J, Lo A, Kennelly J, Sharma R, Zhao N, Trew ML, Zhao J. Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria. Interface Focus 2023; 13:20230039. [PMID: 38106916 PMCID: PMC10722211 DOI: 10.1098/rsfs.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10-2 µM in the RA versus 0.9 × 10-3 µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s-1 in the RA versus -0.05 m s-1 in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - James Kennelly
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Na Zhao
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Mark L. Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Yan J, Duan Y, Cheng M. Clinical Diagnostic Value of Serum GABA, NE, ET-1, and VEGF in Chronic Obstructive Pulmonary Disease with Pulmonary Hypertension. Int J Chron Obstruct Pulmon Dis 2023; 18:1803-1813. [PMID: 37621655 PMCID: PMC10445639 DOI: 10.2147/copd.s418478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Background Pulmonary hypertension (PH) is the one of the most common complications of chronic obstructive pulmonary disease (COPD). Whereas, the associated diagnostic factors are uncertain. The present study aims to investigate useful diagnostic factors in patients with COPD and PH (COPD-PH). Patients and Methods A total of 111 patients with COPD in Shanxi Bethune Hospital from December 2019 to December 2020 were divided into COPD (PASP≤50 mmHg) and COPD-PH groups (PASP>50 mmHg). Pulmonary function and chest CT results were collected. Routine blood, biochemical, and blood coagulation function indices were examined for all patients. Arterial blood gas analysis and serum cytokines were also measured. Differences in the distribution of the above indicators between the two groups were analyzed using binary logistic regression analysis to identify the risk factors of COPD-PH, and multiple linear regression analysis to determine the factors affecting PASP. The influencing factors and joint predictive factors of the above linear regression analysis were analyzed using the ROC curve. The area under the curve and the best cut-off value were calculated, and their predictive value and clinical significance in disease diagnosis were discussed. Results A total of 27 indexes with statistically significant differences between the two groups were identified (P < 0.05). Binary Logistic regression analysis showed that the factors influencing the diagnosis of pulmonary hypertension were serum GABA, NE, VEGF, BUN, and LYM% levels (P < 0.05). Multiple linear regression showed that the factors influencing PASP were serum NE, ET-1, GABA, and VEGF levels, and the goodness of fit of the model was 0.748 (P < 0.001). ROC curve showed that the AUC of the combined diagnosis of serum NE, ET-1, GABA, and VEGF levels was 0.966 (sensitivity, 87.5%; specificity, 93.65%). Conclusion Serum NE and ET-1 are risk factors for COPD-PH, whereas serum GABA and VEGF are protective factors against COPD-PH. The combined diagnostic value of serum NE, ET-1, GABA, and VEGF levels was the highest.
Collapse
Affiliation(s)
- Jing Yan
- Department of Respiratory and Critical Care Medicine, Lvliang People’s Hospital Affiliated to Shanxi Medical University, Lvliang City, Shanxi Province, 033000, People’s Republic of China
| | - Yajing Duan
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, Nankai University, Tianjin, 300192, People’s Republic of China
| | - Mengyu Cheng
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
9
|
Oliveira AC, Karas MM, Alves M, He J, de Kloet AD, Krause EG, Richards EM, Bryant AJ, Raizada MK. ACE2 overexpression in corticotropin-releasing-hormone cells offers protection against pulmonary hypertension. Front Neurosci 2023; 17:1223733. [PMID: 37638323 PMCID: PMC10447887 DOI: 10.3389/fnins.2023.1223733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background Pulmonary hypertension (PH), characterized by elevated pulmonary pressure and right heart failure, is a systemic disease involving inappropriate sympathetic activation and an impaired gut-brain-lung axis. Global overexpression of angiotensin converting enzyme 2 (ACE2), a cardiopulmonary protective enzyme of the renin-angiotensin system, attenuates PH induced by chronic hypoxia. Neurons within the paraventricular nucleus of the hypothalamus (PVN) that synthesize corticotropin-releasing hormone (CRH) are activated by stressors, like hypoxia, and this activation augments sympathetic outflow to cardiovascular tissues. These data coupled with our observations that ACE2 overexpression in CRH cells (CRH-ACE2KI mice) decreases anxiety-like behavior via suppression of hypothalamic-pituitary-adrenal (HPA) axis activity by decreasing CRH synthesis, led us to hypothesize that selective ACE2 overexpression in CRH neurons would protect against hypoxia-induced PH. Methods CRH-ACE2KI and WT male and female mice were exposed to chronic hypoxia (10%O2) or normoxia (21%O2) for 4 weeks in a ventilated chamber with continuous monitoring of oxygen and carbon dioxide concentrations (n = 7-10/group). Pulmonary hemodynamics were measured with Millar pressure catheters then tissues were collected for histological analyses. Results Chronic hypoxia induced a significant increase (36.4%) in right ventricular (RV) systolic pressure (RVSP) in WT mice, which was not observed in CRH-ACE2KI mice. No significant differences in RVSP were observed between male and female mice in any of the groups. Conclusion Overexpression of ACE2 in CRH cells was protective against hypoxia-induced PH. Since the majority of expression of CRH is in brain nuclei such as paraventricular nucleus of the hypothalamus (PVN) and/or central nucleus of the amygdala (CeA) these data indicate that the protective effects of ACE2 are, at least in part, centrally mediated. This contributes to the systemic nature of PH disease and that CRH neurons may play an important role in PH.
Collapse
Affiliation(s)
- Aline C. Oliveira
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marianthi M. Karas
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Alves
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jacky He
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Annette D. de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Eric G. Krause
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Elaine M. Richards
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mohan K. Raizada
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
11
|
Reddy SA, Nethercott SL, Khialani BV, Grace AA, Martin CA. Management of arrhythmias in pulmonary hypertension. J Interv Card Electrophysiol 2021; 62:219-229. [DOI: 10.1007/s10840-021-00988-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/28/2021] [Indexed: 12/24/2022]
|
12
|
Zelt JGE, Schock S, deKemp RA, Stewart DJ, Staines WA, Ahmadi A, Beanlands R, Mielniczuk LM. [ 11C]meta-hydroxyephedrine PET evaluation in experimental pulmonary arterial hypertension: Effects of carvedilol of right ventricular sympathetic function. J Nucl Cardiol 2021; 28:407-422. [PMID: 33501547 DOI: 10.1007/s12350-020-02494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Little is known about the sequelae of chronic sympathetic nervous system (SNS) activation in patients with pulmonary arterial hypertension (PAH) and right heart failure (RHF). We aimed to, (1) validate the use of [11C]-meta-hydroxyephedrine (HED) for assessing right ventricular (RV) SNS integrity, and (2) determine the effects of β-receptor blockade on ventricular function and myocardial SNS activity in a PAH rat model. METHODS PAH was induced in male Sprague-Dawley rats (N = 36) using the Sugen+chronic hypoxia model. At week 5 post-injection, PAH rats were randomized to carvedilol (15 mg·kg-1·day-1 oral; N = 16) or vehicle (N = 16) for 4 weeks. Myocardial SNS function was assessed with HED positron emission tomography(PET). RESULTS With increasing PAH disease severity, immunohistochemistry confirmed selective sympathetic denervation within the RV and sparing of parasympathetic nerves. These findings were confirmed on PET with a significant negative relationship between HED volume of distribution(DV) and right ventricular systolic pressure (RVSP) in the RV (r = -0.90, p = 0.0003). Carvedilol did not reduce hemodynamic severity compared to vehicle. RV ejection fraction (EF) was lower in both PAH groups compared to control (p < 0.05), and was not further reduced by carvedilol. Carvedilol improved SNS function in the LV with significant increases in the HED DV, and decreased tracer washout in the LV (p < 0.05) but not RV. CONCLUSIONS PAH disease severity correlated with a reduction in HED DV in the RV. This was associated with selective sympathetic denervation. Late carvedilol treatment did not lead to recovery of RV function. These results support the role of HED imaging in assessing SNS innervation in a failing right ventricle.
Collapse
Affiliation(s)
- Jason G E Zelt
- Molecular Function and Imaging Program, The National Cardiac PET Centre, Division of Cardiology, Department of Medicine and the Cardiac Research Methods Centre, University of Ottawa Heart Institute and University of Ottawa, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
- Division of Cardiology, University of Ottawa Heart Institute and University of Ottawa, Ottawa, Canada.
| | - Sarah Schock
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A deKemp
- Molecular Function and Imaging Program, The National Cardiac PET Centre, Division of Cardiology, Department of Medicine and the Cardiac Research Methods Centre, University of Ottawa Heart Institute and University of Ottawa, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Duncan J Stewart
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Division of Cardiology, University of Ottawa Heart Institute and University of Ottawa, Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - William A Staines
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ali Ahmadi
- Molecular Function and Imaging Program, The National Cardiac PET Centre, Division of Cardiology, Department of Medicine and the Cardiac Research Methods Centre, University of Ottawa Heart Institute and University of Ottawa, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Rob Beanlands
- Molecular Function and Imaging Program, The National Cardiac PET Centre, Division of Cardiology, Department of Medicine and the Cardiac Research Methods Centre, University of Ottawa Heart Institute and University of Ottawa, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Division of Cardiology, University of Ottawa Heart Institute and University of Ottawa, Ottawa, Canada
| | - Lisa M Mielniczuk
- Molecular Function and Imaging Program, The National Cardiac PET Centre, Division of Cardiology, Department of Medicine and the Cardiac Research Methods Centre, University of Ottawa Heart Institute and University of Ottawa, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Division of Cardiology, University of Ottawa Heart Institute and University of Ottawa, Ottawa, Canada
| |
Collapse
|
13
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
14
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
15
|
Klinke A, Schubert T, Müller M, Legchenko E, Zelt JGE, Shimauchi T, Napp LC, Rothman AMK, Bonnet S, Stewart DJ, Hansmann G, Rudolph V. Emerging therapies for right ventricular dysfunction and failure. Cardiovasc Diagn Ther 2020; 10:1735-1767. [PMID: 33224787 PMCID: PMC7666928 DOI: 10.21037/cdt-20-592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic options for right ventricular (RV) dysfunction and failure are strongly limited. Right heart failure (RHF) has been mostly addressed in the context of pulmonary arterial hypertension (PAH), where it is not possible to discern pulmonary vascular- and RV-directed effects of therapeutic approaches. In part, opposing pathomechanisms in RV and pulmonary vasculature, i.e., regarding apoptosis, angiogenesis and proliferation, complicate addressing RHF in PAH. Therapy effective for left heart failure is not applicable to RHF, e.g., inhibition of adrenoceptor signaling and of the renin-angiotensin system had no or only limited success. A number of experimental studies employing animal models for PAH or RV dysfunction or failure have identified beneficial effects of novel pharmacological agents, with most promising results obtained with modulators of metabolism and reactive oxygen species or inflammation, respectively. In addition, established PAH agents, in particular phosphodiesterase-5 inhibitors and soluble guanylate cyclase stimulators, may directly address RV integrity. Promising results are furthermore derived with microRNA (miRNA) and long non-coding RNA (lncRNA) blocking or mimetic strategies, which can target microvascular rarefaction, inflammation, metabolism or fibrotic and hypertrophic remodeling in the dysfunctional RV. Likewise, pre-clinical data demonstrate that cell-based therapies using stem or progenitor cells have beneficial effects on the RV, mainly by improving the microvascular system, however clinical success will largely depend on delivery routes. A particular option for PAH is targeted denervation of the pulmonary vasculature, given the sympathetic overdrive in PAH patients. Finally, acute and durable mechanical circulatory support are available for the right heart, which however has been tested mostly in RHF with concomitant left heart disease. Here, we aim to review current pharmacological, RNA- and cell-based therapeutic options and their potential to directly target the RV and to review available data for pulmonary artery denervation and mechanical circulatory support.
Collapse
Affiliation(s)
- Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Torben Schubert
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Jason G. E. Zelt
- Division of Cardiology, University of Ottawa Heart Institute and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de recherche de IUCPQ/Laval University, Quebec, Canada
| | - L. Christian Napp
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de recherche de IUCPQ/Laval University, Quebec, Canada
| | - Duncan J. Stewart
- Division of Cardiology, University of Ottawa Heart Institute and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
16
|
Galves R, Da Costa A, Pierrard R, Bayard G, Guichard JB, Isaaz K. Impact of β-blocker therapy on right ventricular function in heart failure patients with reduced ejection fraction. A prospective evaluation. Echocardiography 2020; 37:1392-1398. [PMID: 32815195 DOI: 10.1111/echo.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Beta-blocker (β-blocker) therapy has been shown to improve mortality and reduce hospitalizations in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Although the physiological action mechanisms of β-blockers are well described, their effects on right ventricular (RV) function have not been prospectively studied. OBJECTIVE This prospective study aimed to (a) evaluate whether β-blocker therapy impacts RV remodeling based on echo parameters and (b) determine the predictive echo factors of β-blocker therapy response. METHODS From September 2017 to September 2018, HF patients were prospectively enrolled using CIBIS criteria: Class II, III, or IV HF; left ventricular ejection fraction (LVEF) of ≤40%; hospitalized for HF within the previous 12 months. Echo evaluation was performed before initiating β-blocker therapy and 3 months after optimal dose adjustment. Based on previous studies, patients with (absolute) LVEF ≥ 5% improvement were considered significant β-blocker therapy responders. RESULTS Overall, 40 patients (pts) completed the study, characterized as follows by age: 70 ± 10 years; gender: 10 women; cardiomyopathy etiology: idiopathic in 24 and ischemic in 16; NYHA Class: II in 22 and III in 10; LVEF: 32 ± 5%; and NTProBNP: 2665 ± 2400 pg/mL. The final population comprised 32 pts (79%), with eight (21%) excluded: two because of β-blocker therapy intolerance, one lost to follow-up, and five withdrew from the study. Under β-blocker therapy, several echo parameters significantly improved: LVEF from 31.7 ± 9 to 40.5 ± 9 (P < .0001); LV end-diastolic volume (EDV) from 154 ± 54 to 143 ± 45 mL (P = .06); LV end-systolic volume (ESV) from 107 ± 49 to 88 ± 37 mL (P = .0006); LV ES from 46 ± 11 to 64 ± 13 mL (P = .008); LV end-diastolic diameter (EDD) from 57 ± 9 to 54 ± 6 mm (P = .04); LV end-systolic diameter (ESD) from 48 ± 10 to 44 ± 7 mm (P = .007); and right ventricular systolic pressure (RV SP) from 39 ± 10 to 32 ± 8 mm Hg (P = .0001). Significant modifications were observed in terms of RV echo parameters: right ventricular (RV) size decreased from 30 ± 4 to 27 ± 5 mm (P = .03), while RV systolic function significantly improved based on tricuspid annular plane systolic excursion (TAPSE) (16.5 ± 4 vs. 19 ± 4 mm; 0.0006); DTI-derived tricuspid lateral annular systolic velocity wave (S') (10 ± 2 vs. 11.3 ± 3 cm/s; P = .03); and RIMP (Tei index) (0.5 ± 0.1 vs 0.46 ± 0.1; P = .04). RV 2D fractional area change (%) did not significantly differ despite a clear improvement tendency (35 ± 6 vs. 37 ± 4%; P = .1). No significant modifications were observed concerning LV diastolic parameters. Overall, β-blocker echo responders (n = 23/32; 72%) exhibited the same left and right echo parameters. No echo variables predicted the β-blocker response. CONCLUSIONS In HFrEF pts, β-blocker therapy significantly improves LV and RV systolic remodeling. Accordingly, β-blocker therapy could be applied as soon as possible in HFrEF patients with right ventricular dysfunction so as to limit RV remodeling.
Collapse
Affiliation(s)
- Rémi Galves
- Division of Cardiology CHU Saint Etienne, Jean Monnet University, Saint-Etienne, France
| | - Antoine Da Costa
- Division of Cardiology CHU Saint Etienne, Jean Monnet University, Saint-Etienne, France
| | - Romain Pierrard
- Division of Cardiology CHU Saint Etienne, Jean Monnet University, Saint-Etienne, France
| | - Geoffrey Bayard
- Division of Cardiology CHU Saint Etienne, Jean Monnet University, Saint-Etienne, France
| | | | - Karl Isaaz
- Division of Cardiology CHU Saint Etienne, Jean Monnet University, Saint-Etienne, France
| |
Collapse
|
17
|
Prins KW, Thenappan T, Weir EK, Kalra R, Pritzker M, Archer SL. Repurposing Medications for Treatment of Pulmonary Arterial Hypertension: What's Old Is New Again. J Am Heart Assoc 2020; 8:e011343. [PMID: 30590974 PMCID: PMC6405714 DOI: 10.1161/jaha.118.011343] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt W Prins
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Thenappan Thenappan
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - E Kenneth Weir
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Rajat Kalra
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | - Marc Pritzker
- 1 Cardiovascular Division University of Minnesota Medical School Minneapolis MN
| | | |
Collapse
|
18
|
Oliveira AC, Richards EM, Raizada MK. Pulmonary hypertension: Pathophysiology beyond the lung. Pharmacol Res 2020; 151:104518. [PMID: 31730803 PMCID: PMC6981289 DOI: 10.1016/j.phrs.2019.104518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is classically considered a disease of pulmonary vasculature which has been the predominant target for drug development and PH therapy. Despite significant advancement in recent years in identification of new drug targets and innovative treatment strategies, the prognosis of PH remains poor, with median survival of 5 years. Recent studies have demonstrated involvement of neuroinflammation, altered autonomic and gastrointestinal functions and increased trafficking of bone marrow-derived cells in cardiopulmonary pathophysiology. This has led to the proposal that PH could be considered a systemic disease involving complex interactions among many organs. Our objectives in this review is to summarize evidence for the involvement of the brain, bone marrow and gut in PH pathophysiology. Then, to synthesize all evidence supporting a brain-gut-lung interaction hypothesis for consideration in PH pathophysiology and finally to summarize unanswered questions and future directions to move this novel concept forward. This forward-thinking view, if proven by further experiments, would provide new opportunities and novel targets for the control and treatment of PH.
Collapse
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
19
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
20
|
Zimmer A, Teixeira RB, Bonetto JHP, Bahr AC, Türck P, de Castro AL, Campos-Carraro C, Visioli F, Fernandes-Piedras TR, Casali KR, Scassola CMC, Baldo G, Araujo AS, Singal P, Belló-Klein A. Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Mol Cell Biochem 2019; 464:93-109. [DOI: 10.1007/s11010-019-03652-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
|
21
|
Zhao Y, Xiang R, Peng X, Dong Q, Li D, Yu G, Xiao L, Qin S, Huang W. Transection of the cervical sympathetic trunk inhibits the progression of pulmonary arterial hypertension via ERK-1/2 Signalling. Respir Res 2019; 20:121. [PMID: 31200778 PMCID: PMC6567667 DOI: 10.1186/s12931-019-1090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Abnormal sympathetic hyperactivity has been shown to lead to pulmonary arterial hypertension (PAH) deterioration. The purpose of this study was to examine whether the transection of the cervical sympathetic trunk (TCST) can inhibit the progression of PAH in a monocrotaline (MCT)-induced PAH model and elucidate the underlying mechanisms. Methods Rats were randomly divided into four groups, including a control group, an MCT group, an MCT + sham group and an MCT + TCST group. After performing haemodynamic and echocardiographic measurements, the rats were sacrificed for the histological study, and the norepinephrine (NE) concentrations and protein expression level of tyrosine hydroxylase (TH) were evaluated. The protein expression levels of extracellular signal-regulated kinase (ERK)-1/2, proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1 in pulmonary artery vessels and pulmonary arterial smooth muscle cells (PASMCs) were determined. Results Compared with the MCT + sham group, TCST profoundly reduced the mean pulmonary arterial pressure (mPAP) (22.02 ± 4.03 mmHg vs. 31.71 ± 2.94 mmHg), right ventricular systolic pressure (RVSP) (35.21 ± 5.59 mmHg vs. 48.36 ± 5.44 mmHg), medial wall thickness (WT%) (22.48 ± 1.75% vs. 46.10 ± 3.16%), and right ventricular transverse diameter (RVTD) (3.78 ± 0.40 mm vs. 4.36 ± 0.29 mm) and increased the tricuspid annular plane systolic excursion (TAPSE) (2.00 ± 0.12 mm vs. 1.41 ± 0.24 mm) (all P < 0.05). The NE concentrations and protein expression levels of TH were increased in the PAH rats but significantly decreased after TCST. Furthermore, TCST reduced the increased protein expression of PCNA, cyclin A2 and cyclin D1 induced by MCT in vivo. We also found that NE promoted PASMC viability and activated the ERK-1/2 pathway. However, the abovementioned NE-induced changes could be suppressed by the specific ERK-1/2 inhibitor U0126. Conclusion TCST can suppress pulmonary artery remodelling and right heart failure in MCT-induced PAH. The main mechanism may be that TCST decreases the NE concentrations in lung tissues, thereby preventing NE from promoting PASMC proliferation mediated by the ERK-1/2 signalling pathway. Electronic supplementary material The online version of this article (10.1186/s12931-019-1090-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongpeng Zhao
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Rui Xiang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Xin Peng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Qian Dong
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Dan Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Guiquan Yu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Lei Xiao
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Present Address: Lung Vascular Biology Program, NHLBI/NIH, Bethesda, MD, USA
| | - Shu Qin
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Wei Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
22
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
23
|
Luo Q, Wang X, Liu R, Qiao H, Wang P, Jiang C, Zhang Q, Cao Y, Yu H, Qu L. alpha1A-adrenoceptor is involved in norepinephrine-induced proliferation of pulmonary artery smooth muscle cells via CaMKII signaling. J Cell Biochem 2018; 120:9345-9355. [PMID: 30520144 DOI: 10.1002/jcb.28210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Some studies have demonstrated the sympathetic nervous system is activated in PAH and norepinephrine (NE) released is closely linked with its activation. However, the subtypes of adrenoreceptor (AR) and the downstream molecular cascades which are involved in the proliferation of PASMCs are still unclear. In this study, adult male Wistar rats were exposed to chronic hypoxia and PASMCs were cultured in hypoxic condition. Significant upregulation of α1A -AR was identified by Western blot analysis or immunofluorescence in all of the pulmonary arteries, lung tissues, and cell hypoxic models. Western blot analysis, flow cytometry, and immunofluorescence were applied to detect the roles of α1A -AR in NE mediated proliferation of PASMCs. We revealed 5-methylurapidil (5-MU) reversed NE-induced upregulation of PCNA, CyclinA and CyclinE, more cells from G0 /G1 phase to G2 /M+S phase, enhancement of the microtubule formation. In addition, we found calcium/calmodulin(CaM)-dependent protein kinase type II (CaMKII) pathway was involved in α1A -AR-mediated cell proliferation. [Ca2+ ]i measurements showed that an increase of [Ca2+ ]i caused by NE or/and hypoxia could be blocked by 5-MU in PASMCs. Western blot analysis results demonstrated the augmentation of CaMKII phosphorylation level was caused by hypoxia or NE in pulmonary arteries, lung tissues, and PASMCs. KN62 attenuated NE-induced proliferation of PASMCs under normoxia and hypoxia. In conclusion, those results suggested NE which stimulated α1A -AR-mediated the proliferation of PASMCs, which may be via the CaMKII pathway, and it could be used as a novel treatment strategy in PAH.
Collapse
Affiliation(s)
- Qian Luo
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Xiaoyan Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Ruxia Liu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hui Qiao
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.,Department of Gastroenterology, Daqing Oilfield General Hospital, Daqing, China
| | - Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Chao Jiang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hang Yu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
24
|
Emanuel R, Chichra A, Patel N, Le Jemtel TH, Jaiswal A. Neurohormonal modulation as therapeutic avenue for right ventricular dysfunction in pulmonary artery hypertension: till the dawn, waiting. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:301. [PMID: 30211189 DOI: 10.21037/atm.2018.06.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuro-hormonal activation may lead to or be associated with pulmonary arterial hypertension (PAH) and right ventricular dysfunction. Notwithstanding whether it is the cause or the consequence of PAH-related right ventricle (RV) dysfunction neurohormonal activation contributes to significant morbidity and mortality in patients with PAH and the progression of RV dysfunction. Experimental data regarding the use of beta adrenergic blockade and renin-angiotensin aldosterone system modulation are encouraging. However, clinical studies have largely been negative or neutral; and, neuro-hormonal modulation is discouraged in patients with PAH related RV dysfunction for fear of systemic hypotension. Herein, we summarize the pathophysiological background that supports the potential role of neuro-hormonal modulation in the management of PAH related RV dysfunction; also present current clinical experience; and, discuss the need for controlled studies to move forward. Lastly, we review potential non- pharmacological modalities for neuro-hormonal modulations in PAH patients with RV dysfunction.
Collapse
Affiliation(s)
- Roy Emanuel
- Tulane Heart and Vascular Institute, Tulane School of Medicine, New Orleans, LA, USA
| | - Astha Chichra
- Department of Pulmonary and Critical Care Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Nirav Patel
- Hartford HealthCare Heart and Vascular Institute, Hartford, CT, USA
| | - Thierry H Le Jemtel
- Tulane Heart and Vascular Institute, Tulane School of Medicine, New Orleans, LA, USA
| | - Abhishek Jaiswal
- Hartford HealthCare Heart and Vascular Institute, Hartford, CT, USA
| |
Collapse
|
25
|
Sharma RK, Oliveira AC, Kim S, Rigatto K, Zubcevic J, Rathinasabapathy A, Kumar A, Lebowitz JJ, Khoshbouei H, Lobaton G, Aquino V, Richards EM, Katovich MJ, Shenoy V, Raizada MK. Involvement of Neuroinflammation in the Pathogenesis of Monocrotaline-Induced Pulmonary Hypertension. Hypertension 2018; 71:1156-1163. [PMID: 29712738 DOI: 10.1161/hypertensionaha.118.10934] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/03/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
Pulmonary hypertension (PH) is a devastating disease and its successful treatment remains to be accomplished despite recent advances in pharmacotherapy. It has been proposed that PH be considered as a systemic disease, rather than primarily a disease of the pulmonary vasculature. Consequently, an investigation of the intricate interplay between multiple organs such as brain, vasculature, and lung in PH could lead to the identification of new targets for its therapy. However, little is known about this interplay. This study was undertaken to examine the concept that altered autonomic-pulmonary communication is important in PH pathophysiology. Therefore, we hypothesize that activation of microglial cells in the paraventricular nucleus of hypothalamus and neuroinflammation is associated with increased sympathetic drive and pulmonary pathophysiology contributing to PH. We utilized the monocrotaline rat model for PH and intracerebroventricular administration of minocycline for inhibition of microglial cells activation to investigate this hypothesis. Hemodynamic, echocardiographic, histological, immunohistochemical, and confocal microscopic techniques assessed cardiac and pulmonary function and microglial cells. Monocrotaline treatment caused cardiac and pulmonary pathophysiology associated with PH. There were also increased activated microglial cells and mRNA for proinflammatory cytokines (IL [interleukin]-1β, IL-6, and TNF [tumor necrosis factor]-α) in the paraventricular nucleus. Furthermore, increased sympathetic drive and plasma norepinephrine were observed in rats with PH. Intracerebroventricular infusion of minocycline inhibited all these parameters and significantly attenuated PH. These observations implicate a dysfunctional autonomic-lung communication in the development and progression of PH providing new therapeutic targets, such as neuroinflammation, for PH therapy.
Collapse
Affiliation(s)
- Ravindra K Sharma
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Aline C Oliveira
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Seungbum Kim
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Katya Rigatto
- College of Medicine, University of Florida, Gainesville; Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Brazil (K.R.)
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville (J.Z.)
| | - Anandharajan Rathinasabapathy
- Department of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN (A.R.)
| | - Ashok Kumar
- Department of Medicine, Brown University and VA Medical Center, Providence, RI (A.K.)
| | | | | | - Gilberto Lobaton
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Victor Aquino
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Elaine M Richards
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville (M.J.K.)
| | - Vinayak Shenoy
- and Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis (V.S.).
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| |
Collapse
|
26
|
Sun F, Lu Z, Zhang Y, Geng S, Xu M, Xu L, Huang Y, Zhuang P, Zhang Y. Stage‑dependent changes of β2‑adrenergic receptor signaling in right ventricular remodeling in monocrotaline‑induced pulmonary arterial hypertension. Int J Mol Med 2018; 41:2493-2504. [PMID: 29393391 PMCID: PMC5846663 DOI: 10.3892/ijmm.2018.3449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Right ventricular (RV) remodeling coupled with extensive apoptosis in response to unrestrained biomechanical stress may lead to RV failure (RVF), which is the immediate cause of death in the majority of patients with pulmonary arterial hypertension (PAH). Overexpression of β2-adrenergic receptor (β2-AR) signaling has been reported to induce myocardiotoxicity in patients with left heart failure. However, the role of β2-AR signaling in the pathophysiology of PAH development has remained elusive. To address this issue, the present study investigated the changes in cardiopulmonary function and structure, as well as the expression of regulators of fibrosis and apoptosis in RVF following monocrotaline (MCT; 60 mg/kg, i.p.)-induced PAH in rats. Cardiopulmonary function and structure, remodeling and apoptosis, as well as G protein-coupled receptor (GPCR) and β2-AR signaling, were documented over a period of 6 weeks. In the early stages, elevated pulmonary arterial pressure, pulmonary lesions, RV hypertrophy, evidence of left ventricular (LV) hyperfunction and accelerated heart rate were observed in animals with MCT-induced PAH. The levels of angiotensin II receptor type 1b (Agtr1b), Agtr2 and Agt were markedly upregulated and the expression of β2-AR phospho-Ser(355,356) steadily decreased in the right heart. As the disease progressed, LV dysfunction was observed, as evidenced by decreased LV systolic pressure and increased LV end-diastolic pressure, which was accompanied by a sustained increase in circulating brain natriuretic peptide levels. Of note, increased levels of cardiomyocyte apoptosis and concomitant RV remodeling, including hypertrophy, dilatation, inflammation and fibrosis, were observed, despite the enhanced RV contractility. Furthermore, alterations in GPCR signaling and activation in β2-AR-Gs-protein kinase A/Ca2+/calmodulin-dependent kinase II signaling were observed in the late stages of PAH. These results suggested that treatment with MCT results in adaptive and maladaptive RV remodeling and apoptosis during the progression of PAH, which is accompanied by distinct changes in the β2-AR signaling. Therefore, these results enable researchers to better understand of pathophysiology of MCT-induced PAH, as well as to determine the effects of novel therapies.
Collapse
Affiliation(s)
- Fengjiao Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Zhiqiang Lu
- Department of Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yidan Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Shihan Geng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Mengxi Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Liman Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yingying Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Pengwei Zhuang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
27
|
Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N, Ruffenach G, Eghbali M, Mahajan A, Umar S. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res 2017; 18:201. [PMID: 29202826 PMCID: PMC5715548 DOI: 10.1186/s12931-017-0679-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.
Collapse
Affiliation(s)
- Mylène Vaillancourt
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Pamela Chia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Shervin Sarji
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Jason Nguyen
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Nir Hoftman
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, BH 520A CHS, USA.
| |
Collapse
|
28
|
Siqueira R, Colombo R, Conzatti A, de Castro AL, Carraro CC, Tavares AMV, Fernandes TRG, Araujo ASDR, Belló-Klein A. Effects of ovariectomy on antioxidant defence systems in the right ventricle of female rats with pulmonary arterial hypertension induced by monocrotaline. Can J Physiol Pharmacol 2017; 96:295-303. [PMID: 28854338 DOI: 10.1139/cjpp-2016-0445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg-1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.
Collapse
Affiliation(s)
- Rafaela Siqueira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Colombo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Conzatti
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Maria Vicente Tavares
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tânia Regina Gattelli Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Perros F, de Man FS, Bogaard HJ, Antigny F, Simonneau G, Bonnet S, Provencher S, Galiè N, Humbert M. Use of β-Blockers in Pulmonary Hypertension. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003703. [DOI: 10.1161/circheartfailure.116.003703] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
Contrasting with the major attention that left heart failure has received, right heart failure remains understudied both at the preclinical and clinical levels. However, right ventricle failure is a major predictor of outcomes in patients with precapillary pulmonary hypertension because of pulmonary arterial hypertension, and in patients with postcapillary pulmonary hypertension because of left heart disease. In pulmonary hypertension, the status of the right ventricle is one of the most important predictors of both morbidity and mortality. Paradoxically, there are currently no approved therapies targeting the right ventricle in pulmonary hypertension. By analogy with the key role of β-blockers in the management of left heart failure, some authors have proposed to use these agents to support the right ventricle function in pulmonary hypertension. In this review, we summarize the current knowledge on the use of β-blockers in pulmonary hypertension.
Collapse
Affiliation(s)
- Frédéric Perros
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Frances S. de Man
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Harm J. Bogaard
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Fabrice Antigny
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Gérald Simonneau
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Sébastien Bonnet
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Steeve Provencher
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Nazzareno Galiè
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Marc Humbert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| |
Collapse
|
30
|
Villar IC, Bubb KJ, Moyes AJ, Steiness E, Gulbrandsen T, Levy FO, Hobbs AJ. Functional pharmacological characterization of SER100 in cardiovascular health and disease. Br J Pharmacol 2016; 173:3386-3401. [PMID: 27667485 DOI: 10.1111/bph.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE SER100 is a selective nociceptin (NOP) receptor agonist with sodium-potassium-sparing aquaretic and anti-natriuretic activity. This study was designed to characterize the functional cardiovascular pharmacology of SER100 in vitro and in vivo, including experimental models of cardiovascular disease. EXPERIMENTAL APPROACH Haemodynamic, ECG parameters and heart rate variability (HRV) were determined using radiotelemetry in healthy, conscious mice. The haemodynamic and vascular effects of SER100 were also evaluated in two models of cardiovascular disease, spontaneously hypertensive rats (SHR) and murine hypoxia-induced pulmonary hypertension (PH). To elucidate mechanisms underlying the pharmacology of SER100, acute blood pressure recordings were performed in anaesthetized mice, and the reactivity of rodent aorta and mesenteric arteries in response to electrical- and agonist-stimulation assessed. KEY RESULTS SER100 caused NOP receptor-dependent reductions in mean arterial blood pressure and heart rate that were independent of NO. The hypotensive and vasorelaxant actions of SER100 were potentiated in SHR compared with Wistar Kyoto. Moreover, SER100 reduced several indices of disease severity in experimental PH. Analysis of HRV indicated that SER100 decreased the low/high frequency ratio, an indicator of sympatho-vagal balance, and in electrically stimulated mouse mesenteric arteries SER100 inhibited sympathetic-induced contractions. CONCLUSIONS AND IMPLICATIONS SER100 exerts a chronic hypotensive and bradycardic effects in rodents, including models of systemic and pulmonary hypertension. SER100 produces its cardiovascular effects, at least in part, by inhibition of cardiac and vascular sympathetic activity. SER100 may represent a novel therapeutic candidate in systemic and pulmonary hypertension.
Collapse
Affiliation(s)
- Inmaculada C Villar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kristen J Bubb
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Finn Olav Levy
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Pankey EA, Edward JA, Swan KW, Bourgeois CR, Bartow MJ, Yoo D, Peak TA, Song BM, Chan RA, Murthy SN, Prieto MC, Giles TD, Kadowitz PJ. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension. Can J Physiol Pharmacol 2016; 94:758-68. [DOI: 10.1139/cjpp-2015-0431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pulmonary hypertension is a rare disorder that, without treatment, is progressive and fatal within 3–4 years. Current treatment involves a diverse group of drugs that target the pulmonary vascular bed. In addition, strategies that increase nitric oxide (NO) formation have a beneficial effect in rodents and patients. Nebivolol, a selective β1 adrenergic receptor-blocking agent reported to increase NO production and stimulate β3 receptors, has vasodilator properties suggesting that it may be beneficial in the treatment of pulmonary hypertension. The present study was undertaken to determine whether nebivolol has a beneficial effect in monocrotaline-induced (60 mg/kg) pulmonary hypertension in the rat. These results show that nebivolol treatment (10 mg/kg, once or twice daily) attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension. This study demonstrates the presence of β3 adrenergic receptor immunoreactivity in pulmonary arteries and airways and that nebivolol has pulmonary vasodilator activity. Studies with β3 receptor agonists (mirabegron, BRL 37344) and antagonists suggest that β3 receptor-mediated decreases in systemic arterial pressure occur independent of NO release. Our results suggest that nebivolol, a selective vasodilating β1 receptor antagonist that stimulates β3 adrenergic receptors and induces vasodilation by increasing NO production, may be beneficial in treating pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Edward A. Pankey
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Justin A. Edward
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Kevin W. Swan
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Camille R.T. Bourgeois
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Matthew J. Bartow
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Daniel Yoo
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Taylor A. Peak
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Bryant M. Song
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Ryan A. Chan
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Subramanyam N. Murthy
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Thomas D. Giles
- Department of Internal Medicine, Division of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | - Philip J. Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| |
Collapse
|
32
|
Ameri P, Bertero E, Meliota G, Cheli M, Canepa M, Brunelli C, Balbi M. Neurohormonal activation and pharmacological inhibition in pulmonary arterial hypertension and related right ventricular failure. Heart Fail Rev 2016; 21:539-47. [DOI: 10.1007/s10741-016-9566-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Mooney DM, Fung E, Doshi RN, Shavelle DM. Evolution from electrophysiologic to hemodynamic monitoring: the story of left atrial and pulmonary artery pressure monitors. Front Physiol 2015; 6:271. [PMID: 26500556 PMCID: PMC4595778 DOI: 10.3389/fphys.2015.00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 01/03/2023] Open
Abstract
Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.
Collapse
Affiliation(s)
- Deirdre M. Mooney
- Cardiovascular Institute, Maine Medical CenterPortland, ME, USA
- Department of Medicine, Tufts University School of MedicineBoston, MA, USA
| | - Erik Fung
- Keck Medical Center of USC, University of Southern CaliforniaLos Angeles, CA, USA
- Department of Medicine, Dartmouth CollegeHanover, NH, USA
- School of Public Health, Imperial College LondonLondon, UK
| | - Rahul N. Doshi
- Keck Medical Center of USC, University of Southern CaliforniaLos Angeles, CA, USA
| | - David M. Shavelle
- Keck Medical Center of USC, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
34
|
Zhao Q, Deng H, Jiang X, Dai Z, Wang X, Wang X, Guo Z, Hu W, Yu S, Yang B, Tang Y, Huang C. Effects of Intrinsic and Extrinsic Cardiac Nerves on Atrial Arrhythmia in Experimental Pulmonary Artery Hypertension. Hypertension 2015; 66:1042-9. [PMID: 26418021 DOI: 10.1161/hypertensionaha.115.05846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
Atrial arrhythmia, which includes atrial fibrillation (AF) and atrial flutter (AFL), is common in patients with pulmonary arterial hypertension (PAH), who often have increased sympathetic nerve activity. Here, we tested the hypothesis that autonomic nerves play important roles in vulnerability to AF/AFL in PAH. The atrial effective refractory period and AF/AFL inducibility at baseline and after anterior right ganglionated plexi ablation were determined during left stellate ganglion stimulation or left renal sympathetic nerve stimulation in beagle dogs with or without PAH. Then, sympathetic nerve, β-adrenergic receptor densities and connexin 43 expression in atrial tissues were assessed. The sum of the window of vulnerability to AF/AFL was increased in the right atrium compared with the left atrium at baseline in the PAH dogs but not in the controls. The atrial effective refractory period dispersion was increased in the control dogs, but not in the PAH dogs, during left stellate ganglion stimulation. The voltage thresholds for inducing AF/AFL during anterior right ganglionated plexi stimulation were lower in the PAH dogs than in the controls. The AF/AFL inducibility was suppressed after ablation of the anterior right ganglionated plexi in the PAH dogs. The PAH dogs had higher sympathetic nerve and β1-adrenergic receptor densities, increased levels of nonphosphorylated connexin 43, and heterogeneous connexin 43 expression in the right atrium when compared with the control dogs. The anterior right ganglionated plexi play important roles in the induction of AF/AFL. AF/AFL induction was associated with right atrium substrate remodeling in dogs with PAH.
Collapse
Affiliation(s)
- Qingyan Zhao
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Hongping Deng
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Xuejun Jiang
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Zixuan Dai
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Xiaozhan Wang
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Xule Wang
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Zongwen Guo
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Wei Hu
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Shengbo Yu
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Bo Yang
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Yanhong Tang
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China
| | - Congxin Huang
- From the Departments of Cardiology (Q.Z., X.J., Z.D., X.W., X.W., Z.G., S.Y., B.Y., Y.T., C.H.), Thoracic and Cardiovascular Surgery (H.D.), and Ultrasonography (W.H.), Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuchang, Wuhan City, P.R. China.
| |
Collapse
|
35
|
Andersen S, Andersen A, de Man FS, Nielsen-Kudsk JE. Sympathetic nervous system activation and β-adrenoceptor blockade in right heart failure. Eur J Heart Fail 2015; 17:358-66. [PMID: 25704592 DOI: 10.1002/ejhf.253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/07/2022] Open
Abstract
Right heart failure may develop from pulmonary arterial hypertension or various forms of congenital heart disease. Right ventricular adaptation to the increased afterload is the most important prognostic factor in pulmonary hypertension and congenital heart disease, which share important pathophysiological mechanisms, despite having different aetiologies. There is substantial evidence of increased sympathetic nervous system activation in right heart failure related to both pulmonary hypertension and congenital heart disease. It is unknown to which degree this activation is an adaptive response, a maladaptive response, or if it mainly reflects disease progression. Several experimental studies and clinical trials have been conducted to answer these questions. Here, we review the existing knowledge on sympathetic nervous system activation and the effects of β-adrenoceptor blockade in experimental and clinical right heart failure. This review identifies important gaps in our understanding of the right ventricle and discusses the potential of β-blockers in the treatment of right heart failure.
Collapse
Affiliation(s)
- Stine Andersen
- Department of Cardiology - Research, Institute of Clinical Medicine, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200, Aarhus N, Denmark
| | | | | | | |
Collapse
|
36
|
Andersen S, Schultz JG, Andersen A, Ringgaard S, Nielsen JM, Holmboe S, Vildbrad MD, de Man FS, Bogaard HJ, Vonk-Noordegraaf A, Nielsen-Kudsk JE. Effects of Bisoprolol and Losartan Treatment in the Hypertrophic and Failing Right Heart. J Card Fail 2014; 20:864-73. [DOI: 10.1016/j.cardfail.2014.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
37
|
Abstract
Background—
The safety of β-blockers in patients with isolated right ventricular failure because of pulmonary arterial hypertension (PAH) is unclear.
Methods and Results—
We studied 564 PAH patients (total cohort) referred to our center from 1982 to 2013. Propensity score-matching was used to match pairs of PAH patients with and without β-blocker use (matched cohort). We compared all-cause mortality between the groups in the total cohort and the matched cohort using bootstrap validation, Kaplan–Meier, and Cox proportional hazard analyses. Seventy-one of the 564 patients in the total cohort were on β-blockers. They were older, had higher prevalence of comorbidities, and were more often on diuretics, digoxin, and angiotensin converting enzyme inhibitors. The severity of PAH and right ventricular failure was similar between those with and without β-blocker use. After propensity matching, 63 patients with β-blocker use were compared with 51 patients without β-blocker use. During a median follow-up time of 4.8 years, there were 339 (60%) deaths in the total cohort and 70 deaths (61%) in the matched cohort. There was no difference in absolute mortality between those with and without β-blockers (
P
=0.71). β-Blocker use was not associated with increased all-cause mortality in the total cohort after adjusting for propensity score (adjusted hazard ratio, 1.0; 95% confidence interval, 0.7–1.5) and in the matched cohort (hazard ratio, 1.2; 95% confidence interval, 0.8–2.0).
Conclusions—
There was no statistically significant difference in long-term mortality between propensity score-matched pairs of PAH patients with and without β-blocker use. These findings need further validation in prospective clinical trials.
Collapse
|
38
|
Zamanian RT, Kudelko KT, Sung YK, Perez VDJ, Liu J, Spiekerkoetter E. Current clinical management of pulmonary arterial hypertension. Circ Res 2014; 115:131-147. [PMID: 24951763 DOI: 10.1161/circresaha.115.303827] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the past 2 decades, there has been a tremendous evolution in the evaluation and care of patients with pulmonary arterial hypertension (PAH). The introduction of targeted PAH therapy consisting of prostacyclin and its analogs, endothelin antagonists, phosphodiesterase-5 inhibitors, and now a soluble guanylate cyclase activator have increased therapeutic options and potentially reduced morbidity and mortality; yet, none of the current therapies have been curative. Current clinical management of PAH has become more complex given the focus on early diagnosis, an increased number of available therapeutics within each mechanistic class, and the emergence of clinically challenging scenarios such as perioperative care. Efforts to standardize the clinical care of patients with PAH have led to the formation of multidisciplinary PAH tertiary care programs that strive to offer medical care based on peer-reviewed evidence-based, and expert consensus guidelines. Furthermore, these tertiary PAH centers often support clinical and basic science research programs to gain novel insights into the pathogenesis of PAH with the goal to improve the clinical management of this devastating disease. In this article, we discuss the clinical approach and management of PAH from the perspective of a single US-based academic institution. We provide an overview of currently available clinical guidelines and offer some insight into how we approach current controversies in clinical management of certain patient subsets. We conclude with an overview of our program structure and a perspective on research and the role of a tertiary PAH center in contributing new knowledge to the field.
Collapse
Affiliation(s)
- Roham T Zamanian
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine
| | - Kristina T Kudelko
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine
| | - Yon K Sung
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine
| | - Vinicio de Jesus Perez
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine
| | - Juliana Liu
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine
| | - Edda Spiekerkoetter
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine
| |
Collapse
|
39
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
40
|
Hohenforst-Schmidt W, Zarogoulidis P, Oezkan F, Mahnkopf C, Grabenbauer G, Kreczy A, Bartunek R, Darwiche K, Freitag L, Li Q, Huang H, Vogl T, Lepilvert P, Tsiouda T, Tsakiridis K, Zarogoulidis K, Brachmann J. "Denervation" of autonomous nervous system in idiopathic pulmonary arterial hypertension by low-dose radiation: a case report with an unexpected outcome. Ther Clin Risk Manag 2014; 10:207-15. [PMID: 24707181 PMCID: PMC3972028 DOI: 10.2147/tcrm.s58705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vasointestinal peptide metabolism plays a key physiological role in multimodular levels of vasodilatory, smooth muscle cell proliferative, parenchymal, and inflammatory lung reactions. In animal studies, vasointestinal peptide relaxes isolated pulmonary arterial segments from several mammalian species in vitro and neutralizes the pulmonary vasoconstrictor effect of endothelin. In some animal models, it reduces pulmonary vascular resistance in vivo and in monocrotaline-induced pulmonary hypertension. A 58-year-old woman presented with dyspnea and mild edema of the lower extremities. A bronchoscopy was performed without any suspicious findings suggesting a central tumor or other infiltrative disease. Endobronchial ultrasound revealed enlarged pulmonary arteries containing thrombi, a few enlarged lymph nodes, and enlarged mediastinal tissue anatomy with suspicion for mediastinal infiltration of a malignant process. We estimated that less than 10% of the peripheral vascular bed of the lung was involved in direct consolidated fibrosis as demonstrated in the left upper lobe apex. Further, direct involvement of fibrosis around the main stems of the pulmonary arteries was assumed to be low from positron emission tomography and magnetic resonance imaging scans. Assuming a positive influence of low-dose radiation, it was not expected that this could have reduced pulmonary vascular resistance by over two thirds of the initial result. However; it was noted that this patient had idiopathic pulmonary arterial hypertension mixed with “acute” (mediastinal) fibrosis which could have contributed to the unexpected success of reduction of pulmonary vascular resistance. To the best of our knowledge, this is the first report of successful treatment of idiopathic pulmonary arterial hypertension, probably as a result of low-dose radiation to the pulmonary arterial main stems. The patient continues to have no specific complaints concerning her idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
| | - Paul Zarogoulidis
- Pulmonary Department-oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Filiz Oezkan
- Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christian Mahnkopf
- II Medizinische Klinik, Klinik für Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, Germany
| | | | - Alfons Kreczy
- Department of Pathology, Cytology and Molecular Diagnostics, University of Wüerzburg, Coburg, Germany
| | - Rudolf Bartunek
- Institute of Diagnostic and Interventional Radiology, Coburg Clinic, University of Wüerzburg, Coburg, Germany
| | - Kaid Darwiche
- Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lutz Freitag
- Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Qiang Li
- Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Haidong Huang
- Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Thomas Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Frankfurt, Germany
| | - Patrick Lepilvert
- Interventional Drug Delivery Systems and Strategies (ID2S2), Medical Cryogenics, Lakeland Court Jupiter, FL, USA
| | - Theodora Tsiouda
- Internal Medicine Unit, Theagenio Cancer Hospital, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- Cardiothoracic Surgery Department, Saint Luke Private Hospital, Thessaloniki, Greece
| | - Konstantinos Zarogoulidis
- Pulmonary Department-oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Johannes Brachmann
- II Medical Clinic, Coburg Clinic, University of Würzburg, Coburg, Germany
| |
Collapse
|
41
|
Diminazene aceturate improves autonomic modulation in pulmonary hypertension. Eur J Pharmacol 2013; 713:89-93. [PMID: 23665493 DOI: 10.1016/j.ejphar.2013.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that diminazene aceturate (DIZE), a putative angiotensin 1-7 converting enzyme activator, protects rats from monocrotaline (MCT)-induced pulmonary hypertension (PH). The present study was conducted to determine if the beneficial effects of DIZE are associated with improvements in autonomic nervous system (ANS) modulation. PH was induced in male rats by a single subcutaneous injection of MCT (50 mg/kg). A subset of MCT rats were treated with DIZE (15 mg/kg/day) for a period of 21 days, after which the ANS modulation was evaluated by spectral and symbolic analysis of heart rate variability (HRV). MCT administration resulted in a significant (P<0.001) increase in the right ventricular systolic pressure (62 ± 14 mmHg) when compared with other experimental groups (Control: 26 ± 6; MCT + DIZE: 31 ± 7 mmHg), while DIZE treatment was able to decrease this pressure. Furthermore MCT-treated rats had significantly reduced total power of HRV than the controls. On the other hand, although not significant, a trend towards increased HRV was observed in the MCT + DIZE group (Control: 108 ± 47; MCT: 12 ± 8.86 and MCT + DIZE: 40 ± 14), suggesting an improvement of the cardiac autonomic modulation. This observation was further confirmed by the low-frequency/high-frequency index of spectral analysis (Control: 0.74 ± 0.62; MCT: 1.45 ± 0.78 and MCT + DIZE: 0.34 ± 0.49) which showed that DIZE treatment was able to recover the ANS imbalance observed in the MCT-induced pulmonary hypertensive rats. Collectively, our results demonstrate that MCT-induced PH is associated with a significant increase in sympathetic modulation and a decrease in HRV, which are markedly improved by DIZE treatment.
Collapse
|
42
|
de Man FS, Handoko ML, Guignabert C, Bogaard HJ, Vonk-Noordegraaf A. Neurohormonal Axis in Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2013; 187:14-9. [DOI: 10.1164/rccm.201209-1663pp] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
43
|
Suzuki R, Maehara R, Kobuchi S, Tanaka R, Ohkita M, Matsumura Y. Beneficial effects of γ-aminobutyric acid on right ventricular pressure and pulmonary vascular remodeling in experimental pulmonary hypertension. Life Sci 2012; 91:693-8. [PMID: 22542556 DOI: 10.1016/j.lfs.2012.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
AIMS It has been reported that activation of the sympathetic nervous system and increase in plasma norepinephrine (NE) levels are observed in patients with pulmonary hypertension (PH). γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system and suppresses peripheral sympathetic neurotransmission. This study investigated whether chronic treatment with GABA prevents the development of monocrotaline (MCT)-induced PH. To elucidate the relationship between the development of PH and sympathetic nerve activity, hemodynamic parameters, cardiac functions, and plasma NE concentrations as well as cardiac endothelin-1 (ET-1) contents of MCT-induced PH rats were evaluated with or without GABA treatment. MAIN METHODS Rats were injected with MCT (60 mg/kg) or saline subcutaneously and these rats were randomly divided into GABA (500 mg/kg/day for 4 weeks)- or vehicle-treated groups, respectively. KEY FINDING MCT-treated rats had higher right ventricular systolic pressures, right ventricle-to-left ventricle plus septum weight ratios, pulmonary arterial medial thickening, and plasma NE levels than those of saline-injected rats. MCT-induced alternations were significantly attenuated by treatment with GABA. In MCT-induced PH rats with or without GABA treatment, plasma NE levels were positively correlated with right ventricular systolic pressure. Right ventricular endothelin-1 (ET-1) contents were increased by MCT injection, but these increments were not affected by treatment with GABA. SIGNIFICANCE These results suggest that plasma NE levels play an important role in the development of MCT-induced PH in rats and that GABA exerts a preventive effect against MCT-induced PH by suppressing the sympathetic nervous system but not the cardiac ET-1 system.
Collapse
Affiliation(s)
- Rie Suzuki
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
44
|
de Man FS, Handoko ML, van Ballegoij JJM, Schalij I, Bogaards SJP, Postmus PE, van der Velden J, Westerhof N, Paulus WJ, Vonk-Noordegraaf A. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail 2011; 5:97-105. [PMID: 22157723 DOI: 10.1161/circheartfailure.111.964494] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In pulmonary arterial hypertension (PH), sympathetic adrenergic activity is highly elevated. Sympathetic overactivity is a compensatory mechanism at first, but might be detrimental for cardiac function in the long run. We therefore investigated whether chronic low-dose treatment with bisoprolol (a cardioselective β-blocker) has beneficial effects on cardiac function in experimental PH. METHODS AND RESULTS PH was induced in rats by a single injection of monocrotaline (60 mg/kg). Pressure telemetry in PH rats revealed that 10 mg/kg bisoprolol was the lowest dose that blunted heart rate response during daily activity. Ten days after monocrotaline injection, echocardiography was performed and PH rats were randomized for bisoprolol treatment (oral gavage) or vehicle (n=7/group). At end of study (body mass loss >5%), echocardiography was repeated, with additional pressure-volume measurements and histomolecular analyses. Compared with control, right ventricular (RV) systolic pressure and arterial elastance (measure of vascular resistance) more than tripled in PH. Bisoprolol delayed time to right heart failure (P<0.05). RV afterload was unaffected, however, bisoprolol treatment increased RV contractility and filling (both P<0.01), and partially restored right ventriculo-arterial coupling and cardiac output (both P<0.05). Bisoprolol restored RV β-adrenergic receptor signaling. Histology revealed significantly less RV fibrosis and myocardial inflammation in bisoprolol treated PH rats. CONCLUSIONS In experimental PH, treatment with bisoprolol delays progression toward right heart failure, and partially preserves RV systolic and diastolic function. These promising results suggest a therapeutic role for β-blockers in PH that warrants further clinical investigation.
Collapse
Affiliation(s)
- Frances S de Man
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baliga RS, MacAllister RJ, Hobbs AJ. New perspectives for the treatment of pulmonary hypertension. Br J Pharmacol 2011; 163:125-40. [PMID: 21175577 PMCID: PMC3085874 DOI: 10.1111/j.1476-5381.2010.01164.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating disease with a poor prognosis. Therapeutic options remain limited despite the introduction of prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase 5 inhibitors within the last 15 years; these interventions address predominantly the endothelial and vascular dysfunctionS associated with the condition, but simply delay progression of the disease rather than offer a cure. In an attempt to improve efficacy, emerging approaches have focused on targeting the pro-proliferative phenotype that underpins the pulmonary vascular remodelling in the lung and contributes to the impaired circulation and right heart failure. Many novel targets have been investigated and validated in animal models of PH, including modulation of guanylate cyclases, phosphodiesterases, tyrosine kinases, Rho kinase, bone morphogenetic proteins signalling, 5-HT, peroxisome proliferator activator receptors and ion channels. In addition, there is hope that combinations of such treatments, harnessing and optimizing vasodilator and anti-proliferative properties, will provide a further, possibly synergistic, increase in efficacy; therapies directed at the right heart may also offer an additional benefit. This overview highlights current therapeutic options, promising new therapies, and provides the rationale for a combination approach to treat the disease.
Collapse
|
46
|
Hemnes AR, Kawut SM. The Right Ventricle in Pulmonary Hypertension. Am J Respir Crit Care Med 2010; 182:586-8. [DOI: 10.1164/rccm.201006-0892ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, Hoke NN, Kraskauskas D, Kasper M, Salloum FN, Voelkel NF. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 2010; 182:652-60. [PMID: 20508210 DOI: 10.1164/rccm.201003-0335oc] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Most patients with pulmonary arterial hypertension (PAH) die from right heart failure. Beta-adrenergic receptor blockade reduces mortality by about 30% in patients with left-sided systolic heart failure, but is not used in PAH. OBJECTIVES To assess the effect of the adrenergic receptor blocker carvedilol on the pulmonary circulation and right heart in experimental pulmonary hypertension in rats. METHODS Angioproliferative pulmonary hypertension was induced in rats by combined exposure to the vascular endothelial growth factor-receptor antagonist SU5416 and hypoxia. Carvedilol treatment was started after establishment of pulmonary hypertension and right heart dysfunction. MEASUREMENTS AND MAIN RESULTS Compared with vehicle-treated animals, treatment with carvedilol resulted in increased exercise endurance; improved right ventricular (RV) function (increased tricuspid annular plane systolic excursion and decreased RV dilatation); and an increased cardiac output. The morphology of the pulmonary vessels and the RV afterload were not affected by carvedilol. Carvedilol treatment was associated with enhancement of RV fetal gene reactivation, increased protein kinase G (PKG) activity, and a reduction in capillary rarefaction and fibrosis. Metoprolol had similar but less pronounced effects in the SU5416 and hypoxia model. Cardioprotective effects were noted of both carvedilol and metoprolol in the monocrotaline model. In the case of carvedilol, but not metoprolol, part of these effects resulted from a prevention of monocrotaline-induced lung remodeling. CONCLUSIONS Adrenergic receptor blockade reverses RV remodeling and improves RV function in experimental pulmonary hypertension. Beta-adrenergic receptor blockers are not recommended in humans with PAH before their safety and efficacy are assessed in well-designed clinical trials.
Collapse
Affiliation(s)
- Harm J Bogaard
- Director of the Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakamura K, Fujio H. Are Adrenergic Receptor Blockers Effective or Contraindicated in Pulmonary Arterial Hypertension? Circ J 2009; 73:2212-3. [DOI: 10.1253/circj.cj-09-0807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hideki Fujio
- Department of Cardiovascular Medicine, Japanese Red Cross Society Himeji Hospital
| |
Collapse
|