1
|
Schimmelpfennig J, Jankowiak-Siuda K. Exploring DMT: Endogenous role and therapeutic potential. Neuropharmacology 2025; 268:110314. [PMID: 39832530 DOI: 10.1016/j.neuropharm.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
N,N-Dimethyltryptamine (DMT) is a naturally occurring amine and psychedelic compound, found in plants, animals, and humans. While initial studies reported only trace amounts of DMT in mammalian brains, recent findings have identified alternative methylation pathways and DMT levels comparable to classical neurotransmitters in rodent brains, calling for a re-evaluation of its biological role and exploration of this inconsistency. This study evaluated DMT's biosynthetic pathways, focusing on indolethylamine N-methyltransferase (INMT) and its isoforms, and possible regulatory mechanisms, including alternative routes of synthesis and how physiological conditions, such as stress and hypoxia influence DMT levels. This review considers the impact of endogenous regulatory factors on DMT synthesis and degradation, particularly under conditions affecting monoamine oxidase (MAO) efficiency and activity. We also examined DMT's potential roles in various physiological processes, including neuroplasticity and neurogenesis, mitochondrial homeostasis, immunomodulation, and protection against hypoxia and oxidative stress. DMT's lipophilic properties allow it to cross cell membranes and activate intracellular 5-HT2A receptors, contributing to its role in neuroplasticity. This suggests DMT may act as an endogenous ligand for intracellular receptors, highlighting its broader biological significance beyond traditional receptor pathways. The widespread evolutionary presence of DMT's biosynthetic pathways across diverse species suggests it may play essential roles in various developmental stages and cellular adaptation to environmental challenges, highlighting the neurobiological significance of DMT and its potential clinical applications. We propose further research to explore the role of endogenous DMT, particularly as a potential neurotransmitter.
Collapse
|
2
|
Abdulla ZI, Mineur YS, Crouse RB, Etherington IM, Yousuf H, Na JJ, Picciotto MR. Medial prefrontal cortex acetylcholine signaling mediates the ability to learn an active avoidance response following learned helplessness training. Neuropsychopharmacology 2024; 50:488-496. [PMID: 39362985 PMCID: PMC11631976 DOI: 10.1038/s41386-024-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Increased brain levels of acetylcholine (ACh) have been observed in patients with depression, and increasing ACh levels pharmacologically can precipitate stress-related behaviors in humans and animals. Conversely, optimal ACh levels are required for cognition and memory. We hypothesize that excessive ACh signaling results in strengthening of negative encoding in which memory formation is aberrantly strengthened for stressful events. The medial prefrontal cortex (mPFC) is critical for both top-down control of stress-related circuits, and for encoding of sensory experiences. We therefore evaluated the role of ACh signaling in the mPFC in a learned helplessness task in which mice were exposed to repeated inescapable stressors followed by an active avoidance task. Using fiber photometry with a genetically-encoded ACh sensor, we found that ACh levels in the mPFC during exposure to inescapable stressors were positively correlated with later escape deficits in an active avoidance test in males, but not females. Consistent with these measurements, we found that both pharmacologically- and chemogenetically-induced increases in mPFC ACh levels resulted in escape deficits in both male and female mice, whereas chemogenetic inhibition of ACh neurons projecting to the mPFC improved escape performance in males, but impaired escape performance in females. These results highlight the adaptive role of ACh release in stress response, but also support the idea that sustained elevation of ACh contributes to maladaptive behaviors. Furthermore, mPFC ACh signaling may contribute to stress-based learning differentially in males and females.
Collapse
Affiliation(s)
- Zuhair I Abdulla
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA
| | - Yann S Mineur
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA
| | - Richard B Crouse
- Yale University Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Ian M Etherington
- Yale University Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Hanna Yousuf
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA
| | | | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA.
- Yale University Interdepartmental Neuroscience Program, New Haven, CT, USA.
- Kavli Institute for Neuroscience at Yale, New Haven, CT, USA.
| |
Collapse
|
3
|
Zhao Y, Park I, Rubakhin SS, Bashir R, Vlasov Y, Sweedler JV. 1-Octanol-assisted ultra-small volume droplet microfluidics with nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2024; 1321:342998. [PMID: 39155094 PMCID: PMC11413884 DOI: 10.1016/j.aca.2024.342998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time-dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. RESULTS We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 = 0.99) between 0.4 μM and 25 μM with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. SIGNIFICANCE The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
Collapse
Affiliation(s)
- Yaoyao Zhao
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Insu Park
- Holonyak Micro & Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Amirghasemi F, Al-Shami A, Ushijima K, Mousavi MPS. Flexible Acetylcholine Neural Probe with a Hydrophobic Laser-Induced Graphene Electrode and a Fluorous-Phase Sensing Membrane. ACS MATERIALS LETTERS 2024; 6:4158-4167. [PMID: 39309214 PMCID: PMC11415234 DOI: 10.1021/acsmaterialslett.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This work develops the first laser-induced graphene (LIG)-based electrochemical sensor with a superhydrophobic fluorous membrane for a flexible acetylcholine (ACh) sensor. ACh regulates several physiological functions, including synaptic transmission and glandular secretion. The ACh sensing membrane is doped with a fluorophilic cation-exchanger that can selectively measure ACh based on the inherent selectivity of the fluorous phase for hydrophobic ions, such as ACh. The fluorous-phase sensor improves the selectivity for ACh over Na+ and K+ by 2 orders of magnitude (compared to traditional lipophilic membranes), thus lowering the detection limit in artificial cerebrospinal fluid (aCSF) from 331 to 0.38 μ M, thereby allowing measurement in physiologically relevant ranges of ACh. Engraving LIG under argon creates a hydrophobic surface with a 133.7° contact angle, which minimizes the formation of a water layer. The flexible solid-contact LIG fluorous sensor exhibited a slope of 59.3 mV/decade in aCSF and retained function after 20 bending cycles, thereby paving the way for studying ACh's role in memory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Kara Ushijima
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Yoshimi Y, Katsumata Y, Osawa N, Ogishita N, Kadoya R. Synthesis of fluorescent Molecularly Imprinted Polymer Nanoparticles Sensing Small Neurotransmitters with High Selectivity Using Immobilized Templates with Regulated Surface Density. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:212. [PMID: 36616121 PMCID: PMC9824157 DOI: 10.3390/nano13010212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
To develop nanosensors to probe neurotransmitters, we synthesized fluorescent-functionalized molecularly imprinted polymeric nanoparticles (fMIP-NPs) using monoamine neurotransmitters (serotonin and dopamine) immobilized on glass beads as templates. The size and fluorescence intensity of the fMIP-NPs synthesized with blended silane couplers increased with the presence of the target but were insensitive to the target analogs (L-tryptophan and L-dopa, respectively). However, when the template is anchored by a pure silane agent, both the fluorescence intensity and particle size of the fMIP-NPs were sensitive to the structural analog of the template. Another fMIP-NP was synthesized in the presence of poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride (METMAC)-co-methacrylamide) grafted onto glass beads as a dummy template for acetylcholine. Acetylcholine increased the diameter and fluorescence intensity of the fMIP-NP, but choline had no effect. When the homopolymer of METMAC was used as a template, the fluorescence intensity and size of the resulting nanoparticles were not responsive to either acetylcholine or choline. The principle of increased fluorescence intensity due to specific interaction with the target substance is probably due to the increased distance between the fluorescent functional groups and decreased self-quenching due to the swelling caused by the specific interaction with the template. The results also indicate that MIP nanoparticles prepared by solid-phase synthesis can be used for targeting small molecules, such as the neurotransmitters addressed in this study, by adjusting the surface density of the template.
Collapse
Affiliation(s)
- Yasuo Yoshimi
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan
| | | | | | | | | |
Collapse
|
6
|
Blanco ME, Mayo OB, Bandiera T, De Pietri Tonelli D, Armirotti A. LC-MS/MS analysis of twelve neurotransmitters and amino acids in mouse cerebrospinal fluid. J Neurosci Methods 2020; 341:108760. [PMID: 32428622 DOI: 10.1016/j.jneumeth.2020.108760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND So far, analytical investigation of neuroactive molecules in cerebrospinal fluid (CSF) of rodent models has been limited to rats, given the intrinsic anatomic difficulties related to mice sampling and the corresponding tiny amounts of CSF obtained. This poses a challenge for the research in neuroscience, where many, if not most, animal models for neuronal disorders rely on mice. NEW METHOD We introduce a new, sensitive and robust LC-MS/MS method to analyze a panel of twelve neuroactive molecules (NM) from mouse CSF (aspartic acid, serine, glycine, glutamate, γ-aminobutyric acid, norepinephrine, epinephrine, acetylcholine, dopamine, serotonin, histamine and its metabolite 1-metylhistamine). The paper describes the sampling procedure that allows the collection of 1-2 microliters of pure CSF from individual mouse specimens. RESULTS To test its applicability, we challenged our method on the field, by sampling 37 individual animals, thus demonstrating its strength and reliability. COMPARISON WITH EXISTING METHOD(S) Compared to other methods, our procedure does not involve any extraction nor derivatization steps: samples are simply diluted and analyzed as such by LC-MS/MS, using a dedicated ion pairing agent in the chromatographic setup. The panel of neuroactive molecules that is analyzed in a single run is also significantly higher compared to other methods. CONCLUSIONS Given the number of mouse models used in the neuroscience research, we believe that our work will pave new ways to more advanced research in this field.
Collapse
Affiliation(s)
- María Encarnación Blanco
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Genova, Italy; D3-Pharmachemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Olga Barca Mayo
- Neuro miRNA Lab, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Tiziano Bandiera
- D3-Pharmachemistry, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Andrea Armirotti
- Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Genova, Italy; Analytical Chemistry and In-vivo Pharmacology Facility, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
7
|
van den Brink WJ, Palic S, Köhler I, de Lange ECM. Access to the CNS: Biomarker Strategies for Dopaminergic Treatments. Pharm Res 2018; 35:64. [PMID: 29450650 PMCID: PMC5814527 DOI: 10.1007/s11095-017-2333-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022]
Abstract
Despite substantial research carried out over the last decades, it remains difficult to understand the wide range of pharmacological effects of dopaminergic agents. The dopaminergic system is involved in several neurological disorders, such as Parkinson's disease and schizophrenia. This complex system features multiple pathways implicated in emotion and cognition, psychomotor functions and endocrine control through activation of G protein-coupled dopamine receptors. This review focuses on the system-wide effects of dopaminergic agents on the multiple biochemical and endocrine pathways, in particular the biomarkers (i.e., indicators of a pharmacological process) that reflect these effects. Dopaminergic treatments developed over the last decades were found to be associated with numerous biochemical pathways in the brain, including the norepinephrine and the kynurenine pathway. Additionally, they have shown to affect peripheral systems, for example the hypothalamus-pituitary-adrenal (HPA) axis. Dopaminergic agents thus have a complex and broad pharmacological profile, rendering drug development challenging. Considering the complex system-wide pharmacological profile of dopaminergic agents, this review underlines the needs for systems pharmacology studies that include: i) proteomics and metabolomics analysis; ii) longitudinal data evaluation and mathematical modeling; iii) pharmacokinetics-based interpretation of drug effects; iv) simultaneous biomarker evaluation in the brain, the cerebrospinal fluid (CSF) and plasma; and v) specific attention to condition-dependent (e.g., disease) pharmacology. Such approach is considered essential to increase our understanding of central nervous system (CNS) drug effects and substantially improve CNS drug development.
Collapse
Affiliation(s)
- Willem Johan van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Semra Palic
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Isabelle Köhler
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth Cunera Maria de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Chéhensse C, Bahrami S, Denys P, Clément P, Bernabé J, Giuliano F. The spinal control of ejaculation revisited: a systematic review and meta-analysis of anejaculation in spinal cord injured patients. Hum Reprod Update 2013; 19:507-26. [DOI: 10.1093/humupd/dmt029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
9
|
Eisenman LM. Motion sickness may be caused by a neurohumoral action of acetylcholine. Med Hypotheses 2009; 73:790-3. [DOI: 10.1016/j.mehy.2009.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
|
10
|
Abstract
Vascular dementia (VaD) is a heterogeneous disorder resulting from various cerebrovascular diseases (CVD) causing cognitive impairment that reflects severity and location of damage. Epidemiological studies suggest VaD is the second commonest cause of dementia, but autopsy series report that pure VaD is infrequent, while combined CVD and Alzheimer's Disease(AD) is likely the commonest pathological-dementia correlate. Both diseases share vascular risk factors and benefit from their treatment. The most widely used diagnostic criteria for VaD are highly specific but not sensitive. Vascular Cognitive Impairment (VCI) is a dynamic, evolving concept that embraces VaD, Vascular Cognitive Impairment No Dementia (VCIND) and mixed AD and CVD. Clinical trials to date have focused on probable and possible VaD with beneficial effects evident for different drug classes, including cholinergic agents and NMDA agonists. Limitations have included use of cognitive tools suitable for AD that are insensitive to executive dysfunction. Disease heterogeneity has not been adequately controlled and subtypes require further study. Diagnostic VaD criteria now 13 years old need updating. More homogeneous subgroups need to be defined and therapeutically targeted to improve cognitive-behavioural outcomes including optimal control of vascular risk factors. More sensitive testing of executive function outlined in recent VCI Harmonization criteria and longer trial duration are needed to discern meaningful effects. Imaging criteria must be well-defined, with centralized review and standardized protocols. Serial scanning with quantification of tissue atrophy and lesion burden is becoming feasible, and cognitive interventions, including rehabilitation pharmacotherapy, with drugs strategically coupled to cognitive -behavioural treatments, hold promise and need further development.
Collapse
Affiliation(s)
- Sandra E Black
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Milutinović S, Murphy D, Japundzić-Zigon N. Central cholinergic modulation of blood pressure short-term variability. Neuropharmacology 2006; 50:874-83. [PMID: 16487550 DOI: 10.1016/j.neuropharm.2005.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/20/2005] [Accepted: 12/15/2005] [Indexed: 11/25/2022]
Abstract
The role of neurally born acetylcholine in the central modulation of cardiovascular short-term variability was assessed using a pharmacological probe physostigmine, a cholinesterase inhibitor that can act centrally also. Experiments were performed in instrumented conscious rats. Equidistant sampling at 20 Hz of systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and heart rate (HR) allowed direct spectral analysis. Spectra were analysed in the whole, very-low frequency (VLF), low-frequency (LF) and high-frequency (HF) domains. Physostigmine, but not neostigmine, increased SAP, LF SAP and HF SAP variability while neostigmine, but not physostigmine, decreased HR without affecting HR variability. Atropine methyl nitrate prevented neostigmine-induced bradycardia and potentiated the effects of physostigmine on DAP, LF DAP and HF DAP variability. Atropine sulphate, hexamethonium, phentolamine and metoprolol inhibited physostigmine-induced increase of SAP and LF SAP. Pre-treatment of rats by quinapril prevented physostigmine-induced increase of SAP, but not of LF SAP, while the V(1a) antagonist prevented the increase of HF SAP. The results suggest that central cholinergic neurons facilitate but do not create LF SAP and HF SAP variability. The effect of physostigmine on LF SAP seems to be mediated via central muscarinic sites and the peripheral sympathetic system, while non-muscarinic central sites and vasopressin pathways subserve the increase of HF SAP.
Collapse
Affiliation(s)
- Sanja Milutinović
- Laboratory for Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, P.O. Box 840, 11129 Belgrade, Serbia and Montenegro
| | | | | |
Collapse
|
12
|
Albuquerque EX, Pereira EF, Braga MF, Matsubayashi H, Alkondon M. Neuronal nicotinic receptors modulate synaptic function in the hippocampus and are sensitive to blockade by the convulsant strychnine and by the anti-Parkinson drug amantadine. Toxicol Lett 1998; 102-103:211-8. [PMID: 10022256 DOI: 10.1016/s0378-4274(98)00309-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Evidence is provided that rapid application of nicotinic agonists to CA1 interneurons in hippocampal slices can trigger responses with at least one of three components: (i) whole-cell currents due to activation of nicotinic receptors (nAChRs) on the neuron under study; (ii) fast current transients representing back-propagating action potentials; and (iii) post-synaptic currents mediated by gamma-aminobutyric acid (GABA) released from presynaptic neurons by activation of preterminal nAChRs. The use of the alpha7-nAChR-selective agonist choline and of nAChR-subtype-selective antagonists led to the conclusion that these responses can be mediated by alpha7 or alpha4beta2 nAChRs. Experiments carried out in cultured hippocampal neurons demonstrated that the evoked GABA release can also be reduced by activation of these receptors, and showed that the convulsant strychnine is a competitive antagonist of alpha7 nAChRs and a non-competitive antagonist of alpha4beta2 nAChRs, whereas the anti-Parkinson drug amantadine is a non-competitive antagonist of alpha7, alpha4beta2, and alpha3beta4 nAChRs.
Collapse
Affiliation(s)
- E X Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
13
|
Togashi H, Kimura S, Matsumoto M, Yoshioka M, Minami M, Saito H. Cholinergic changes in the hippocampus of stroke-prone spontaneously hypertensive rats. Stroke 1996; 27:520-5; discussion 525-6. [PMID: 8610323 DOI: 10.1161/01.str.27.3.520] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE We investigated age-related changes in the central cholinergic systems in stroke-prone spontaneously hypertensive rats (SHRSP) to examine whether the regional and progressive cholinergic changes occur and are correlated with behavioral changes in the passive avoidance task. METHODS Tissue levels of choline (Ch) and acetylcholine (ACh) were determined in the cerebral regions, including the hippocampus, of SHRSP (at two ages: 15 to 20 and 30 to 40 weeks) that had been tested in a passive avoidance task and were compared with those of age-matched controls, Wistar-Kyoto rats (WKY). With the use of in vivo microdialysis, high K+-stimulated release of hippocampal ACh, a functional parameter of the cholinergic system, was also determined in 15- to 20-week-old SHRSP. RESULTS We found that 15- to 20-week-old SHRSP demonstrated a markedly lower level of hippocampal Ch than age-matched WKY. The decrease in the Ch level in 15- to 20-week-old SHRSP was observed in all regions examined; however, in the hippocampus a significant difference from WKY was subsequently observed at the age of 30 to 40 weeks. The hippocampal ACh release was markedly decreased by repetitive stimulation with high K+ in 15- to 20-week-old SHRSP. Behavioral impairment in the passive avoidance task was observed in the two age groups of SHRSP, with significant and positive correlations between the hippocampal ACh levels and the response latency. CONCLUSIONS A decrease in hippocampal Ch level was observed in both 15- to 20-week-old and 30- to 40-week-old SHRSP, accompanied by performance failure in the passive avoidance task. The abnormal release of hippocampal ACh in response to the repetitive K+ stimulation was also noted in 15- to 20-week-old SHRSP. Thus, cholinergic dysfunction in the hippocampal system may be responsible for behavioral abnormality in the passive avoidance task in SHRSP.
Collapse
Affiliation(s)
- H Togashi
- First Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|