1
|
Chen Y, Luo D, Gao R, Wu J, Qiu X, Zou Y, Jian Y, Zhang S. The sentinels of coronary artery disease: heterogeneous monocytes. Front Immunol 2025; 16:1428978. [PMID: 40079002 PMCID: PMC11898731 DOI: 10.3389/fimmu.2025.1428978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Monocytes are heterogeneous immune cells that play a crucial role in the inflammatory response during atherosclerosis, influencing the progression and outcome of the disease. In the pathogenesis of atherosclerotic diseases, such as coronary artery disease (CAD), monocytes not only serve as the initial sensors of endogenous and exogenous pathogenic factors, but also function as intermediators that bridge the circulatory system and localized lesions. In the bloodstream, heterogeneous monocytes, acting as sentinels, are rapidly recruited to atherosclerotic lesions, where they exhibit a heightened capacity to respond to various pathological stimuli upon detecting signals from damaged vascular endothelial cells. Clinical studies have demonstrated that the heterogeneity of monocytes in CAD patients presents both diversity and complexity, varying across different disease subtypes and pathological stages. This review explores the heterogeneity of monocytes in CAD, focusing on alterations in monocyte subset numbers, proportions, and the expression of functional receptors, as well as their correlations with clinical features. Additionally, we propose strategies to enhance the clinical utility value of monocyte heterogeneity and outline future research directions in the field of CAD. With the widespread application of high-parameter flow cytometry and single-cell sequencing technologies, it is anticipated that a comprehensive understanding of monocyte heterogeneity in CAD will be achieved, enabling the identification of disease-specific monocyte subtypes. This could offer new opportunities for improving the diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Yanyu Chen
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Renzhuo Gao
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xingpeng Qiu
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yingchao Jian
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
2
|
Wu Q, Zhang G, Wang T, Zhou H. The Effects of the oxLDL/β2GPI/anti-β2GPI Complex on Macrophage Autophagy and its Mechanism. Immun Inflamm Dis 2024; 12:e70058. [PMID: 39508636 PMCID: PMC11542296 DOI: 10.1002/iid3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Previous research has established that the oxidized low-density lipoprotein/β2-glycoprotein I/anti-β2-glycoprotein I antibody (oxLDL/β2GPI/anti-β2GPI) complex can stimulate macrophages to secrete molecules associated with atherosclerosis (AS), such as monocyte chemotactic protein 1 (MCP-1), tissue factor (TF), and tumor necrosis factor-α (TNF-α). This complex also enhances the uptake of oxLDL, thereby accelerating foam cell formation through the Toll-like receptor-4/nuclear factor kappa B (TLR4/NF-κB) pathway. Given the critical role of macrophage autophagy in the instability of vulnerable atherosclerotic plaques, it is imperative to investigate whether the oxLDL/β2GPI/anti-β2GPI complex influences macrophage autophagy in AS. This study aims to elucidate the effects and underlying mechanisms of the oxLDL/β2GPI/anti-β2GPI complex on macrophage autophagy in AS. METHODS Experiments were conducted using murine macrophage RAW264.7 cells and the human monocytic cell line THP-1. Western blot analysis was employed to determine the expressions of autophagy-associated markers and signaling pathway proteins. Autophagosomes were detected through mRFP-GFP-LC3 adenoviral transfection and transmission electron microscopy (TEM). RESULTS Treatment of macrophages with the oxLDL/β2GPI/anti-β2GPI complex resulted in decreased expressions of Beclin1 and LC3 proteins, alongside an upregulation of SQSTM1/P62 protein expression. Additionally, there was a reduction in the number of autophagosomes and autolysosomes. An increase in the phosphorylation levels of phosphoinositide-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) was also observed. Notably, the expressions of autophagy-associated markers were partially restored when the TLR4/NF-κB and PI3K/AKT/mTOR pathways were inhibited by their respective inhibitors. CONCLUSIONS Our findings indicate that the oxLDL/β2GPI/anti-β2GPI complex inhibits macrophage autophagy in AS via the TLR4/NF-κB and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Qianqian Wu
- Department of Transfusion Medicine, Nanjing Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Guiting Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ting Wang
- Department of Clinical Laboratory and Hematology, School of MedicineJiangsu UniversityZhenjiangChina
| | - Hong Zhou
- Department of Clinical Laboratory and Hematology, School of MedicineJiangsu UniversityZhenjiangChina
| |
Collapse
|
3
|
Ozaki Y, Kashiwagi M, Imanishi T, Katayama Y, Taruya A, Nishiguchi T, Shiono Y, Kuroi A, Yamano T, Tanimoto T, Kitabata H, Tanaka A. Prognostic value of Toll-like receptor 4 on human monocyte subsets combined with computed tomography-adapted Leaman score assessing coronary artery disease. Coron Artery Dis 2023; 34:356-363. [PMID: 37222220 PMCID: PMC10309091 DOI: 10.1097/mca.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Upregulation of Toll-like receptor 4 (TLR-4) is associated with coronary plaque vulnerability assessed by coronary computed tomography angiography (CCTA). Computed tomography-adapted Leaman score (CT-LeSc) is an independent long-term predictor of cardiac events. The relationship between the TLR-4 expression of CD14 ++ CD16 + monocytes and future cardiac events is unknown. We investigated this relationship using CT-LeSc in patients with coronary artery disease (CAD). METHODS We analyzed 61 patients with CAD who underwent CCTA. Three monocyte subsets (CD14 ++ CD16 - , CD14 ++ CD16 + , and CD14 + CD16 + ) and the expression of TLR-4 were measured by flow cytometry. We divided the patients into two groups according to the best cutoff value of the TLR-4 expression on CD14 + CD16 + which could predict future cardiac events. RESULTS CT-LeSc was significantly greater in the high TLR-4 group than the low TLR-4 group [9.61 (6.70-13.67) vs. 6.34 (4.27-9.09), P < 0.01]. The expression of TLR-4 on CD14 ++ CD16 + monocytes was significantly correlated with CT-LeSc ( R2 = 0.13, P < 0.01). The expression of TLR-4 on CD14 ++ CD16 + monocytes was significantly higher in patients who had future cardiac events than in those who did not [6.8 (4.5-9.1) % vs. 4.2 (2.4-7.6) %, P = 0.04]. High TLR-4 expression on CD14 ++ CD16 + monocytes was an independent predictor for future cardiac events ( P = 0.01). CONCLUSION An increase in the TLR-4 expression on CD14 ++ CD16 + monocytes is related to the development of future cardiac events.
Collapse
Affiliation(s)
- Yuichi Ozaki
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Manabu Kashiwagi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Toshio Imanishi
- Department of Cardiovascular Medicine, Hidaka General Hospital, Gobo
| | - Yosuke Katayama
- Department of Cardiovascular Medicine, Shingu Municipal Medical Center, Shingu, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Tsuyoshi Nishiguchi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Akio Kuroi
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Takashi Yamano
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Takashi Tanimoto
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Hironori Kitabata
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama
| |
Collapse
|
4
|
Khan I, Siraj M. An updated review on cell signaling pathways regulated by candidate miRNAs in coronary artery disease. Noncoding RNA Res 2023; 8:326-334. [PMID: 37077752 PMCID: PMC10106733 DOI: 10.1016/j.ncrna.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNA, size range from 17 to 25 nucleotides that regulate gene expression at the post-transcriptional level. More than 2000 different types of miRNAs have been identified in humans which regulate about 60% of gene expression, since the discovery of the first miRNA in 1993. MicroRNA performs many functions such as being involved in the regulation of various biological pathways for example cell migration, cell proliferation, cell differentiation, disease progression, and initiation. miRNAs also play an important role in the development of atherosclerosis lesions, cardiac fibroblast, cardiac hypertrophy, cancer, and neurological disorders. Abnormal activation of many cell signaling pathways has been observed in the development of coronary artery disease. Abnormal expression of these candidate miRNA genes leads to up or downregulation of specific genes, these specific genes play an important role in the regulation of cell signaling pathways involved in coronary artery disease. Many studies have found that miRNAs play a key role in the regulation of crucial signaling pathways that are involved in the pathophysiology of coronary artery disease. This review is designed to investigate the role of cell signaling pathways regulated by candidate miRNAs in Coronary artery disease.
Collapse
|
5
|
Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement. Int J Mol Sci 2022; 23:ijms23105303. [PMID: 35628113 PMCID: PMC9141814 DOI: 10.3390/ijms23105303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR), as an alternative to open heart surgery, has revolutionized the treatment of severe aortic valve stenosis (AVS), the most common valvular disorder in the elderly. AVS is now considered a form of atherosclerosis and, like the latter, partly of inflammatory origin. Patients with high-grade AVS have a highly disturbed blood flow associated with high levels of shear stress. The immediate reopening of the valve during TAVR leads to a sudden restoration of a normal blood flow hemodynamic. Despite its good prognosis for patients, TAVR remains associated with bleeding or thrombotic postprocedural complications, involving mechanisms that are still poorly understood. Many studies report the close link between blood coagulation and inflammation, termed thromboinflammation, including monocytes as a major actor. The TAVR procedure represents a unique opportunity to study the influence of shear stress on human monocytes, key mediators of inflammation and hemostasis processes. The purpose of this study was to conduct a review of the literature to provide a comprehensive overview of the impact of TAVR on monocyte phenotype and subset repartition and the association of these parameters with the clinical outcomes of patients with severe AVS who underwent TAVR.
Collapse
|
6
|
Coronary atherosclerosis severity is closely associated with decreased GLP-1R positivity among CD16 + pro-inflammatory and patrolling monocyte subsets. ATHEROSCLEROSIS PLUS 2021; 46:15-19. [PMID: 36643724 PMCID: PMC9833237 DOI: 10.1016/j.athplu.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023]
Abstract
Background and aims Glucagon Like Peptide-1 Receptor (GLP-1R) activation reduces pro-inflammatory responses of human monocytes, their accumulation in the vascular wall and foam cell formation inhibiting atherosclerogenesis. This suggests that reduction of circulating GLP-1-1R positive monocytes may have pro-atherogenic effects. It is unknown whether different CD14/CD16 monocytes subsets display GLP-1R and whether their relative proportions correlate with atherosclerosis severity. We evaluated the association between GLP-1R positivity in different CD14/CD16 monocyte subsets and coronary atherosclerosis severity. Methods Relative amounts of classical (CD14+/CD16-), intermediate pro-inflammatory (CD14+/CD16+) and non-classical patrolling (CD14-/CD16+) subsets of total circulating monocytes and the proportions of GLP-1R positive monocytes in these subsets were determined in 13 control subjects and 10 dyslipidemic ischemic heart disease (IHD) patients with severe angiographic proven coronary atherosclerosis using flow cytometry analysis. Atherosclerosis severity was calculated by SYNTAX score. Results In univariable analysis, severe atherosclerosis was associated with decreased proportion of classical monocytes and two fold increased CD16+ pro-inflammatory and patrolling subsets as compared with controls (p = 0.01, p = 0.02 and p = 0.01, respectively). Frequency of GLP-1R positive monocytes was decreased in both CD16+ subsets (p = 0.02 and p = 0.05, respectively) and negatively correlated with atherosclerosis severity (r = -0.65, p = 0.005 and r = -0.44, p = 0.05, respectively). Conclusions Increased skewing of the classical monocyte population toward CD16+ pro-inflammatory and patrolling subsets accompanied by decreased in GLP-1R positivity are associated with coronary atherosclerosis severity in IHD patients with dyslipidemia. Although the effect of potential confounders cannot be ruled out, our data suggest that failure of GLP-1R-dependent anti-inflammatory/anti-atherogenic control results in innate immune system dysfunction and can promote atherosclerogenesis.
Collapse
|
7
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
8
|
Pattern Recognition Receptor-Mediated Chronic Inflammation in the Development and Progression of Obesity-Related Metabolic Diseases. Mediators Inflamm 2019; 2019:5271295. [PMID: 31582899 PMCID: PMC6754942 DOI: 10.1155/2019/5271295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity-induced chronic inflammation is known to promote the development of many metabolic diseases, especially insulin resistance, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and atherosclerosis. Pattern recognition receptor-mediated inflammation is an important determinant for the initiation and progression of these metabolic diseases. Here, we review the major features of the current understanding with respect to obesity-related chronic inflammation in metabolic tissues, focus on Toll-like receptors and nucleotide-binding oligomerization domain-like receptors with an emphasis on how these receptors determine metabolic disease progression, and provide a summary on the development and progress of PRR antagonists for therapeutic intervention.
Collapse
|
9
|
Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol 2019; 10:2035. [PMID: 31543877 PMCID: PMC6728754 DOI: 10.3389/fimmu.2019.02035] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Human monocytes are divided in three major populations; classical (CD14+CD16−), non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Emily R Hinkley
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Waller K, James C, de Jong A, Blackmore L, Ma Y, Stagg A, Kelsell D, O'Dwyer M, Hutchins R, Alazawi W. ADAM17-Mediated Reduction in CD14 ++CD16 + Monocytes ex vivo and Reduction in Intermediate Monocytes With Immune Paresis in Acute Pancreatitis and Acute Alcoholic Hepatitis. Front Immunol 2019; 10:1902. [PMID: 31507587 PMCID: PMC6718469 DOI: 10.3389/fimmu.2019.01902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Impaired immune responses and increased susceptibility to infection characterize acute inflammatory conditions such as pancreatitis and alcoholic hepatitis and are major causes of morbidity and mortality. However, the mechanisms that drive this apparent immune paresis remain poorly understood. Monocytes mediate host responses to damage and pathogens in health and disease, and three subsets of monocytes have been defined based on CD14 and CD16 expression. We sought to determine the changes in monocyte subsets in acute pancreatitis (AP) and acute alcoholic hepatitis (AAH), together with functional consequences and mechanisms that underlie this change. Peripheral blood mononuclear cells (PBMCs) from patients with AP or AAH were compared with healthy controls. Monocyte subsets were defined by HLA-DR, CD14, and CD16 expression. Changes in surface and intracellular protein expression and phosphorylation were determined by flow cytometry. Phenotype and function were assessed following stimulation with lipopolysaccharide (LPS) or other agonists in the presence of specific inhibitors of TNFα and a disintegrin and metalloproteinase 17 (ADAM17). Patients with AP and AAH had reduced CD14++CD16+ intermediate monocytes compared to controls. Reduction of intermediate monocytes was recapitulated ex vivo by stimulating healthy control PBMCs with Toll-like receptor (TLR) agonists LPS, flagellin or polyinosilic:polycytidylic acid (poly I:C). Stimulation caused shedding of CD14 and CD16, which could be reversed using the ADAM17 inhibitor, TMI005 but not direct inhibitors of TNFα, a known ADAM17-target. Culturing PBMCs from healthy controls resulted in expansion of intermediate monocytes, which did not occur when LPS was in the culture medium. Cultured intermediate monocytes showed reduced expression of CX3CR1, CCR2, TLR4, and TLR5. We found reduced migratory responses, intracellular signaling and pro-inflammatory cytokine production, and increased expression of IL-10. Stimulation with TLR agonists results in ADAM17-mediated shedding of phenotypic markers from CD16+ monocytes, leading to apparent “loss” of intermediate monocytes. Reduction in CD14++CD16− monocytes and increased CD14++CD16+ is associated with altered responses in functional assays ex vivo. Patients with AP and AAH had reduced proportions of CD14++CD16+ monocytes and reduced phosphorylation of NFκB and IL-6 production in response to bacterial LPS. Together, these processes may contribute to the susceptibility to infection observed in AP and AAH.
Collapse
Affiliation(s)
- Kathryn Waller
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Charlotte James
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Anja de Jong
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Laura Blackmore
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Yun Ma
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Andrew Stagg
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - David Kelsell
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Robert Hutchins
- Hepatopancreaticobiliary Unit, Barts Health NHS Trust, London, United Kingdom
| | - William Alazawi
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm 2019; 2019:7434376. [PMID: 31089324 PMCID: PMC6476044 DOI: 10.1155/2019/7434376] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death and disability worldwide. It is a complex disease characterized by lipid accumulation within the arterial wall, inflammation, local neoangiogenesis, and apoptosis. Innate immune effectors, in particular monocytes and macrophages, play a pivotal role in atherosclerosis initiation and progression. Although most of available evidence on the role of monocytes and macrophages in atherosclerosis is derived from animal studies, a growing body of evidence elucidating the role of these mononuclear cell subtypes in human atherosclerosis is currently accumulating. A novel pathogenic role of monocytes and macrophages in terms of atherosclerosis initiation and progression, in particular concerning the role of these cell subsets in neovascularization, has been discovered. The aim of the present article is to review currently available evidence on the role of monocytes and macrophages in human atherosclerosis and in relation to plaque characteristics, such as plaque neoangiogenesis, and patients' prognosis and their potential role as biomarkers.
Collapse
|
12
|
Vlacil AK, Schuett J, Schieffer B, Grote K. Variety matters: Diverse functions of monocyte subtypes in vascular inflammation and atherogenesis. Vascul Pharmacol 2018; 113:9-19. [PMID: 30553027 DOI: 10.1016/j.vph.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
Abstract
Monocytes are important mediators of the innate immunity by recognizing and attacking especially bacterial pathogens but also play crucial roles in various inflammatory diseases, including vascular inflammation and atherosclerosis. Maturation, differentiation and function of monocytes have been intensively explored for a long time in innumerable experimental and clinical studies. Monocytes do not represent a uniform cell type but could be further subdivided into subpopulations with distinct features and functions. Those subpopulations have been identified in experimental mouse models as well as in humans, albeit distinguished by different cell surface markers. While Ly6C is used for subpopulation differentiation in mice, corresponding human subsets are differentiated by CD14 and CD16. In this review, we specifically focused on new experimental insights from recent years mainly in regard to murine monocyte subpopulations and their roles in vascular inflammation und atherogenesis.
Collapse
Affiliation(s)
| | - Jutta Schuett
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
13
|
Yoshida N, Yamamoto H, Shinke T, Otake H, Kuroda M, Terashita D, Takahashi H, Sakaguchi K, Hirota Y, Emoto T, Amin HZ, Mizoguchi T, Hayashi T, Sasaki N, Yamashita T, Ogawa W, Hirata KI. Impact of CD14 ++CD16 + monocytes on plaque vulnerability in diabetic and non-diabetic patients with asymptomatic coronary artery disease: a cross-sectional study. Cardiovasc Diabetol 2017; 16:96. [PMID: 28789689 PMCID: PMC5549371 DOI: 10.1186/s12933-017-0577-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Previously, we have reported that daily glucose fluctuations could affect coronary plaque vulnerability, but the underlying mechanisms remained unclear. This study sought to investigate the impact of CD14++CD16+ monocytes on plaque vulnerability, as assessed by virtual histology intravascular ultrasound (VH-IVUS), as well as their relationship to fluctuating glucose levels in patients with asymptomatic coronary artery disease (CAD). Methods Fifty-one patients with asymptomatic CAD, who were undergoing lipid-lowering therapy and underwent VH-IVUS evaluation for angiographically mild to moderate lesions, were enrolled in the study. Standard VH-IVUS parameters, including the percentage volume of the necrotic core (%NC) within the plaque and the presence of a virtual histology thin-cap fibroatheroma (VH-TCFA), were then evaluated. Additionally, monocyte subsets were assessed by flow cytometry, and daily glucose fluctuations were analyzed by measuring the mean amplitude of glycemic excursion (MAGE). Results Among 82 plaques from 22 diabetes mellitus (DM) patients and 29 non-DM patients, 15 VH-TCFAs were identified. CD14++CD16+ monocyte counts significantly correlated with both %NC and the presence of VH-TCFA (%NC: r = 0.339, p = 0.002; VH-TCFA: p = 0.003). Multivariate logistic regression analysis revealed that CD14++CD16+ monocyte counts were independently associated with VH-TCFA (odds ratio = 1.029, p = 0.004). Furthermore, CD14++CD16+ monocyte counts were significantly correlated with the MAGE score in the non-DM patients (r = 0.544, p = 0.005). Conclusions CD14++CD16+ monocyte levels are associated with coronary plaque vulnerability and can serve as a biomarker for VH-TCFA in patients with CAD undergoing lipid-lowering therapy. In patients without DM, glucose fluctuations may alter the balance of monocyte subsets. Trial registration UMIN Registry number: UMIN000021228 Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0577-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Hiroyuki Yamamoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Toshiro Shinke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan.
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Masaru Kuroda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Daisuke Terashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Hachidai Takahashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Kazuhiko Sakaguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Hilman Zulkifli Amin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Taiji Mizoguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 6500017, Japan
| |
Collapse
|