1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Curcio A, Scalise R, Indolfi C. Pathophysiology of Atrial Fibrillation and Approach to Therapy in Subjects Less than 60 Years Old. Int J Mol Sci 2024; 25:758. [PMID: 38255832 PMCID: PMC10815447 DOI: 10.3390/ijms25020758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that affects the left atrium, cardiac function, and the patients' survival rate. Due to empowered diagnostics, it has become increasingly recognized among young individuals as well, in whom it is influenced by a complex interplay of autoimmune, inflammatory, and electrophysiological mechanisms. Deepening our understanding of these mechanisms could contribute to improving AF management and treatment. Inflammation is a complexly regulated process, with interactions among various immune cell types, signaling molecules, and complement components. Addressing circulating antibodies and designing specific autoantibodies are promising therapeutic options. In cardiomyopathies or channelopathies, the first manifestation could be paroxysmal AF; persistent forms tend not to respond to antiarrhythmic drugs in these conditions. Further research, both in vitro and in vivo, on the use of genomic biotechnology could lead to new therapeutic approaches. Additional triggers that can be encountered in AF patients below 60 years of age are systemic hypertension, overweight, diabetes, and alcohol abuse. The aims of this review are to briefly report evidence from basic science and results of clinical studies that might explain the juvenile burden of the most encountered sustained supraventricular tachyarrhythmias in the general population.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (R.S.); (C.I.)
| | | | | |
Collapse
|
3
|
Cai D, Wang X, Sun Y, Fan H, Zhou J, Yang Z, Qiu H, Wang J, Su J, Gong T, Jiang C, Liang P. Patient-specific iPSC-derived cardiomyocytes reveal aberrant activation of Wnt/β-catenin signaling in SCN5A-related Brugada syndrome. Stem Cell Res Ther 2023; 14:241. [PMID: 37679791 PMCID: PMC10486057 DOI: 10.1186/s13287-023-03477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Mutations in the cardiac sodium channel gene SCN5A cause Brugada syndrome (BrS), an arrhythmic disorder that is a leading cause of sudden death and lacks effective treatment. An association between SCN5A and Wnt/β-catenin signaling has been recently established. However, the role of Wnt/β-catenin signaling in BrS and underlying mechanisms remains unknown. METHODS Three healthy control subjects and one BrS patient carrying a novel frameshift mutation (T1788fs) in the SCN5A gene were recruited in this study. Control and BrS patient-specific induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts using nonintegrated Sendai virus. All iPSCs were differentiated into cardiomyocytes using monolayer-based differentiation protocol. Action potentials and sodium currents were recorded from control and BrS iPSC-derived cardiomyocytes (iPSC-CMs) by single-cell patch clamp. RESULTS BrS iPSC-CMs exhibited increased burden of arrhythmias and abnormal action potential profile featured by slower depolarization, decreased action potential amplitude, and increased beating interval variation. Moreover, BrS iPSC-CMs showed cardiac sodium channel (Nav1.5) loss-of-function as compared to control iPSC-CMs. Interestingly, the electrophysiological abnormalities and Nav1.5 loss-of-function observed in BrS iPSC-CMs were accompanied by aberrant activation of Wnt/β-catenin signaling. Notably, inhibition of Wnt/β-catenin significantly rescued Nav1.5 defects and arrhythmic phenotype in BrS iPSC-CMs. Mechanistically, SCN5A-encoded Nav1.5 interacts with β-catenin, and reduced expression of Nav1.5 leads to re-localization of β-catenin in BrS iPSC-CMs, which aberrantly activates Wnt/β-catenin signaling to suppress SCN5A transcription. CONCLUSIONS Our findings suggest that aberrant activation of Wnt/β-catenin signaling contributes to the pathogenesis of SCN5A-related BrS and point to Wnt/β-catenin as a potential therapeutic target.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jingjun Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Zongkuai Yang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hangyuan Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China
| | - Jue Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Jun Su
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
4
|
Sun Y, Su J, Wang X, Wang J, Guo F, Qiu H, Fan H, Cai D, Wang H, Lin M, Wang W, Feng Y, Fu G, Gong T, Liang P, Jiang C. Patient-specific iPSC-derived cardiomyocytes reveal variable phenotypic severity of Brugada syndrome. EBioMedicine 2023; 95:104741. [PMID: 37544203 PMCID: PMC10427992 DOI: 10.1016/j.ebiom.2023.104741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is a cardiac channelopathy that can result in sudden cardiac death (SCD). SCN5A is the most frequent gene linked to BrS, but the genotype-phenotype correlations are not completely matched. Clinical phenotypes of a particular SCN5A variant may range from asymptomatic to SCD. Here, we used comparison of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from a SCN5A mutation-positive (D356Y) BrS family with severely affected proband, asymptomatic mutation carriers (AMCs) and healthy controls to investigate this variation. METHODS 26 iPSC lines were generated from skin fibroblasts using nonintegrated Sendai virus. The generated iPSCs were differentiated into cardiomyocytes using a monolayer-based differentiation protocol. FINDINGS D356Y iPSC-CMs exhibited increased beat interval variability, slower depolarization, cardiac arrhythmias, defects of Na+ channel function and irregular Ca2+ signaling, when compared to controls. Importantly, the phenotype severity observed in AMC iPSC-CMs was milder than that of proband iPSC-CMs, an observation exacerbated by flecainide. Interestingly, the iPSC-CMs of the proband exhibited markedly decreased Ca2+ currents in comparison with control and AMC iPSC-CMs. CRISPR/Cas9-mediated genome editing to correct D356Y in proband iPSC-CMs effectively rescued the arrhythmic phenotype and restored Na+ and Ca2+ currents. Moreover, drug screening using established BrS iPSC-CM models demonstrated that quinidine and sotalol possessed antiarrhythmic effects in an individual-dependent manner. Clinically, venous and oral administration of calcium partially reduced the malignant arrhythmic events of the proband in mid-term follow-up. INTERPRETATION Patient-specific and genome-edited iPSC-CMs can recapitulate the varying phenotypic severity of BrS. Our findings suggest that preservation of the Ca2+ currents might be a compensatory mechanism to resist arrhythmogenesis in BrS AMCs. FUNDING National Key R&D Program of China (2017YFA0103700), National Natural Science Foundation of China (81922006, 81870175), Natural Science Foundation of Zhejiang Province (LD21H020001, LR15H020001), National Natural Science Foundation of China (81970269), Key Research and Development Program of Zhejiang Province (2019C03022) and Natural Science Foundation of Zhejiang Province (LY16H020002).
Collapse
Affiliation(s)
- Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jun Su
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Jue Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Fengfeng Guo
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Hangyuan Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Dongsheng Cai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, 310008, China
| | - Miao Lin
- Department of Cardiology, Wenzhou Central Hospital, 325000, Wenzhou, China
| | - Wei Wang
- Jiangxi Provincial Cardiovascular Disease Research Institute, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, 310029, Hangzhou, China.
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
5
|
Abstract
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| | - Sarah Costa
- Department of Internal Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| |
Collapse
|
6
|
Dizziness and Syncope While Playing Sports. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Tambi R, Abdel Hameid R, Bankapur A, Nassir N, Begum G, Alsheikh-Ali A, Uddin M, Berdiev BK. Single-cell transcriptomics trajectory and molecular convergence of clinically relevant mutations in Brugada syndrome. Am J Physiol Heart Circ Physiol 2021; 320:H1935-H1948. [PMID: 33797273 DOI: 10.1152/ajpheart.00061.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a rare, inherited arrhythmia with high risk of sudden cardiac death. To evaluate the molecular convergence of clinically relevant mutations and to identify developmental cardiac cell types that are associated with BrS etiology, we collected 733 mutations represented by 16 sodium, calcium, potassium channels, and regulatory and structural genes related to BrS. Among the clinically relevant mutations, 266 are unique singletons and 88 mutations are recurrent. We observed an over-representation of clinically relevant mutations (∼80%) in SCN5A gene and also identified several candidate genes, including GPD1L, TRPM4, and SCN10A. Furthermore, protein domain enrichment analysis revealed that a large proportion of the mutations impacted ion transport domains in multiple genes, including SCN5A, TRPM4, and SCN10A. A comparative protein domain analysis of SCN5A further established a significant (P = 0.04) enrichment of clinically relevant mutations within ion transport domain, including a significant (P = 0.02) mutation hotspot within 1321-1380 residue. The enrichment of clinically relevant mutations within SCN5A ion transport domain is stronger (P = 0.00003) among early onset of BrS. Our spatiotemporal cellular heart developmental (prenatal to adult) trajectory analysis applying single-cell transcriptome identified the most frequently BrS-mutated genes (SCN5A and GPD1L) are significantly upregulated in the prenatal cardiomyocytes. A more restrictive cellular expression trajectory is prominent in the adult heart ventricular cardiomyocytes compared to prenatal. Our study suggests that genomic and proteomic hotspots in BrS converge into ion transport pathway and cardiomyocyte as a major BrS-associated cell type that provides insight into the complex genetic etiology of BrS.NEW & NOTEWORTHY Brugada syndrome is a rare inherited arrhythmia with high risk of sudden cardiac death. We present the findings for a molecular convergence of clinically relevant mutations and identification of a single-cell transcriptome-derived cardiac cell types that are associated with the etiology of BrS. Our study suggests that genomic and proteomic hotspots in BrS converge into ion transport pathway and cardiomyocyte as a major BrS-associated cell type that provides insight into the complex genetic etiology of BrS.
Collapse
Affiliation(s)
- Richa Tambi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Asma Bankapur
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
8
|
Novel SCN5A p.V1429M Variant Segregation in a Family with Brugada Syndrome. Int J Mol Sci 2020; 21:ijms21165902. [PMID: 32824506 PMCID: PMC7460631 DOI: 10.3390/ijms21165902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Brugada syndrome (BrS) is diagnosed by the presence of an elevated ST-segment and can result in sudden cardiac death. The most commonly found mutated gene is SCN5A, which some argue is the only gene that has been definitively confirmed to cause BrS, while the potential causative effect of other genes is still under debate. While the issue of BrS genetics is currently a hot topic, current knowledge is not able to result in molecular confirmation of over half of BrS cases. Therefore, it is difficult to develop research models with wide potential. Instead, the clinical genetics first need to be better understood. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene, and demonstrate its segregation with BrS, suggesting a pathogenic effect. These results provide the first disease association with this variant and are crucial clinical data to communicate to basic scientists, who could perform functional studies to better understand the molecular effects of this clinically-relevant variant in BrS.
Collapse
|
9
|
Micaglio E, Monasky MM, Resta N, Bagnulo R, Ciconte G, Gianelli L, Locati ET, Vicedomini G, Borrelli V, Ghiroldi A, Anastasia L, Benedetti S, Di Resta C, Ferrari M, Pappone C. Novel SCN5A p.W697X Nonsense Mutation Segregation in a Family with Brugada Syndrome. Int J Mol Sci 2019; 20:ijms20194920. [PMID: 31590245 PMCID: PMC6801452 DOI: 10.3390/ijms20194920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023] Open
Abstract
Brugada syndrome (BrS) is marked by an elevated ST-segment elevation and increased risk of sudden cardiac death. Variants in the SCN5A gene are considered to be molecular confirmation of the syndrome in about one third of cases, while the genetics remain a mystery in about half of the cases, with the remaining cases being attributed to variants in any of a number of genes. Before research models can be developed, it is imperative to understand the genetics in patients. Even data from humans is complicated, since variants in the most common gene in BrS, SCN5A, are associated with a number of pathologies, or could even be considered benign, depending on the variant. Here, we provide crucial human data on a novel NM_198056.2:c.2091G>A (p.Trp697X) point-nonsense heterozygous variant in the SCN5A gene, as well as its segregation with BrS. The results herein suggest a pathogenic effect of this variant. These results could be used as a stepping stone for functional studies to better understand the molecular effects of this variant in BrS.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Michelle M. Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital, 70121 Bari, Italy; (N.R.); (R.B.)
| | - Rosanna Bagnulo
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital, 70121 Bari, Italy; (N.R.); (R.B.)
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Luigi Gianelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Emanuela T. Locati
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Gabriele Vicedomini
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Valeria Borrelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.G.); (L.A.)
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.G.); (L.A.)
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (S.B.); (M.F.)
| | - Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (S.B.); (M.F.)
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy (M.M.M.); (G.C.); (L.G.); (E.T.L.); (G.V.); (V.B.)
- Correspondence: ; Tel.: +39-0252774260
| |
Collapse
|
10
|
Häfner SJ. The many (sur)faces of B cells. Biomed J 2019; 42:201-206. [PMID: 31627861 PMCID: PMC6818141 DOI: 10.1016/j.bj.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022] Open
Abstract
This issue of the Biomedical Journal is dedicated to the latest findings concerning the complex development and functions of B lymphocytes, including their origins during embryogenesis, their meticulous control by the CD22 receptor and different types of T cells, as well as the immunosuppressive abilities of certain B cell subsets. Furthermore, we learn about the complicated genetic background of a rare cardiac disease, the surgical outcomes of pure conus medullaris syndrome and occurrences of tuberculous spondylitis after percutaneous vertebroplasty. Finally, we discover that brain waves could very well be used for biometric authentication and that diffusion imaging displays good reproducibility through a spectrum of spatial resolutions.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Ole Maaløes Vej 5, 2200 Copenhagen Denmark.
| |
Collapse
|
11
|
Monasky MM, Micaglio E, Ciconte G, Benedetti S, Di Resta C, Vicedomini G, Borrelli V, Ghiroldi A, Piccoli M, Anastasia L, Santinelli V, Ferrari M, Pappone C. Genotype/Phenotype Relationship in a Consanguineal Family With Brugada Syndrome Harboring the R1632C Missense Variant in the SCN5A Gene. Front Physiol 2019; 10:666. [PMID: 31191357 PMCID: PMC6546918 DOI: 10.3389/fphys.2019.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a known cause of sudden cardiac death. The genetic basis of BrS is not well understood, and no one single gene is linked to even a majority of BrS cases. However, mutations in the gene SCN5A are the most common, although the high amount of phenotypic variability prevents a clear correlation between genotype and phenotype. Research techniques are limited, as most BrS cases still remain without a genetic diagnosis, thus impairing the implementation of experimental models representative of a general pathogenetic mechanism. In the present study, we report the largest family to-date with the segregation of the heterozygous variant NM_198056:c.4894C>T (p.Arg1632Cys) in the SCN5A gene. The genotype-phenotype relationship observed suggests a likely pathogenic effect of this variant. Functional studies to better understand the molecular effects of this variant are warranted.
Collapse
Affiliation(s)
- Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriele Vicedomini
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Valeria Borrelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Vincenzo Santinelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy.,Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
12
|
Louarn A, Ksiyer S, Ilardo C, Garnier LF, Evain S, Marsaudon E. Des douleurs thoraciques intermittentes. Rev Med Interne 2019; 40:264-266. [DOI: 10.1016/j.revmed.2018.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/02/2018] [Indexed: 11/25/2022]
|
13
|
Nagayama T, Nagase S, Kamakura T, Wada M, Ishibashi K, Inoue YY, Miyamoto K, Noda T, Aiba T, Takaki H, Sugimachi M, Shimizu W, Noguchi T, Yasuda S, Kamakura S, Kusano K. Clinical and Electrocardiographic Differences in Brugada Syndrome With Spontaneous or Drug-Induced Type 1 Electrocardiogram. Circ J 2019; 83:532-539. [PMID: 30643106 DOI: 10.1253/circj.cj-18-0643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND Spontaneous type 1 electrocardiogram (ECG) in the right precordial lead is a dominant predictor of ventricular fibrillation (VF) in Brugada syndrome (BrS). In some BrS patients with VF, however, spontaneous type 1 ECG is undetectable, even in repeated ECG and immediately after VF. This study investigated differences between BrS patients with spontaneous or drug-induced type 1 ECG. METHODS AND RESULTS We evaluated 15 BrS patients with drug-induced (D-BrS) and 29 with spontaneous type 1 ECG (SP-BrS). All patients had had a previous VF episode. In each D-BrS patient, ECG was recorded more than 15 times (mean, 46±34) during 7.2±5.1 years of follow-up. Age and family history were comparable between groups. Inferolateral early repolarization (ER) was observed in 13 D-BrS (87%) at least once but in only 3 SP-BrS (10%, P<0.01). Immediately after VF, inferolateral ER was accentuated in 9 of 10 D-BrS, while type 1 ECG was accentuated in 12 of 16 SP-BrS. Fragmented QRS in the right precordial lead and aVR sign were absent in D-BrS but present in 20 (69%, P<0.01) and 11 (38%, P<0.01) SP-BrS, respectively. There was no prognostic difference between groups. CONCLUSIONS Although having similar clinical profiles, there are obvious ECG differences between VF-positive BrS patients with spontaneous or drug-induced type 1 ECG. The inferolateral lead rather than the right precordial lead on ECG may be particularly crucial in some BrS patients.
Collapse
Affiliation(s)
- Tomomi Nagayama
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Fukuoka City Hospital
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Mitsuru Wada
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yuko Y Inoue
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Koji Miyamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Takaki
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Masaru Sugimachi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shiro Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| |
Collapse
|
14
|
Micaglio E, Monasky MM, Ciconte G, Vicedomini G, Conti M, Mecarocci V, Giannelli L, Giordano F, Pollina A, Saviano M, Crisà S, Borrelli V, Ghiroldi A, D'Imperio S, Di Resta C, Benedetti S, Ferrari M, Santinelli V, Anastasia L, Pappone C. SCN5A Nonsense Mutation and NF1 Frameshift Mutation in a Family With Brugada Syndrome and Neurofibromatosis. Front Genet 2019; 10:50. [PMID: 30828344 PMCID: PMC6384234 DOI: 10.3389/fgene.2019.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
In this case series, we report for the first time a family in which the inherited nonsense mutation [c. 3946C > T (p.Arg1316*)] in the SCN5A gene segregates in association with Brugada syndrome (BrS). Moreover, we also report, for the first time, the frameshift mutation [c.7686delG (p.Ile2563fsX40)] in the NF1 gene, as well as its association with type 1 neurofibromatosis (NF1), characterized by pigmentary lesions (café au lait spots, Lisch nodules, freckling) and cutaneous neurofibromas. Both of these mutations and associated phenotypes were discovered in the same family. This genetic association may identify a subset of patients at higher risk of sudden cardiac death who require the appropriate electrophysiological evaluation. This case series highlights the importance of genetic testing not only to molecularly confirm the pathology but also to identify asymptomatic family members who need clinical examinations and preventive interventions, as well as to advise about the possibility of avoiding recurrence risk with medically assisted reproduction.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gabriele Vicedomini
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Manuel Conti
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Valerio Mecarocci
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luigi Giannelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Federica Giordano
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Pollina
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Massimo Saviano
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simonetta Crisà
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Valeria Borrelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Sara D'Imperio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Vincenzo Santinelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
15
|
Scumaci D, Oliva A, Concolino A, Curcio A, Fiumara CV, Tammè L, Campuzano O, Pascali VL, Coll M, Iglesias A, Berne P, Casu G, Olivo E, Ausania F, Ricci P, Indolfi C, Brugada J, Brugada R, Cuda G. Integration of "Omics" Strategies for Biomarkers Discovery and for the Elucidation of Molecular Mechanisms Underlying Brugada Syndrome. Proteomics Clin Appl 2018; 12:e1800065. [PMID: 29956481 DOI: 10.1002/prca.201800065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/26/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The Brugada syndrome (BrS) is a severe inherited cardiac disorder. Given the high genetic and phenotypic heterogeneity of this disease, three different "omics" approaches are integrated in a synergic way to elucidate the molecular mechanisms underlying the pathophysiology of BrS as well as for identifying reliable diagnostic/prognostic markers. EXPERIMENTAL DESIGN The profiling of plasma Proteome and MiRNome is perfomed in a cohort of Brugada patients that were preliminary subjected to genomic analysis to assess a peculiar gene mutation profile. RESULTS The integrated analysis of "omics" data unveiled a cooperative activity of mutated genes, deregulated miRNAs and proteins in orchestrating transcriptional and post-translational events that are critical determining factors for the development of the Brugada pattern. CONCLUSIONS AND CLINICAL RELEVANCE This study provides the basis to shed light on the specific molecular fingerprints underlying BrS development and to gain further insights on the pathogenesis of this life-threatening cardiac disease.
Collapse
Affiliation(s)
- Domenica Scumaci
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Oliva
- Fondazione Policlinico A. Gemelli IRCCS, Roma, Università Cattolica del Sacro Cuore, Large Francesco Vito 1, 00168, Rome, Italy
| | - Antonio Concolino
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Science, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Laura Tammè
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
| | - Vincenzo L Pascali
- Fondazione Policlinico A. Gemelli IRCCS, Roma, Università Cattolica del Sacro Cuore, Large Francesco Vito 1, 00168, Rome, Italy
| | - Monica Coll
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
| | - Paola Berne
- Unità Operativa Complessa di Cardiologia Ospedale "San Francesco", 08100, Nuoro, Italy
| | - Gavino Casu
- Unità Operativa Complessa di Cardiologia Ospedale "San Francesco", 08100, Nuoro, Italy
| | - Erika Olivo
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Francesco Ausania
- Fondazione Policlinico A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Roma
| | - Pietrantonio Ricci
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
- Institute of Legal Medicine, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Science, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain
- Arrhythmia's Unit, Hospital Clinic, 08036, Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
- Cardiology Service, Hospital Josep Trueta, 17007, Girona, Spain
| | - Giovanni Cuda
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
16
|
Migliore F, Pelliccia F, Autore C, Bertaglia E, Cecchi F, Curcio A, Bontempi L, Curnis A, De Filippo P, D’Onofrio A, Francia P, Maurizi N, Musumeci B, Proclemer A, Zorzi A, Corrado D. Subcutaneous implantable cardioverter defibrillator in cardiomyopathies and channelopathies. J Cardiovasc Med (Hagerstown) 2018; 19:633-642. [DOI: 10.2459/jcm.0000000000000712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Lakdawala N, Defilippis E, Miller A. A Shocking Turn of Events. N Engl J Med 2018; 379:1386. [PMID: 30281990 DOI: 10.1056/nejmc1809068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Amy Miller
- Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
18
|
Monasky MM, Pappone C, Piccoli M, Ghiroldi A, Micaglio E, Anastasia L. Calcium in Brugada Syndrome: Questions for Future Research. Front Physiol 2018; 9:1088. [PMID: 30147658 PMCID: PMC6095984 DOI: 10.3389/fphys.2018.01088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
The Brugada syndrome (BrS) is characterized by coved-type ST-segment elevation in the right precordial leads on the electrocardiogram (ECG) and increased risk of sudden cardiac death (SCD). While it is an inheritable disease, determining the true prevalence is a challenge, since patients may report no known family history of the syndrome, present with a normal spontaneous ECG pattern at the time of examination, and test negative for all known BrS-causative genes. In fact, SCD is often the first indication that a person is affected by the syndrome. Men are more likely to be symptomatic than women. Abnormal, low-voltage, fractionated electrograms have been found in the epicardium of the right ventricular outflow tract (RVOT). Ablation of this area abolishes the abnormal electrograms and helps to prevent arrhythmic recurrences. BrS patients are more likely to experience ventricular tachycardia/fibrillation (VT/VF) during fever or during an increase in vagal tone. Isoproterenol helps to reverse the ECG BrS phenotype. In this review, we discuss roles of calcium in various conditions that are relevant to BrS, such as changes in temperature, heart rate, and vagal tone, and the effects of gender and isoproterenol on calcium handling. Studies are warranted to further investigate these mechanisms in models of BrS.
Collapse
Affiliation(s)
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Brugada Phenocopy Induced by Recreational Drug Use. Case Rep Cardiol 2018; 2018:6789253. [PMID: 29850266 PMCID: PMC5925210 DOI: 10.1155/2018/6789253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/26/2018] [Indexed: 11/25/2022] Open
Abstract
Recreational drugs are commonly abused in all age groups. Intoxication with these substances can induce silent but significant electrocardiographic signs which may lead to sudden death. In this case study, we present a 49-year-old male with no medical comorbidities who came to the emergency department requesting opioid detoxification. Toxicology screen was positive for cocaine, heroin, and cannabis. Initial electrocardiogram (EKG) showed features of a Brugada pattern in the right precordial leads, which resolved within one day into admission. This presentation is consistent with the recently recognized clinical entity known as Brugada phenocopy.
Collapse
|
20
|
Yang L, Ma G, Yu T, Gao H, Wang Y, Wu Y. A case report of Brugada-like ST-segment elevation probably due to coronary vasospasm. Medicine (Baltimore) 2018; 97:e9900. [PMID: 29489690 PMCID: PMC5851773 DOI: 10.1097/md.0000000000009900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Vasospastic angina is caused by sudden occlusive vasoconstriction of a segment of an epicardial artery, with transient ST-segment elevation on electrocardiography. Brugada Syndrome is an inherited arrhythmogenic cardiac disorder with a diagnostic electrocardiography characterized by coved-type ST-segment elevation in right precordial leads (V1-V3). Those two diseases usually have no correlation. In this report, we discuss an interesting case of a patient who was diagnosed as vasospastic angina according to his coronary angiography, but his electrocardiography showed a Brugada-like ST-segment elevation. PATIENT CONCERNS Our patient had a 9-month history of temporary but progressive substernal burning sensation with acid bilges of shoulders and arms, as well as profuse sweating at night. DIAGNOSES Although he had no abnormal laboratory test result, no dysfunctional recorded echocardiogram or documented arrhythmia after being admitted to the hospital, his electrocardiography showed a Brugada-like ST-segment elevation. The coronary angiography result confirmed a diagnosis of vasospastic angina. INTERVENTIONS The patient was prescribed diltiazem, aspirin, isosorbide mononitrate and rosuvastatin and was strongly advised to quit cigarettes and alcohol. OUTCOMES Follow-up at half a year turned out well. LESSONS This case links Brugada syndrome to coronary vasospasm. They may share similar mechanisms. Provocation test and gene test needs to be ran to distinguish both. Long-term follow-up is essential for it may bring a warning sign for life threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Lu Yang
- Department of Cardiology, Beijing Friendship Hospital
| | - Guodong Ma
- Department of Cardiology, Beijing Friendship Hospital
| | - Tianyu Yu
- Department of Cardiology, Beijing Friendship Hospital
| | - Huikuan Gao
- Department of Cardiology, Beijing Friendship Hospital
| | | | - Yongquan Wu
- Department of Cardiology, Beijing Friendship Hospital
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China
| |
Collapse
|
21
|
Brugada Syndrome: A Primer for Nurse Practitioners. J Nurse Pract 2018. [DOI: 10.1016/j.nurpra.2017.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Tachibana M, Nishii N, Morita H, Nakagawa K, Watanabe A, Nakamura K, Ito H. Exercise stress test reveals ineligibility for subcutaneous implantable cardioverter defibrillator in patients with Brugada syndrome. J Cardiovasc Electrophysiol 2017; 28:1454-1459. [DOI: 10.1111/jce.13315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Motomi Tachibana
- Department of Cardiology; Sakakibara Heart Institute of Okayama; Okayama Japan
| | - Nobuhiro Nishii
- Department of Cardiovascular Therapeutics; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Koji Nakagawa
- Department of Cardiovascular Medicine; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Atsuyuki Watanabe
- Department of Cardiovascular Medicine; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
23
|
Magi S, Lariccia V, Maiolino M, Amoroso S, Gratteri S. Sudden cardiac death: focus on the genetics of channelopathies and cardiomyopathies. J Biomed Sci 2017; 24:56. [PMID: 28810874 PMCID: PMC5556354 DOI: 10.1186/s12929-017-0364-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023] Open
Abstract
Sudden cardiac death (SCD) describes a natural and unexpected death from cardiac causes occurring within a short period of time (generally within 1 h of symptom onset) in the absence of any other potentially lethal condition. Most SCD-related diseases have a genetic basis; in particular congenital cardiac channelopathies and cardiomyopathies have been described as leading causes of SCD. Congenital cardiac channelopathies are primary electric disorders caused by mutations affecting genes encoding cardiac ion channels or associated proteins, whereas cardiomyopathies are related to mutations in genes encoding several categories of proteins, including those of sarcomeres, desmosomes, the cytoskeleton, and the nuclear envelope. The purpose of this review is to provide a general overview of the main genetic variants that have been linked to the major congenital cardiac channelopathies and cardiomyopathies. Functional alterations of the related proteins are also described.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Marta Maiolino
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Santo Gratteri
- Department of Health Sciences, University "Magna Graecia", 88100, Catanzaro, Italy
| |
Collapse
|