1
|
Lotfi F, Jafari M, Rezaei Hemami M, Salesi M, Nikfar S, Behnam Morshedi H, Kojuri J, Keshavarz K. Evaluation of the effectiveness of infusion of bone marrow derived cell in patients with heart failure: A network meta-analysis of randomized clinical trials and cohort studies. Med J Islam Repub Iran 2020; 34:178. [PMID: 33816377 PMCID: PMC8004572 DOI: 10.47176/mjiri.34.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background: The aim of this study was to investigate the effectiveness of bone marrow-derived cells (BMC) technology in patients with heart failure and compare it with alternative therapies, including drug therapy, cardiac resynchronization therapy pacemaker (CRT-P), cardiac resynchronization therapy defibrillator (CRT-D).
Methods: A systematic review study was conducted to identify all clinical studies published by 2017. Using keywords such as "Heart Failure, BMC, Drug Therapy, CRT-D, CRT-P" and combinations of the mentioned words, we searched electronic databases, including Scopus, Cochrane Library, and PubMed. The quality of the selected studies was assessed using the Cochrane Collaboration's tool and the Newcastle-Ottawa. The primary and secondary end-points were left ventricular ejection fraction (LVEF) (%), failure cases (Number), left ventricular end-systolic volume (LVES) (ml), and left ventricular end-diastolic volume (LVED) (ml). Random-effects network meta-analyses were used to conduct a systematic comparison. Statistical analysis was done using STATA.
Results: This network meta-analysis covered a total of 57 final studies and 6694 patients. The Comparative effectiveness of BMC versus CRT-D, Drug, and CRT-P methods indicated the statistically significant superiority of BMC over CRT-P (6.607, 95% CI: 2.92, 10.29) in LVEF index and overall CRT-P (-13.946, 95% CI: -18.59, -9.29) and drug therapy (-4.176, 95% CI: -8.02, -.33) in LVES index. In addition, in terms of LVED index, the BMC had statistically significant differences with CRT-P (-10.187, 95% CI: -18.85, -1.52). BMC was also dominant to all methods in failure cases as a final outcome and the difference was statistically significant i.e. BMC vs CRT-D: 0.529 (0.45, 0.62) and BMC vs Drug: 0.516 (0.44, 0.60). In none of the outcomes, the other methods were statistically more efficacious than BMC. The BMC method was superior or similar to the other methods in all outcomes.
Conclusion: The results of this study showed that the BMC method, in general, and especially in terms of failure cases index, had a higher level of clinical effectiveness. However, due to the lack of data asymmetry, insufficient data and head-to-head studies, BMC in this meta-analysis might be considered as an alternative to existing treatments for heart failure.
Collapse
Affiliation(s)
- Farhad Lotfi
- Health Human Resources Research Center, School of Management and Medical Informatics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahmood Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy and Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Javad Kojuri
- Department of Cardiology, School of Medicine, Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khosro Keshavarz
- Health Human Resources Research Center, School of Management and Medical Informatics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Manimaran K, Sankaranarayanan S, Ravi VR, Elangovan S, Chandramohan M, Perumal SM. Treatment of osteoradionecrosis of mandible with bone marrow concentrate and with dental pulp stem cells. Ann Maxillofac Surg 2015; 4:189-92. [PMID: 25593871 PMCID: PMC4293842 DOI: 10.4103/2231-0746.147130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Osteoradionecrosis (ORN) is a noninfectious, necrotic condition of the bone occurring as a complication of radiotherapy. Most cases occur following trauma or surgical manipulation of the irradiated site. Mandible is the most common bone to be affected following head and neck irradiation. The aim was to develop a successful therapeutic approach for ORN. A spectrum of treatment modalities is practiced for ORN with variable success rate that includes simple irrigation of the affected bone to the partial or complete resection of the jaw bone. In this paper, we present two cases which had successful therapeutic approach for ORN of mandible with autologous bone marrow concentrate stem cells and allogeneic dental pulp stem cells (DPSC) with platelet rich plasma (PRP) following failure of conventional methods. Autologous bone marrow aspirate concentrate (BMAC) was injected around the socket and into the periosteum for one case, and DPSC were mixed with tricalcium phosphate and inserted at the site of the defect in one case. The patient treated with BMAC remained asymptomatic and complete bone remodeling was noticed after 1 year. The extraoral sinus was excised, and healing was uneventful without recurrence in the patient treated with allogeneic DPSC and PRP. Periodic panoramic radiographs revealed an appreciable bone formation from the 2nd month onward. We have successfully treated two cases of ORN with BMAC and DPSC, respectively.
Collapse
Affiliation(s)
- K Manimaran
- Department of Oral and Maxillofacial Surgery, K.S.R. Institute of Dental Science and Research, Tiruchengode, India
| | | | - V R Ravi
- Department of Orthopedics, Maruti Hospital, Tennur, Trichy, Tamil Nadu, India
| | - S Elangovan
- Department of Oral Oral Medicine and Radiology, K.S.R. Institute of Dental Science and Research, Tiruchengode, India
| | - M Chandramohan
- Department of Oral and Maxillofacial Surgery, K.S.R. Institute of Dental Science and Research, Tiruchengode, India
| | - S Mahendra Perumal
- Department of Oral and Maxillofacial Surgery, K.S.R. Institute of Dental Science and Research, Tiruchengode, India
| |
Collapse
|
3
|
Armstrong PW, Willerson JT. Treatment of Acute ST-Elevation Myocardial Infarction. Coron Artery Dis 2015. [DOI: 10.1007/978-1-4471-2828-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Pavo N, Charwat S, Nyolczas N, Jakab A, Murlasits Z, Bergler-Klein J, Nikfardjam M, Benedek I, Benedek T, Pavo IJ, Gersh BJ, Huber K, Maurer G, Gyöngyösi M. Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. J Mol Cell Cardiol 2014; 75:12-24. [PMID: 24998410 DOI: 10.1016/j.yjmcc.2014.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Abstract
A decade ago, stem or progenitor cells held the promise of tissue regeneration in human myocardium, with the expectation that these therapies could rescue ischemic myocyte damage, enhance vascular density and rebuild injured myocardium. The accumulated evidence in 2014 indicates, however, that the therapeutic success of these cells is modest and the tissue regeneration involves much more complex processes than cell-related biologics. As the quest for the ideal cell or combination of cells continues, alternative cell types, such as resident cardiac cells, adipose-derived or phenotypic modified stem or progenitor cells have also been applied, with the objective of increasing both the number and the retention of the reparative cells in the myocardium. Two main delivery routes (intracoronary and percutaneous intramyocardial) of stem cells are currently used preferably for patients with recent acute myocardial infarction or ischemic cardiomyopathy. Other delivery modes, such as surgical or intravenous via peripheral veins or coronary sinus have also been utilized with less success. Due to the difficult recruitment of patients within conceivable timeframe into cardiac regenerative trials, meta-analyses of human cardiac cell-based studies have tried to gather sufficient number of subjects to present a statistical compelling statement, reporting modest success with a mean increase of 0.9-6.1% in left ventricular global ejection fraction. Additionally, nearly half of the long-term studies reported the disappearance of the initial benefit of this treatment. Beside further extensive efforts to increase the efficacy of currently available methods, pre-clinical experiments using new techniques such as tissue engineering or exploiting paracrine effect hold promise to regenerate injured human cardiac tissue.
Collapse
Affiliation(s)
- Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Austria
| | - Silvia Charwat
- Department of Cardiology, Medical University of Vienna, Austria
| | - Noemi Nyolczas
- Department of Cardiology, Medical University of Vienna, Austria
| | - András Jakab
- Department of Biomedical Laboratory and Imaging Science, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Murlasits
- Exercise Biochemistry Laboratory, The University of Memphis, Department of Health and Sport Sciences, Memphis, TN, USA
| | | | | | - Imre Benedek
- Department of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Romania
| | - Teodora Benedek
- Department of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Romania
| | - Imre J Pavo
- Department of Cardiology, Medical University of Vienna, Austria
| | - Bernard J Gersh
- Internal Medicine, Mayo Graduate School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kurt Huber
- 3(rd) Dept. Cardiology and Emergency Medicine, Wilhelminen hospital, Vienna, Austria
| | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Austria
| | | |
Collapse
|
5
|
Abstract
The past decade has witnessed a marked increase in the number of clinical trials of cardiac repair with adult bone marrow cells (BMCs). These trials included patients with acute myocardial infarction (MI) as well as chronic ischemic heart disease (IHD) and utilized different types of BMCs with variable numbers, routes of administration, and timings after MI. Given these differences in methods, the outcomes from these trials have been often disparate and controversial. However, analysis of pooled data suggests that BMC injection enhances left ventricular function, reduces infarct scar size, and improves remodeling in patients with acute MI as well as chronic IHD. BMC therapy also improves clinical outcomes during follow-up without any increase in adverse effects. Although the underlying mechanisms of heart repair are difficult to elucidate in human studies, valuable insights may be gleaned from subgroup analysis of key variables. This information may be utilized to design future randomized controlled trials to carefully determine the long-term safety and benefits of BMC therapy.
Collapse
|
6
|
Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells. Vet Comp Orthop Traumatol 2012; 26:34-41. [PMID: 23171924 DOI: 10.3415/vcot-11-11-0165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 07/16/2012] [Indexed: 12/31/2022]
Abstract
Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.
Collapse
|
7
|
Turan RG, Bozdag-T I, Turan CH, Ortak J, Akin I, Kische S, Schneider H, Rauchhaus M, Rehders TC, Kleinfeldt T, Belu C, Amen S, Hermann T, Yokus S, Brehm M, Steiner S, Chatterjee T, Sahin K, Nienaber CA, Ince H. Enhanced mobilization of the bone marrow-derived circulating progenitor cells by intracoronary freshly isolated bone marrow cells transplantation in patients with acute myocardial infarction. J Cell Mol Med 2012; 16:852-64. [PMID: 21707914 PMCID: PMC3822854 DOI: 10.1111/j.1582-4934.2011.01358.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. We analysed in a randomized controlled study the influence of the intracoronary autologous freshly isolated BMCs-Tx on the mobilization of bone marrow–derived circulating progenitor cells (BM-CPCs) in patients with acute myocardial infarction (AMI). Sixty-two patients with AMI were randomized to either freshly isolated BMCs-Tx or to a control group without cell therapy. Peripheral blood (PB) concentrations of CD34/45+- and CD133/45+-circulating progenitor cells were measured by flow cytometry in 42 AMI patients with cell therapy as well as in 20 AMI patients without cell therapy as a control group on days 1, 3, 5, 7, 8 and 3, 6 as well as 12 months after AMI. Global ejection fraction (EF) and the size of infarct area were determined by left ventriculography. We observed in patients with freshly isolated BMCs-Tx at 3 and 12 months follow up a significant reduction of infarct size and increase of global EF as well as infarct wall movement velocity. The mobilization of CD34/45+ and CD133/45+ BM-CPCs significantly increased with a peak on day 7 as compared to baseline after AMI in both groups (CD34/45+: P < 0.001, CD133/45+: P < 0.001). Moreover, this significant mobilization of BM-CPCs existed 3, 6 and 12 months after cell therapy compared to day 1 after AMI. In control group, there were no significant differences of CD34/45+ and CD133/45+ BM-CPCs mobilization between day 1 and 3, 6 and 12 months after AMI. Intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system in patients with AMI may enhance and prolong the mobilization of CD34/45+ and CD133/45+ BM-CPCs in PB and this might increase the regenerative potency after AMI.
Collapse
Affiliation(s)
- R G Turan
- Division of Cardiology, Department of Internal Medicine, University Hospital Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 2012; 126:551-68. [PMID: 22730444 DOI: 10.1161/circulationaha.111.086074] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite rapid clinical translation and widespread enthusiasm, the therapeutic benefits of adult bone marrow cell (BMC) transplantation in patients with ischemic heart disease continue to remain controversial. A synthesis of the available data is critical to appreciate and underscore the true impact of this promising approach. METHODS AND RESULTS A total of 50 studies (enrolling 2625 patients) identified by database searches through January 2012 were included. Weighted mean differences for changes in left ventricular (LV) ejection fraction, infarct size, LV end-systolic volume, and LV end-diastolic volume were estimated with random-effects meta-analysis. Compared with control subjects, BMC-treated patients exhibited greater LV ejection fraction (3.96%; 95% confidence interval, 2.90-5.02; P<0.00001) and smaller infarct size (-4.03%, 95% confidence interval, -5.47 to -2.59; P<0.00001), LV end-systolic volume (-8.91 mL; 95% confidence interval, -11.57 to -6.25; P<0.00001), and LV end-diastolic volume (-5.23 mL; 95% confidence interval, -7.60 to -2.86; P<0.0001). These benefits were noted regardless of the study design (randomized controlled study versus cohort study) and the type of ischemic heart disease (acute myocardial infarction versus chronic ischemic heart disease) and persisted during long-term follow-up. Importantly, all-cause mortality, cardiac mortality, and the incidence of recurrent myocardial infarction and stent thrombosis were significantly lower in BMC-treated patients compared with control subjects. CONCLUSIONS Transplantation of adult BMCs improves LV function, infarct size, and remodeling in patients with ischemic heart disease compared with standard therapy, and these benefits persist during long-term follow-up. BMC transplantation also reduces the incidence of death, recurrent myocardial infarction, and stent thrombosis in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Vinodh Jeevanantham
- Division of Cardiovascular Diseases and Cardiovascular Research Institute, University of Kansas Medical Center and Hospital, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bozdag-Turan I, Turan RG, Ludovicy S, Akin I, Kische S, Schneider H, Rehders TC, Turan CH, Arsoy NS, Hermann T, Paranskaya L, Ortak J, Kohlschein P, Bastian M, Sahin K, Nienaber CA, Ince H. Intra coronary freshly isolated bone marrow cells transplantation improve cardiac function in patients with ischemic heart disease. BMC Res Notes 2012; 5:195. [PMID: 22534049 PMCID: PMC3436745 DOI: 10.1186/1756-0500-5-195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/05/2012] [Indexed: 01/14/2023] Open
Abstract
Background Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. In this study we analyzed whether intracoronary autologous freshly isolated BMCs-Tx have beneficial effects on cardiac function in patients with ischemic heart disease (IHD). Results In this prospective nonrandomized study we treated 12 patients with IHD by freshly isolated BMCs-Tx by use of point of care system and compared them with a representative 12 control group without cell therapy. Global ejection fraction (EF) and infarct size area were determined by left ventriculography. Intracoronary transplantation of autologous freshly isolated BMCs led to a significant reduction of infarct size (p < 0.001) and an increase of global EF (p = 0.003) as well as infarct wall movement velocity (p < 0.001) after 6 months follow-up compared to control group. In control group there were no significant differences of global EF, infarct size and infarct wall movement velocity between baseline and 6 months after coronary angiography. Furthermore, we found significant decrease in New York Heart Association (NYHA) as well as significant decrease of B-type natriuretic peptide (BNP) level 6 months after intracoronary cell therapy (p < 0.001), whereas there were no significant differences in control group 6 months after coronary angiography. Conclusions These results demonstrate that intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system is safe and may lead to improvement of cardiac function in patients with IHD. Trial registration Registration number: ISRCTN54510226
Collapse
Affiliation(s)
- Ilkay Bozdag-Turan
- Department of Internal Medicine, Division of Cardiology, Rostock-University, Ernst Hydemann Str 6, Rostock 18055, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg 2011; 54:1650-8. [DOI: 10.1016/j.jvs.2011.06.118] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 11/23/2022]
|
11
|
Bozdag-Turan I, Turan RG, Turan CH, Ludovicy S, Akin I, Kische S, Arsoy NS, Schneider H, Ortak J, Rehders T, Hermann T, Paranskaya L, Kohlschein P, Bastian M, Ulus AT, Sahin K, Ince H, Nienaber CA. Relation between the frequency of CD34⁺ bone marrow derived circulating progenitor cells and the number of diseased coronary arteries in patients with myocardial ischemia and diabetes. Cardiovasc Diabetol 2011; 10:107. [PMID: 22118372 PMCID: PMC3235974 DOI: 10.1186/1475-2840-10-107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/25/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bone marrow-derived circulating progenitor cells (BM-CPCs) in patients with coronary heart disease are impaired with respect to number and mobilization. However, it is unknown whether the mobilization of BM-CPCs depends on the number of diseased coronary arteries. Therefore, in our study, we analysed the correlation between the diseased coronary arteries and the frequency of CD34/45+ BM-CPCs in peripheral blood (PB) in patients with ischemic heart disease (IHD). METHODS The frequency of CD34/45+ BM-CPCs was measured by flow cytometry in 120 patients with coronary 1 vessel (IHD1, n = 40), coronary 2 vessel (IHD2, n = 40), coronary 3 vessel disease (IHD3, n = 40) and in a control group of healthy subjects (n = 40). There was no significant difference of the total number of cardiovascular risk factors between IHD groups, beside diabetes mellitus (DM), which was significantly higher in IHD3 group compared to IHD2 and IHD1 groups. RESULTS The frequency of CD34/45+ BM-CPCs was significantly reduced in patients with IHD compared to the control group (CD34/45+; p < 0.001). The frequency of BM-CPCs was impaired in patients with IHD3 compared to IHD1 (CD34/45+; p < 0.001) and to IHD2 (CD34/45+; p = 0.001). But there was no significant difference in frequency of BM-CPCs between the patients with IHD2 and IHD1 (CD34/45+; p = 0.28). In a subgroup we observed a significant negative correlation between levels of hemoglobin AIc (HbAIc) and the frequency of BM-CPCs (CD34/45+; p < 0.001, r = -0.8). CONCLUSIONS The frequency of CD34/45+ BM-CPCs in PB is impaired in patients with IHD. This impairment may augment with an increased number of diseased coronary arteries. Moreover, the frequency of CD34/45+ BM-CPCs in ischemic tissue is further impaired by diabetes in patients with IHD.
Collapse
Affiliation(s)
- Ilkay Bozdag-Turan
- Department of Internal Medicine, Division of Cardiology, University Hospital Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Turan RG, Turan CH, Bozdag-Turan I, Ortak J, Akin I, Kische S, Schneider H, Kleinfeldt T, Rehders TC, Rauchhaus M, Adolph E, Amen S, Hermann T, Yokus S, Brehm M, Steiner S, Sahin K, Nienaber CA, Ince H. Impaired mobilization of CD133(+) bone marrow-derived circulating progenitor cells with an increased number of diseased coronary arteries in ischemic heart disease patients with diabetes. Circ J 2011; 75:2635-41. [PMID: 21828932 DOI: 10.1253/circj.cj-10-1284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The influence of the number of diseased coronary arteries on the mobilization of CD133/45(+) bone marrow-derived circulating progenitor cells (BM-CPCs) in peripheral blood (PB) in patients with ischemic heart disease (IHD) was analyzed. METHODS AND RESULTS Mobilization of CD133/45(+) BM-CPCs by flow cytometry was measured in 120 patients with coronary 1 vessel (IHD1, n=40), coronary 2 vessel (IHD2, n=40), and coronary 3 vessel disease (IHD3, n=40), and in a control group (n=40). The mobilization of CD133/45(+) BM-CPCs was significantly reduced in patients with IHD compared to the control group (P<0.001). The mobilization of CD133/45(+) BM-CPCs was impaired in patients with IHD3 compared to IHD1 (P<0.001) and to IHD2 (P<0.001). But there was no significant difference in mobilization of CD133/45(+) BM-CPCs between the patients with IHD2 and IHD1 (P=0.35). Moreover, we found significantly reduced CD133/45(+) cell mobilization in patients with a high SYNTAX-Score (SS) compared to a low SS (P<0.001) and an intermediate SS (P<0.001). In subgroup analyzes, we observed a significantly negative correlation between levels of hemoglobin A(1c) and the mobilization of CD133/45(+) BM-CPCs (P=0.001, r=-0.6). CONCLUSIONS The mobilization of CD133/45(+) BM-CPCs in PB is impaired in patients with IHD. This impairment might augment with increased number of diseased coronary arteries. Moreover, mobilization of CD133/45(+) BM-CPCs in ischemic tissue is further impaired by diabetes in patients with IHD.
Collapse
Affiliation(s)
- R Goekmen Turan
- Department of Internal Medicine, Division of Cardiology, University Hospital Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Higashi Y. Is cell therapy promising or lost in translation in patients with acute myocardial infarction? Circ J 2011; 75:546-7. [PMID: 21282873 DOI: 10.1253/circj.cj-11-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|