1
|
Mahmoudi A, Atkin SL, Jamialahmadi T, Sahebkar A. Identification of key upregulated genes involved in foam cell formation and the modulatory role of statin therapy. Int Immunopharmacol 2023; 119:110209. [PMID: 37130442 DOI: 10.1016/j.intimp.2023.110209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND We aimed to investigate the possible effect of statins on important genes/proteins involved in foam cell formation. METHODS The gene expression profile of the GSE9874, GSE54666, and GSE7138from the Omnibus database were usedto identify genes involved in foam cell formation. The protein-protein interaction (PPI) network and MCODE analysis of the intersection of three databases were analyzed. We used molecular docking analysis to investigate the possible interaction of different statins with the overexpressed hub genes obtained from PPI analysis. RESULTS The intersection among the three datasets showed 54 upregulated and 26 down-regulated genes. The most critical overexpressed genes/proteins obtained as hub genes included: G6PD, NPC1, ABCA1, ABCG1, PGD, PLIN2, PPAP2B, and TXNRD1 based on PPI analysis. Functional enrichment analysis of 81 intersection DEGs at the biological process level focusing on the cholesterol metabolic process, secondary alcohol biosynthetic process and the cholesterol biosynthetic process. Under cellular components, the analysis confirmed that these 81 intersection DEGs were mainly applied in endoplasmic reticulum membrane, lysosome and lytic vacuole. The molecular functions were identified as sterol binding, oxidoreductase activity and NADP binding. The molecular docking showed that all statins appear to affect important protein targets overexpressed in foam cell formation. However, lipophilic statins, especially pitavastatin and lovastatin, had a greater effect than hydrophilic statins. The most significant protein target of all the overexpressed genes interacting with all statin types was ABCA1. CONCLUSION The effect of lipophilic statins was shown for several critical proteins in foam cell formation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Stephen L Atkin
- School of Postgraduate Studies and Research, RCSI Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Oliver ET, Chichester K, Devine K, Sterba PM, Wegner C, Vonakis BM, Saini SS. Effects of an Oral CRTh2 Antagonist (AZD1981) on Eosinophil Activity and Symptoms in Chronic Spontaneous Urticaria. Int Arch Allergy Immunol 2019; 179:21-30. [PMID: 30879003 PMCID: PMC6500753 DOI: 10.1159/000496162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approximately 50% of patients with chronic spontaneous urticaria (CSU) experience symptoms that are not fully controlled by antihistamines, indicating an unmet clinical need. OBJECTIVE To evaluate the effects of the selective CRTh2 antagonist AZD1981 on symptoms and targeted leukocytes in adults with persistent CSU despite treatment with H1-antihistamines. METHODS We performed a single-center, randomized, placebo-controlled study involving adult CSU subjects with symptoms despite daily antihistamines. The subjects underwent a 2-week placebo run-in and 4 weeks of double-blinded therapy with either AZD1981 40 mg TID or placebo, followed by a 2-week placebo washout. The primary objective was to assess the effect of AZD1981 on CSU signs and symptoms. Secondary objectives included the effects of AZD1981 on prostaglandin D2 (PGD2)-induced eosinophil shape change, circulating leukocyte subsets, CRTh2 expression on blood leukocytes, and total blood leukocyte histamine content. RESULTS Twenty-eight subjects were randomized to AZD1981 or placebo, with 26 subjects completing the study. The urticaria activity scores declined during the treatment phase in both groups, and they were significantly reduced in the AZD1981 group at the end of washout. AZD1981 treatment increased circulating eosinophils and significantly impaired PGD2-mediated eosinophil shape change. CRTh2 surface expression rose significantly on blood basophils during active treatment. No serious adverse events were observed. CONCLUSIONS This is the first study to examine the efficacy of a CRTh2 antagonist in antihistamine-refractory CSU. AZD1981 treatment was well tolerated, effectively inhibited PGD2-mediated eosinophil shape change, shifted numbers of circulating eosinophils, and reduced weekly itch scores more than hives during treatment and into washout. Further studies are needed to determine whether inhibition of the PGD2/CRTh2 pathway will be an -effective treatment for CSU.
Collapse
Affiliation(s)
- Eric Tyrell Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| | - Kris Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Devine
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Meghan Sterba
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Wegner
- Scientific Partnering and Alliances, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Becky Marie Vonakis
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarbjit Singh Saini
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Abstract
Glutathione transferases (GSTs) are a multigene family of ubiquitously expressed, polymorphic enzymes responsible for the metabolism of a wide range of both endogenous and exogenous substrates, play a central role in the adaptive response to chemical and oxidative stress, and are subject to regulation by a range of structurally unrelated chemicals. In this review, we present a current summary of knockout mouse models in the GST field, discussing some of the issues pertaining to orthologous proteins between mice and humans, the potential confounding issues related to genetic background, and also cover new transgenic models in the increasingly important area of humanization.
Collapse
Affiliation(s)
- Colin J Henderson
- Cancer Research UK, Molecular Pharmacology Group, Biomedical Research Institute, University of Dundee College of Medicine Dentistry and Nursing, Ninewells Hospital, Dundee, United Kingdom.
| | | |
Collapse
|
4
|
Chen DY, Liu LM, Liu SJ, Zhu MY, Xu L, Huang TH. Single-chain antibody against human lipocalin-type prostaglandin D synthase: construction, expression, purification, and activity assay. BIOCHEMISTRY. BIOKHIMIIA 2008; 73:702-10. [PMID: 18620537 DOI: 10.1134/s0006297908060114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An active form of single-chain antibody (ScFv) from murine monoclonal antibody 4A7, which is specific for lipocalin-type prostaglandin D synthase (L-PGDS), was produced in Escherichia coli. The complementary DNA fragments encoding the variable regions of heavy chain (VH) and light chain (VL), which amplified from hybridoma 4A7 producing a monoclonal antibody (IgG1) against L-PGDS, were connected by a (Gly4Ser)3 linker using an assembly polymerase chain reaction. The resultant ScFv were cloned into the vector pGEM and expressed in E. coli as inclusion bodies. The expressed ScFv fusion proteins were purified by Ni2+-nitrilotriacetic acid chromatography. The purity and activity of purified ScFv were confirmed by SDS-PAGE and ELISA. The result revealed that 4A7 ScFv conserved the same characteristics of specific recognition and binding to sperm as the parental 4A7 monoclonal antibody.
Collapse
Affiliation(s)
- De-Yu Chen
- Research Center for Reproductive Medicine, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | | | | | |
Collapse
|
5
|
Gao WM, Chadha MS, Berger RP, Omenn GS, Allen DL, Pisano M, Adelson PD, Clark RSB, Jenkins LW, Kochanek PM. A gel-based proteomic comparison of human cerebrospinal fluid between inflicted and non-inflicted pediatric traumatic brain injury. J Neurotrauma 2007; 24:43-53. [PMID: 17263669 PMCID: PMC2721471 DOI: 10.1089/neu.2006.0061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the most common cause of traumatic death in infancy, and inflicted TBI (iTBI) is the predominant cause. Like other central nervous system pathologies, TBI changes the composition of cerebrospinal fluid (CSF), which may represent a unique clinical window on brain pathophysiology. Proteomic analysis, including two-dimensional (2-D) difference in gel electrophoresis (DIGE) combined with mass spectrometry (MS), was used to compare the CSF protein profile of two pooled samples from pediatric iTBI (n = 13) and non-inflicted TBI (nTBI; n = 13) patients with severe injury. CSF proteins from iTBI and nTBI were fluorescently labeled in triplicate using different fluorescent Cy dyes and separated by 2-D gel electrophoresis. Approximately 250 protein spots were found in CSF, with 90% between-gel reproducibility of the 2-D gel. Following in-gel digestion, the tryptic peptides were analyzed by MS for protein identification. The acute phase reactant, haptoglobin (HP) isoforms, showed an approximate fourfold increase in nTBI versus iTBI. In contrast, the levels of prostaglandin D(2) synthase (PGDS) and cystatin C (CC) were 12-fold and sevenfold higher in iTBI versus nTBI, respectively. The changes of HP, PGDS, and CC were confirmed by Western blot. These initial results with conventional gel-based proteomics show new protein changes that may ultimately help to understand pathophysiological differences between iTBI and nTBI.
Collapse
Affiliation(s)
- Wei-Min Gao
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Frova C. Glutathione transferases in the genomics era: new insights and perspectives. ACTA ACUST UNITED AC 2006; 23:149-69. [PMID: 16839810 DOI: 10.1016/j.bioeng.2006.05.020] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
In the last decade the tumultuous development of "omics" greatly improved our ability to understand protein structure, function and evolution, and to define their roles and networks in complex biological processes. This fast accumulating knowledge holds great potential for biotechnological applications, from the development of biomolecules with novel properties of industrial and medical importance, to the creation of transgenic organisms with new, favorable characteristics. This review focuses on glutathione transferases (GSTs), an ancient protein superfamily with multiple roles in all eukaryotic organisms, and attempts to give an overview of the new insights and perspectives provided by omics into the biology of these proteins. Among the aspects considered are the redefinition of GST subfamilies, their evolution in connection with structurally related families, present and future biotechnological outcomes.
Collapse
Affiliation(s)
- Carla Frova
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
7
|
Abstract
This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous alpha,beta-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-kappaB (NF-kappaB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Center, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | |
Collapse
|
8
|
Chen DY, Wang JJ, Huang YF, Zhou KY. Relationship between lipocalin-type prostaglandin D synthase and α-glucosidase in azoospermia seminal plasma. Clin Chim Acta 2005; 354:69-76. [PMID: 15748601 DOI: 10.1016/j.cccn.2004.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 11/16/2022]
Abstract
BACKGROUND [corrected] To determine the correlation of lipocalin-type prostaglandin D synthase (L-PGDS) and alpha-glucosidase in semen. METHODS We analyzed 68 seminal plasmas for lipocalin-type prostaglandin D synthase (L-PGDS) and alpha-glucosidase, L-PGDS was analyzed by ELISA. The semen donors were categorized in 3 groups: normal, obstructive and non-obstructive azoospermia. We then evaluated their correlation. RESULTS The difference of L-PGDS concentration (P<0.001) and alpha-glucosidase activity (P<0.001) among the 3 clinical groups was statistically significant. Correlation between L-PGDS concentration and alpha-glucosidase was also statistically significant. L-PGDS concentration correlated positively with alpha-glucosidase activity (r=0.882). CONCLUSIONS L-PGDS in seminal plasma, like alpha-glucosidase, suggests an obstruction of the seminal ducts and may be a potential marker that may aid in the differential diagnosis of obstructive and non-obstructive azoospermia.
Collapse
Affiliation(s)
- De-Yu Chen
- College of Life Science, Nanjing Normal University, Nanjing, China; Laboratory of Reproduction and Genetics, JinLing Hospital, Nanjing, China.
| | | | | | | |
Collapse
|