1
|
Midilli B, Nurten A, Gürtekin B, Enginar N. Effects of oxotremorine on convulsions in mice induced by scopolamine and food intake after fasting. Behav Brain Res 2025; 480:115402. [PMID: 39694098 DOI: 10.1016/j.bbr.2024.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Antimuscarinic administration and food intake cause convulsions in mice and rats after fasting for 48 h or less. Increased M1 and M2 muscarinic receptor expression in brain regions during fasting, and reversal of changes by refeeding may contribute to these seizures. Since receptor expression is regulated in response to agonist stimulation, this study investigated effects of nonselective muscarinic receptor agonist oxotremorine on convulsions in fasted animals. Mice deprived of food for 24 h were given oxotremorine during (0.1 mg/kg, twice daily, s.c.) or after (0.05 or 0.1 mg/kg, i.p.) fasting. Fasted animals were treated with saline or scopolamine (i.p.) and observed for 30 min for the convulsions after being allowed to eat ad libitum. Oxotremorine administration during fasting produced no significant effect on convulsion development. Incidence and onset of convulsions, and seizure stages were indifferent between the scopolamine and oxotremorine - scopolamine groups. However, oxotremorine (0.1 mg/kg) administration after fasting reduced incidence of convulsions. Resulting from an agonist-antagonist interaction at M1 and/or M2 muscarinic receptors, oxotremorine administered after fasting exhibited an anticonvulsant activity. Oxotremorine administration during fasting was expected to suppress seizure development via inhibition of receptor expression. Results did not confirm this expectation and suggested that muscarinic receptor expression was either not affected or not related to the convulsions. Food intake after fasting, and food deprivation have been shown to induce cholinergic hyperexcitability. Although contrary to our hypothesis, future research may investigate whether increased expression of muscarinic receptors mediate or contribute to an increase in cholinergic activity.
Collapse
Affiliation(s)
- Berna Midilli
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Başak Gürtekin
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
2
|
Bartoszek A, Fornal E. Evaluation of caffeine modulation of topiramate effect on locomotor activity of zebrafish larvae in pentylenetetrazol-induced seizure model. PLoS One 2025; 20:e0317241. [PMID: 40036256 PMCID: PMC11878912 DOI: 10.1371/journal.pone.0317241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/25/2024] [Indexed: 03/06/2025] Open
Abstract
Epilepsy is a prevalent neurological condition marked by seizures that lead to neurobiological and behavioral impairments. Caffeine (CAF), the world's most consumed stimulant, reportedly affects both epileptic seizures and the efficacy of antiepileptic drugs, particularly topiramate (TPM). This study aimed to investigate the effects of CAF on TPM in a pentylenetetrazol (PTZ)-induced seizure model using zebrafish larvae. Four days post-fertilization Danio rerio larvae were incubated for 18 hours with CAF, TPM, or CAF+TPM, followed by an assessment of locomotor activity. Seizures were induced by adding PTZ to achieve a final concentration of 20 mM. In the PTZ-induced seizure model, the application of CAF in doses over 50 mg/L resulted in a decrease in the average movement. TPM ( > 50 μM) significantly protected larvae against the PTZ. The addition of 15 mg/L CAF to TPM did not affect larval activity at any TPM concentration tested; however, higher doses of CAF significantly reduced larval activity. CAF doses above 25 mg/L altered the activity of larvae treated with TPM in the PTZ-induced seizure model. Larvae exhibited differential heart rate (HR) responses to CAF exposure across doses. CAF at 75 mg/L significantly increased HR, while doses of 175 mg/L and higher induced bradycardia. TPM, across all tested doses, did not independently influence HR. The study provides valuable insights into the interactions between CAF and TPM, which may inform future research on human epilepsy. However, the extrapolation of these results to other species should be approached cautiously due to physiological differences.
Collapse
Affiliation(s)
- Adrian Bartoszek
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Zhao C, Rollo B, Shahid Javaid M, Huang Z, He W, Xu H, Kwan P, Zhang C. An integrated in vitro human iPSCs-derived neuron and in vivo animal approach for preclinical screening of anti-seizure compounds. J Adv Res 2024; 64:249-262. [PMID: 37995945 PMCID: PMC11464642 DOI: 10.1016/j.jare.2023.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION One-third of people with epilepsy continue to experience seizures despite treatment with existing anti-seizure medications (ASMs). The failure of modern ASMs to substantially improve epilepsy prognosis has been partly attributed to overreliance on acute rodent models in preclinical drug development as they do not adequately recapitulate the mechanisms of human epilepsy, are labor-intensive and unsuitable for high-throughput screening (HTS). There is an urgent need to find human-relevant HTS models in preclinical drug development to identify novel anti-seizure compounds. OBJECTIVES This paper developed high-throughput preclinical screening models to identify new ASMs. METHODS 14 natural compounds (α-asarone, curcumin, vinpocetine, magnolol, ligustrazine, osthole, tanshinone IIA, piperine, gastrodin, quercetin, berberine, chrysin, schizandrin A and resveratrol) were assessed for their ability to suppress epileptiform activity as measured by multi-electrode arrays (MEA) in neural cultures derived from human induced pluripotent stem cells (iPSCs). In parallel, they were tested for anti-seizure effects in zebrafish and mouse models, which have been widely used in development of modern ASMs. The effects of the compounds in these models were compared. Two approved ASMs were used as positive controls. RESULTS Epileptiform activity could be induced in iPSCs-derived neurons following treatment with 4-aminopyridine (4-AP) and inhibited by standard ASMs, carbamazepine, and phenytoin. Eight of the 14 natural compounds significantly inhibited the epileptiform activity in iPSCs-derived neurons. Among them, piperine, magnolol, α-asarone, and osthole showed significant anti-seizure effects both in zebrafish and mice. Comparative analysis showed that compounds ineffective in the iPSCs-derived neural model also showed no anti-seizure effects in the zebrafish or mouse models. CONCLUSION Our findings support the use of iPSCs-derived human neurons for first-line high-throughput screening to identify compounds with anti-seizure properties and exclude ineffective compounds. Effective compounds may then be selected for animal evaluation before clinical testing. This integrated approach may improve the efficiency of developing novel ASMs.
Collapse
Affiliation(s)
- Chunfang Zhao
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Muhammad Shahid Javaid
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Ziyu Huang
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Wen He
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, PR China; Departments of Neurology and Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia.
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang 330006, PR China; Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Pathology and Institute of Molecular Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
4
|
Liu D, Fujihara K, Yanagawa Y, Mushiake H, Ohshiro T. Gad1 knock-out rats exhibit abundant spike-wave discharges in EEG, exacerbated with valproate treatment. Front Neurol 2023; 14:1243301. [PMID: 37830095 PMCID: PMC10566305 DOI: 10.3389/fneur.2023.1243301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Objective To elucidate the functional role of gamma-aminobutyric acid (GABA)-ergic inhibition in suppressing epileptic brain activities such as spike-wave discharge (SWD), we recorded electroencephalogram (EEG) in knockout rats for Glutamate decarboxylase 1 (Gad1), which encodes one of the two GABA-synthesizing enzymes in mammals. We also examined how anti-epileptic drug valproate (VPA) acts on the SWDs present in Gad1 rats and affects GABA synthesis in the reticular thalamic nucleus (RTN), which is known to play an essential role in suppressing SWD. Methods Chronic EEG recordings were performed in freely moving control rats and homozygous knockout Gad1 (-/-) rats. Buzzer tones (82 dB) were delivered to the rats during EEG monitoring to test whether acoustic stimulation could interrupt ongoing SWDs. VPA was administered orally to the rats, and the change in the number of SWDs was examined. The distribution of GABA in the RTN was examined immunohistochemically. Results SWDs were abundant in EEG from Gad1 (-/-) rats as young as 2 months old. Although SWDs were universally detected in older rats irrespective of their Gad1 genotype, SWD symptom was most severe in Gad1 (-/-) rats. Acoustic stimulation readily interrupted ongoing SWDs irrespective of the Gad1 genotype, whereas SWDs were more resistant to interruption in Gad1 (-/-) rats. VPA treatment alleviated SWD symptoms in control rats, however, counterintuitively exacerbated the symptoms in Gad1 (-/-) rats. The immunohistochemistry results indicated that GABA immunoreactivity was significantly reduced in the somata of RTN neurons in Gad1 (-/-) rats but not in their axons targeting the thalamus. VPA treatment greatly increased GABA immunoreactivity in the RTN neurons of Gad1 (-/-) rats, which is likely due to the intact GAD2, another GAD isozyme, in these neurons. Discussion Our results revealed two opposing roles of GABA in SWD generation: suppression and enhancement of SWD. To account for these contradictory roles, we propose a model in which GABA produced by GAD1 in the RTN neuronal somata is released extrasynaptically and mediates intra-RTN inhibition.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazuyuki Fujihara
- Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hajime Mushiake
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Shin JN, Lee KB, Butterworth W, Park SK, Kim JY, Kim S. Zebrafish EEG predicts the efficacy of antiepileptic drugs. Front Pharmacol 2022; 13:1055424. [PMID: 36569331 PMCID: PMC9772616 DOI: 10.3389/fphar.2022.1055424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Pharmacological evaluation of antiepileptic drugs (AEDs) using mammalian animals takes long time and is expensive. The zebrafish is a species commonly used to study brain functions, neurological diseases, and drug toxicity, and attracts more attention as an alternative animal model to substitute or supplement mammalian animals in drug development. Electroencephalogram (EEG) is a key indicator for diagnosing brain diseases such as epilepsy, by directly measuring the brain activity. We propose a novel method for pharmacological evaluation of AEDs based on EEG from adult zebrafish, which allows researchers to select more clinically valuable drugs at the early stage of AED screening. Methods: To evaluate the efficacy of AEDs, zebrafish EEG signals were measured after administering six AEDs (valproate acid, gabapentin, ethosuximide, oxcarbazepine, tiagabine, and topiramate) at various doses to pentylenetetrazol (PTZ)-induced seizure models. The change in seizure activity was investigated according to doses. The antiepileptic effect was determined by observing a significant decrease in at least one out of three indicators of the number, total duration, and mean duration of ictal events. Results: Using EEG signals from adult zebrafish, antiepileptic effects were observed with all six AEDs. Among them, antiepileptic effects depending on dose were confirmed with valproate acid, gabapentin, ethosuximide, and tiagabine. Moreover, the 50% effective doses (ED50) of valproate acid and tiagabine were determined based on zebrafish EEG for the first time, indicating that the quantitative inter-species comparison of the AED efficacy is possible between zebrafish and mammals such as rodents. Significance: The results show that zebrafish can be used to effectively and quantitatively evaluate the efficacy of AEDs based on EEG, the same method to evaluate antiepileptic effects in mammals, suggesting that the proposed method can contribute in reducing the cost and duration of search for AEDs and thus accelerate the drug development cycles.
Collapse
Affiliation(s)
- Jun-Nyeong Shin
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea,Zefit Inc, Daegu, South Korea
| | - Ki-Baek Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Woojae Butterworth
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | | | | | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea,*Correspondence: Sohee Kim,
| |
Collapse
|
6
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of new antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 427:115655. [PMID: 34329640 DOI: 10.1016/j.taap.2021.115655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Several studies with larvae and adult zebrafish have shown that old and new antiseizure drugs (ASDs) produce discrepant results in seizure tests, locomotor activity or anxiety models. In this study, the pentylenetetrazole seizure test (PTZ) was performed to assess the effectiveness of four new ASDs: lamotrigine (LTG), topiramate (TPM), felbamate (FBM), and levetiracetam (LEV) in the subsequent stages of seizures in adult fish. All ASDs were administered intraperitoneally (i.p.). The time of maximal anticonvulsant effect and the dose-response relationship of the drugs were assessed. The effects of studied ASDs on the locomotor activity and the anxiety-like behavior in the color preference test were also investigated. Furthermore, drug concentrations in zebrafish homogenates were determined. LTG, TPM, and LEV significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII), while FBM was effective only at SI. Locomotor activity decreased after TPM treatment. TPM and FBM exhibited a strong anxiolytic-like effect in the color preference test. LEV at the highest dose tested had a weak anxiolytic-like effect. The HPLC analysis showed average concentrations of the studied ASDs in the fish body during their maximum anticonvulsant activity. The present study shows that FBM cannot inhibit all subsequent PTZ seizure stages in the adult fish. Except for LTG, the studied drugs affected the anxiety-like behavior of treated animals. Furthermore, only TPM significantly changed locomotion parameters. Our findings support the need to accurately characterize the efficacy of new ASDs at different stages of the PTZ-induced seizures in adult zebrafish.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
7
|
González-Trujano ME, Urbina-Trejo E, Santos-Valencia F, Villasana-Salazar B, Carmona-Aparicio L, Martínez-Vargas D. Pharmacological and toxicological effects of Ruta chalepensis L. on experimentally induced seizures and electroencephalographic spectral power in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113866. [PMID: 33485978 DOI: 10.1016/j.jep.2021.113866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruta chalepensis L. (Rutaceae) is used in traditional medicine to treat a wide variety of disorders such as rheumatism, fever, mental disorders, dropsy, neuralgia, menstrual problems, anxiety, and epilepsy. AIM OF THE STUDY To evaluate and compare the anticonvulsant properties of an aqueous extract and ethyl acetate (AcOEt) fraction of R. chalepensis on pentylenetetrazole (PTZ)-induced seizures and maximal electroshock (MES) test in mice, by analyzing behavior and electroencephalogram (EEG), as well as GABAA receptors involvement. METHODS The effect of an acute administration of different dosage of the aqueous extract (300 or 500 mg/kg) or AcOEt fraction (100, 300, 500 or 1000 mg/kg) of R. chalepensis was explored on two different models of acute seizure induction in mice, the PTZ and maximal electroshock (MES) tests. Behavioral and electrographic effects were quantified. Additionally, the possible involvement of the GABAA receptors was explored in the presence of picrotoxin (a non-competitive antagonist of the GABAA receptor). RESULTS AcOEt fraction of R. chalepensis was more efficient than aqueous extract to reduce the incidence of tonic-clonic seizures and mortality in a significant and dose-dependent manner in both the PTZ and MES tests. This anticonvulsant effect was not abolished in the presence of picrotoxin. The EEG spectral power analysis revealed that aqueous extract decreased alpha and beta power, while AcOEt fraction decreased alpha and gamma power confirming previous findings of its depressant effect in the central nervous system. It is important to mention that the highest dosage of the AcOEt (1000 mg/kg) produced a severe suppression or isoelectric EEG activity (EEG flattening), recognized as a comatose state, suggesting a neurotoxic effect at this dosage. CONCLUSION Our data reinforce that depressant and anticonvulsant effects of R. chalepensis depend in part on the presence of constituents from medium polarity. We also found that anticonvulsant effect is not mediated by GABAA receptors. In addition, cautious is emphasized when high doses of this natural product are used in traditional medicine since it might produce neurotoxic effects.
Collapse
Affiliation(s)
- M E González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| | - E Urbina-Trejo
- Laboratorio de Neurofisiología Del Control y La Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| | - F Santos-Valencia
- Laboratorio de Neurofisiología Del Control y La Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| | - B Villasana-Salazar
- Laboratorio de Neurofisiología Del Control y La Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| | - L Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, 04530, Ciudad de México, Mexico.
| | - D Martínez-Vargas
- Laboratorio de Neurofisiología Del Control y La Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker JA, Pilon N, Samarut E, Patten SA. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep 2021; 22:e50958. [PMID: 33900016 PMCID: PMC8183419 DOI: 10.15252/embr.202050958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the chromatin remodeller‐coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention‐deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7−/− model. chd7−/− mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype‐based screen in chd7−/− zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.
Collapse
Affiliation(s)
| | - Maximilian Breuer
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Kathrin Schmeisser
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tatiana Cardinal
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Betelhem Kassa
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - J Alex Parker
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Nicolas Pilon
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Eric Samarut
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Shunmoogum A Patten
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
9
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of classic antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 415:115429. [PMID: 33524447 DOI: 10.1016/j.taap.2021.115429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The zebrafish is extensively used as a model organism for studying several disorders of the central nervous system (CNS), including epilepsy. Some antiseizure drugs (ASDs) have been shown to produce discrepant results in larvae and adults zebrafish, therefore, their anticonvulsant efficacy in subsequent stages of the pentylenetetrazole (PTZ)-induced seizures should be more precisely characterized. The purpose of this study was to investigate behavioral effects of five classic ASDs: valproate (VPA), phenytoin (PHT), carbamazepine (CBZ), diazepam (DZP), and phenobarbital (PB) administered intraperitoneally (i.p.) in the PTZ-induced seizure test in adult zebrafish. We determined the time of maximal effect and the dose-response relationship of the studied ASDs. Furthermore, we assessed changes in the locomotor activity and the anxiety-like behavior in the color preference test. Moreover, drug concentrations in zebrafish homogenates were examined. VPA, DZP, and PB significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII). PHT produced the anticonvulsant-like effect at SI and SII, while CBZ was effective at SII and SIII. Only DZP decreased zebrafish locomotor activity. A strong anxiolytic-like effect was observed after administration of PHT and PB. A weak anxiolytic-like effect occurred after treatment with VPA and DZP. The HPLC analysis showed the average concentrations of the studied ASDs in the fish body during the maximum anticonvulsant activity of each drug. Our results confirm the advantages of using zebrafish with the mature CNS over larval models and its utility to investigate some neuropharmacological properties of the tested drugs.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
10
|
Bass JS, Tuo AH, Ton LT, Jankovic MJ, Kapadia PK, Schirmer C, Krishnan V. On the Digital Psychopharmacology of Valproic Acid in Mice. Front Neurosci 2020; 14:594612. [PMID: 33240040 PMCID: PMC7677503 DOI: 10.3389/fnins.2020.594612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antiepileptic drugs (AEDs) require daily ingestion for maximal seizure prophylaxis. Adverse psychiatric consequences of AEDs present as: (i) reversible changes in mood, anxiety, anger and/or irritability that often necessitate drug discontinuation, and (ii) autism and/or cognitive/psychomotor delays following fetal exposure. Technical advances in quantifying naturalistic rodent behaviors may provide sensitive preclinical estimates of AED psychiatric tolerability and neuropsychiatric teratogenicity. In this study, we applied instrumented home-cage monitoring to assess how valproic acid (VPA, dissolved in sweetened drinking water) alters home-cage behavior in adult C57BL/6J mice and in the adult offspring of VPA-exposed breeder pairs. Through a pup open field assay, we also examined how prenatal VPA exposure impacts early spontaneous exploratory behavior. At 500-600 mg/kg/d, chronic VPA produced hyperphagia and increased wheel-running without impacting sleep, activity and measures of risk aversion. When applied to breeder pairs of mice throughout gestation, VPA prolonged the latency to viable litters without affecting litter size. Two-weeks old VPA-exposed pups displayed open field hypoactivity without alterations in thigmotaxis. As adults, prenatal VPA-exposed mice displayed active state fragmentation, hypophagia and increased wheel running, together with subtle alterations in home-cage dyadic behavior. Together, these data illustrate how automated home-cage assessments of spontaneous behavior capture an ethologically centered psychopharmacological profile of enterally administered VPA that is aligned with human clinical experience. By characterizing the effects of pangestational VPA exposure, we discover novel murine expressions of pervasive neurodevelopment. Incorporating such rigorous assessments of psychological tolerability may inform the design of future AEDs with improved neuropsychiatric safety profiles, both for patients and their offspring.
Collapse
Affiliation(s)
- John Samuel Bass
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Anney H. Tuo
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Linh T. Ton
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Paarth K. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Catharina Schirmer
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Departments of Neuroscience, Psychiatry and Behavioral Sciences, Baylor Comprehensive Epilepsy Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, Crawford AD, Esguerra CV. Seizing the moment: Zebrafish epilepsy models. Neurosci Biobehav Rev 2020; 116:1-20. [PMID: 32544542 DOI: 10.1016/j.neubiorev.2020.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom. With this review, we seek to summarize the current knowledge about existing epilepsy/seizures models in zebrafish (both pharmacological and genetic) and compare them with equivalent rodent and human studies. New findings obtained from the zebrafish models are highlighted. We believe that this comprehensive review will highlight the value of zebrafish as a model for investigating different aspects of epilepsy and will help researchers to use these models to their full extent.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland
| | | | - Teresa Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Ettore Tiraboschi
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Neurophysics Group, Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Building 14, 38068, Rovereto, TN, Italy
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
| |
Collapse
|
12
|
Mohammed HS, Aboul Ezz HS, Zedan A, Ali MA. Electrophysiological and Neurochemical Assessment of Selenium Alone or Combined with Carbamazepine in an Animal Model of Epilepsy. Biol Trace Elem Res 2020; 195:579-590. [PMID: 31444771 DOI: 10.1007/s12011-019-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/18/2019] [Indexed: 11/08/2022]
Abstract
The present study aims to evaluate the efficacy of selenium (Se) alone or combined with carbamazepine (CBZ) against the adverse effects induced by the chemoconvulsant pentylenetetrazole (PTZ) in the cortex of adult male rats. Electrocorticogram (ECoG) and oxidative stress markers were implemented to evaluate the differences between treated and untreated animals. Animals were divided into five groups: control group that received i.p. saline injection, PTZ-treated group that received a single i.p. injection of PTZ (60 mg/kg) for induction of seizures followed by a daily i.p. injection of saline, Se-treated group that received an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration, CBZ-treated group that received orally CBZ (80 mg/kg/day) after PTZ administration, and combination (Se plus CBZ)-treated group that received an oral administration of CBZ (80 mg/kg/day) followed by an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration. Quantitative analyses of the ECoG indices and the neurochemical parameters revealed that Se and CBZ have mitigated the adverse effects induced by PTZ. The main results were decrease in the number of epileptic spikes, restoring the normal distribution of slow and fast ECoG frequencies and attenuation of most of the oxidative stress markers. However, there was an increase in lipid perioxidation marker in combined treatment of CBZ and Se. The electrophysiological and neurochemical data proved the potential of these techniques in evaluating the treatment's efficiency and suggest that supplementation of Se with antiepileptic drugs (AEDs) may be beneficial in ameliorating most of the alterations induced in the brain as a result of seizure insults and could be recommended as an adjunct therapy with AEDs.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa Zedan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One 2019; 14:e0224856. [PMID: 31697745 PMCID: PMC6837443 DOI: 10.1371/journal.pone.0224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.
Collapse
Affiliation(s)
- Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Paarth P. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
14
|
Taiwe GS, Tchoya TB, Menanga JR, Dabole B, De Waard M. Anticonvulsant activity of an active fraction extracted from Crinum jagus L. (Amaryllidaceae), and its possible effects on fully kindled seizures, depression-like behaviour and oxidative stress in experimental rodent models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:421-433. [PMID: 27725241 DOI: 10.1016/j.jep.2016.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaf extract of Crinum jagus L. (Amaryllidaceae) is widely used in traditional Cameroonian medicine as antiepileptic remedy and for the treatment of convulsion, depression and mood disorders associated with epilepsy. AIM OF THE STUDY Hence, this study was conducted to evaluate the effects of an active fraction extracted from the leaves of Crinum jagus against seizures, depression-like behaviour and oxidative stress in pentylenetetrazole (PTZ)-induced kindling in mice. MATERIALS AND METHODS Bioactive-guided fractionation of the leaf extract of Crinum jagus by using 70mg/kg PTZ-induced convulsions in mice, afforded a potent anticonvulsant fraction (flavonol kaempferol; C4.4). The effects of C4.4 on 30mg/kg PTZ-induced kindling, kindling-induced depression like-behaviour and oxidative stress was evaluated. Mice were injected PTZ (30mg/kg, i.p.) once every alternate day (48±1h) until the development of kindling. Depression was assessed using tail suspension test and forced swim test while the oxidative stress parameters were estimated in the whole brain at the end of experiments. Mice were submitted to the rota-rod task and open-field test in order to assess any non-specific muscle-relaxant or sedative effects of C4.4. Acute toxicity of C4.4 was also assessed in mice. RESULTS Convulsions-induced by 70mg/kg PTZ were strongly antagonized by C4.4. Oral administration of C4.4 significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure mean stage and decreased the number of myoclonic jerks in PTZ-kindled mice. The data indicated also that C4.4 significantly reduced the immobility times in the tail suspension test and the forced swim test. This active fraction has also antioxidant properties by decreasing the lipid peroxidation, and augmenting endogenous antioxidant enzymes in brain. C4.4 administered (12.5-50mg/kg) did not alter the locomotion of animals in the open-field or rotarod tests, which suggest a lack of a central depressant effect. The animals did not exhibit any acute toxicity to C4.4 at the therapeutic doses. CONCLUSION These results suggest that pretreatment with C4.4 ameliorates convulsions-induced by PTZ, protects mice against kindling development, depression-like behaviour and oxidative stress in PTZ-kindled mice. These finding provides scientific rationale for the use of Crinum jagus extracts for the amelioration of epilepsy observed in traditional medicine in Cameroon.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea , Cameroon.
| | - Thierry Bang Tchoya
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Joseph Renaud Menanga
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Bernard Dabole
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, Nante, France; University of Nante, Nante, France; Smartox Biotechnology, Saint Martin d'Hères, France
| |
Collapse
|
15
|
Taiwe GS, Dabole B, Tchoya TB, Menanga JR, Dzeufiet PDD, De Waard M. Anticonvulsant effects of iridoid glycosides fraction purified from Feretia apodanthera Del. (Rubiaceae) in experimental mice models of generalized tonic-clonic seizures. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:285. [PMID: 27520389 PMCID: PMC4983074 DOI: 10.1186/s12906-016-1269-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/06/2016] [Indexed: 12/30/2022]
Abstract
Background Despite the increasing number and variety of antiepileptic drugs, nearly 30 % of epileptic patients who receive appropriate medical attention have persisting seizures. Anticonvulsant activity has been demonstrated for different iridoid glycoside-rich plant extracts. This study was designed to investigate the anticonvulsant effects of iridoid glycosides purified from Feretia apodanthera and to explore the possible mechanisms involved in antiepileptic activity. Methods The anticonvulsant effects of iridoid glycosides extracts were investigated against 2.7 mg/kg bicuculline- and 70 mg/kg pentylenetetrazole-induced convulsions. The behavioural and electroencephalographic manifestations of 50 mg/kg pentylenetetrazole-induced seizures in mice as a model of generalized tonic-clonic seizures were also evaluated. Finally, the extracts were tested on the course of kindling development, kindled-seizures and oxidative stress markers in 30 mg/kg pentylenetetrazole-kindled mice. Their effects on brain GABA content were also determined. Results The iridoid glycosides (30–90 mg/kg) protected mice against bicuculline-induced motor seizures in all pre-treated animals. Behavioural seizures- and mortality-induced by 70 mg/kg pentylenetetrazole were strongly antagonized by the extracts (60–90 mg/kg). The number of crisis (n/20 min), the cumulative duration of crisis (sec/20 min), and the mean duration of crisis (sec) recorded in 50 mg/kg pentylenetetrazole-treated mice were significantly decreased in all pre-treated mice with the extracts (60–90 mg/kg). Administration of the extracts (30–90 mg/kg) significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure mean stage and decreased the number of myoclonic jerks in 30 mg/kg pentylenetetrazole-kindled mice. Pentylenetetrazole kindling induced significant oxidative stress and brain GABA content alteration that was reversed by pretreatment with the extracts in a dose-dependent manner. Conclusions The results indicate that pretreatment with the iridoid glycosides extracts of Feretia apodenthera improves generalized tonic-clonic seizures-induced by chemo-convulsants, protects mice against kindling development and oxidative stress, and improves brain GABA content in pentylenetetrazole-kindled mice.
Collapse
|
16
|
Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, Jain RA, Kubo F, Bill BR, Baier H, Granato M, Barresi MJF, Wilson SW, Rihel J, State MW, Giraldez AJ. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron 2016; 89:725-33. [PMID: 26833134 PMCID: PMC4766582 DOI: 10.1016/j.neuron.2015.12.039] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of devastating neurodevelopmental syndromes that affect up to 1 in 68 children. Despite advances in the identification of ASD risk genes, the mechanisms underlying ASDs remain unknown. Homozygous loss-of-function mutations in Contactin Associated Protein-like 2 (CNTNAP2) are strongly linked to ASDs. Here we investigate the function of Cntnap2 and undertake pharmacological screens to identify phenotypic suppressors. We find that zebrafish cntnap2 mutants display GABAergic deficits, particularly in the forebrain, and sensitivity to drug-induced seizures. High-throughput behavioral profiling identifies nighttime hyperactivity in cntnap2 mutants, while pharmacological testing reveals dysregulation of GABAergic and glutamatergic systems. Finally, we find that estrogen receptor agonists elicit a behavioral fingerprint anti-correlative to that of cntnap2 mutants and show that the phytoestrogen biochanin A specifically reverses the mutant behavioral phenotype. These results identify estrogenic compounds as phenotypic suppressors and illuminate novel pharmacological pathways with relevance to autism.
Collapse
Affiliation(s)
- Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katherine J Turner
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Joseph M Fernandez
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel Cifuentes
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sundas Ijaz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Fumi Kubo
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Brent R Bill
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael J F Barresi
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Matthew W State
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
17
|
Mendus D, Rankin-Gee EK, Mustapha M, Porter BE. Increased sensitivity to kindling in mice lacking TSP1. Neuroscience 2015; 305:302-8. [PMID: 26241338 PMCID: PMC6699182 DOI: 10.1016/j.neuroscience.2015.07.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The development of a hyperexcitable neuronal network is thought to be a critical event in epilepsy. Thrombospondins (TSPs) regulate synaptogenesis by binding the neuronal α2δ subunit of the voltage-gated calcium channel. TSPs regulate synapse formation during development and in the mature brain following injury. It is unclear if TSPs are involved in hyperexcitability that contributes to the development of epilepsy. Here we explore the development of epilepsy using a pentylenetetrazole (PTZ) kindling model in mice lacking TSP1 and TSP2. Unexpectedly, we found increased sensitivity to PTZ kindling in mice lacking TSP1, while mice lacking TSP2 kindled similar to wild-type. We found that the increased seizure susceptibility in the TSP1 knockout (KO) mice was not due to a compensatory increase in TSP2 mRNA as TSP1/2 KO mice were sensitive to PTZ, similar to the TSP1 KO mice. Furthermore, there were similar levels of TGF-B signal activation during kindling in the TSP1 KO mice compared to wild-type. We observed decreased expression of voltage-dependent calcium channel subunit CACNA2D1 mRNA in TSP1, TSP2, and TSP1/2 KO mice. Decreased CACNA2D2 mRNA was only detected in mice that lacked TSP1 and α2δ-1/2 protein levels in the cortex were lower in the TSP 1/2 KO mice. CACNA2D2 knockout mice have spontaneous seizures and increased PTZ seizure susceptibility. Here we report similar findings, TSP1, and TSP1/2 KO mice have low levels of CACNA2D2 mRNA expression and α2δ-1/2 receptor level in the cortex, and are more susceptible to seizures. CACNA2D2 mutations in mice and humans can cause epilepsy. Our data suggest TSP1 in particular may control CACNA2D2 levels and could be a modifier of seizure susceptibility.
Collapse
Affiliation(s)
- D Mendus
- The Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305, USA; The Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - E K Rankin-Gee
- The Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - M Mustapha
- The Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - B E Porter
- The Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Chen CY, Wei XD, Chen CR. 3,4,5-Trimethoxycinnamic acid, one of the constituents of Polygalae Radix exerts anti-seizure effects by modulating GABAAergic systems in mice. J Pharmacol Sci 2015; 131:1-5. [PMID: 26260747 DOI: 10.1016/j.jphs.2015.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 06/23/2015] [Accepted: 07/20/2015] [Indexed: 01/31/2023] Open
Abstract
Polygalae Radix is an important medicinal plant that is widely used in most of Africa. 3,4,5-Trimethoxycinnamic acid (TMCA) is one of the constituents of Polygalae Radix. Until now, the mechanisms involved in the anti-seizure property of TMCA are still unclear. We examined the anti-seizure effect of TMCA. TMCA administered at doses of 5, 10 and 20 mg/kg and evaluated anti-seizure effects by maximal electroshock (MES) and pentylenetetrazol (PTZ) models in mice. TMCA administered at doses of 10 and 20 mg/kg significantly reduced the incidence of MES-induced tonic hindlimb extension (THE). TMCA significantly delayed the onset of myoclonic jerks (MJ), and decreased the seizure severity and mortality compared with the vehicle-treated animals in PTZ seizure model. TMCA 10 and 20 mg/kg treated groups also did not determined generalized clonic seizures (GCS). Pretreatment with a GABAA/benzodiazepine (BZ) receptor antagonist flumazenil blocked the anti-seizure effects of TMCA. These data support the further investigation of TMCA as a GABAA/BZ receptor agonist for anti-seizure therapy.
Collapse
Affiliation(s)
- Chang-Yuan Chen
- Department of Cardiovascular Diseases, First Hospital, Lanzhou University, Lanzhou 730043, Gansu, PR China
| | - Xu-Dong Wei
- Department of Otolaryngology Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu, PR China
| | - Chang-Rui Chen
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
19
|
Leclercq K, Afrikanova T, Langlois M, De Prins A, Buenafe OE, Rospo CC, Van Eeckhaut A, de Witte PAM, Crawford AD, Smolders I, Esguerra CV, Kaminski RM. Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish. Epilepsy Behav 2015; 45:53-63. [PMID: 25845493 DOI: 10.1016/j.yebeh.2015.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/29/2023]
Abstract
Treatment-resistant seizures affect about a third of patients suffering from epilepsy. To fulfill the need for new medications targeting treatment-resistant seizures, a number of rodent models offer the opportunity to assess a variety of potential treatment approaches. The use of such models, however, has proven to be time-consuming and labor-intensive. In this study, we performed pharmacological characterization of the allylglycine (AG) seizure model, a simple in vivo model for which we demonstrated a high level of treatment resistance. (d,l)-Allylglycine inhibits glutamic acid decarboxylase (GAD) - the key enzyme in γ-aminobutyric acid (GABA) biosynthesis - leading to GABA depletion, seizures, and neuronal damage. We performed a side-by-side comparison of mouse and zebrafish acute AG treatments including biochemical, electrographic, and behavioral assessments. Interestingly, seizure progression rate and GABA depletion kinetics were comparable in both species. Five mechanistically diverse antiepileptic drugs (AEDs) were used. Three out of the five AEDs (levetiracetam, phenytoin, and topiramate) showed only a limited protective effect (mainly mortality delay) at doses close to the TD50 (dose inducing motor impairment in 50% of animals) in mice. The two remaining AEDs (diazepam and sodium valproate) displayed protective activity against AG-induced seizures. Experiments performed in zebrafish larvae revealed behavioral AED activity profiles highly analogous to those obtained in mice. Having demonstrated cross-species similarities and limited efficacy of tested AEDs, we propose the use of AG in zebrafish as a convenient and high-throughput model of treatment-resistant seizures.
Collapse
Affiliation(s)
| | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Melanie Langlois
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - An De Prins
- Center for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivia E Buenafe
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Chiara C Rospo
- Neuroscience TA, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Ann Van Eeckhaut
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium; Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ilse Smolders
- Center for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Camila V Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium; Chemical Neuroscience Group, Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
20
|
Baraban SC, Löscher W. What new modeling approaches will help us identify promising drug treatments? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:283-94. [PMID: 25012385 DOI: 10.1007/978-94-017-8914-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the development of numerous novel antiepileptic drugs (AEDs) in recent years, several unmet clinical needs remain, including resistance to AEDs in about 30 % of patients with epilepsy, adverse effects of AEDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk. Animal models of seizures and epilepsy have been instrumental in the discovery and preclinical development of novel AEDs, but obviously the previously used models have failed to identify drugs that address unmet medical needs. Thus, we urgently need fresh ideas for improving preclinical AED development. In this review, a number of promising models will be described, including the use of simple vertebrates such as zebrafish (Danio rerio), large animal models such as the dog and newly characterized rodent models of pharmacoresistant epilepsy. While these strategies, like any animal model approach also have their limitations, they offer hope that new more effective AEDs will be identified in the coming years.
Collapse
Affiliation(s)
- Scott C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA,
| | | |
Collapse
|
21
|
The threshold of pentylenetetrazole-induced convulsive seizures, but not that of nonconvulsive seizures, is controlled by the nitric oxide levels in murine brains. Exp Neurol 2013; 247:645-52. [DOI: 10.1016/j.expneurol.2013.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 11/19/2022]
|
22
|
Afrikanova T, Serruys ASK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, Crawford AD, Esguerra CV. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 2013; 8:e54166. [PMID: 23342097 PMCID: PMC3544809 DOI: 10.1371/journal.pone.0054166] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
Zebrafish have recently emerged as an attractive in vivo model for epilepsy. Seven-day-old zebrafish larvae exposed to the GABA(A) antagonist pentylenetetrazol (PTZ) exhibit increased locomotor activity, seizure-like behavior, and epileptiform electrographic activity. A previous study showed that 12 out of 13 antiepileptic drugs (AEDs) suppressed PTZ-mediated increases in larval movement, indicating the potential utility of zebrafish as a high-throughput in vivo model for AED discovery. However, a question remained as to whether an AED-induced decrease in locomotion is truly indicative of anticonvulsant activity, as some drugs may impair larval movement through other mechanisms such as general toxicity or sedation. We therefore carried out a study in PTZ-treated zebrafish larvae, to directly compare the ability of AEDs to inhibit seizure-like behavioral manifestations with their capacity to suppress epileptiform electrographic activity. We re-tested the 13 AEDs of which 12 were previously reported to inhibit convulsions in the larval movement tracking assay, administering concentrations that did not, on their own, impair locomotion. In parallel, we carried out open-field recordings on larval brains after treatment with each AED. For the majority of AEDs we obtained the same response in both the behavioral and electrographic assays. Overall our data correlate well with those reported in the literature for acute rodent PTZ tests, indicating that the larval zebrafish brain is more discriminatory than previously thought in its response to AEDs with different modes of action. Our results underscore the validity of using the zebrafish larval locomotor assay as a rapid first-pass screening tool in assessing the anticonvulsant and/or proconvulsant activity of compounds, but also highlight the importance of performing adequate validation when using in vivo models.
Collapse
Affiliation(s)
- Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Ann-Sophie K. Serruys
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Olivia E. M. Buenafe
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Ralph Clinckers
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
23
|
Stewart AM, Desmond D, Kyzar E, Gaikwad S, Roth A, Riehl R, Collins C, Monnig L, Green J, Kalueff AV. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res Bull 2012; 87:135-43. [DOI: 10.1016/j.brainresbull.2011.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/20/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
24
|
Etholm L, Lindén H, Eken T, Heggelund P. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 2011; 1383:270-88. [DOI: 10.1016/j.brainres.2011.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|