1
|
Arizmendi N, Alam SB, Azyat K, Makeiff D, Befus AD, Kulka M. The Complexity of Sesquiterpene Chemistry Dictates Its Pleiotropic Biologic Effects on Inflammation. Molecules 2022; 27:2450. [PMID: 35458648 PMCID: PMC9032002 DOI: 10.3390/molecules27082450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Khalid Azyat
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Darren Makeiff
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
2
|
Hafezi B, Chan L, Knapp JP, Karimi N, Alizadeh K, Mehrani Y, Bridle BW, Karimi K. Cytokine Storm Syndrome in SARS-CoV-2 Infections: A Functional Role of Mast Cells. Cells 2021; 10:1761. [PMID: 34359931 PMCID: PMC8308097 DOI: 10.3390/cells10071761] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokine storm syndrome is a cascade of escalated immune responses disposing the immune system to exhaustion, which might ultimately result in organ failure and fatal respiratory distress. Infection with severe acute respiratory syndrome-coronavirus-2 can result in uncontrolled production of cytokines and eventually the development of cytokine storm syndrome. Mast cells may react to viruses in collaboration with other cells and lung autopsy findings from patients that died from the coronavirus disease that emerged in 2019 (COVID-19) showed accumulation of mast cells in the lungs that was thought to be the cause of pulmonary edema, inflammation, and thrombosis. In this review, we present evidence that a cytokine response by mast cells may initiate inappropriate antiviral immune responses and cause the development of cytokine storm syndrome. We also explore the potential of mast cell activators as adjuvants for COVID-19 vaccines and discuss the medications that target the functions of mast cells and could be of value in the treatment of COVID-19. Recognition of the cytokine storm is crucial for proper treatment of patients and preventing the release of mast cell mediators, as impeding the impacts imposed by these mediators could reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Bahareh Hafezi
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran; (B.H.); (N.K.)
| | - Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Jason P. Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Negar Karimi
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran; (B.H.); (N.K.)
| | - Kimia Alizadeh
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| |
Collapse
|
3
|
Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol 2015; 778:158-68. [PMID: 26130122 DOI: 10.1016/j.ejphar.2015.05.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
Mast cells play a critical role in type 1 hypersensitivity reactions. Indeed, mast cell mediators are implicated in many different conditions including allergic rhinitis, conjunctivitis, asthma, psoriasis, mastocytosis and the progression of many different cancers. Thus, there is intense interest in the development of agents which prevent mast cell mediator release or which inhibit the actions of such mediators once released into the environment of the cell. Much progress into the design of new agents has been made since the initial discovery of the mast cell stabilising properties of khellin from Ammi visnaga and the clinical approval of cromolyn sodium. This review critically examines the progress that has been made in the intervening years from the design of new agents that target a specific signalling event in the mast cell degranulation pathway to those agents which have been developed where the precise mechanism of action remains elusive. Particular emphasis is also placed on clinically used drugs for other indications that stabilise mast cells and how this additional action may be harnessed for their clinical use in disease processes where mast cells are implicated.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Deirdre Frances Finn
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - James William Barlow
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, Stephens Green, Dublin 2, Ireland
| | - John Jarlath Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
4
|
Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Br J Pharmacol 2014; 170:23-37. [PMID: 23441583 DOI: 10.1111/bph.12138] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Mast cell stabilizing drugs inhibit the release of allergic mediators from mast cells and are used clinically to prevent allergic reactions to common allergens. Despite the relative success of the most commonly prescribed mast cell stabilizer, disodium cromoglycate, in use for the preventative treatment of bronchial asthma, allergic conjunctivitis and vernal keratoconjunctivitis, there still remains an urgent need to design new substances that are less expensive and require less frequent dosing schedules. In this regard, recent developments towards the discovery of the next generation of mast cell stabilizing drugs has included studies on substances isolated from natural sources, biological, newly synthesized compounds and drugs licensed for other indications. The diversity of natural products evaluated range from simple phenols, alkaloids, terpenes to simple amino acids. While in some cases their precise mode of action remains unknown it has nevertheless sparked interest in the development of synthetic derivatives with improved pharmacological properties. Within the purely synthetic class of inhibitors, particular attention has been devoted to the inhibition of important signalling molecules including spleen TK and JAK3. The statin class of cholesterol-lowering drugs as well as nilotinib, a TK inhibitor, are just some examples of clinically used drugs that have been evaluated for their anti-allergic properties. Here, we examine each approach under investigation, summarize the test data generated and offer suggestions for further preclinical evaluation before their therapeutic potential can be realized.
Collapse
Affiliation(s)
- D F Finn
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | | |
Collapse
|
5
|
Xia X, Wan W, Chen Q, Liu K, Majaz S, Mo P, Xu J, Yu C. Deficiency in steroid receptor coactivator 3 enhances cytokine production in IgE-stimulated mast cells and passive systemic anaphylaxis in mice. Cell Biosci 2014; 4:21. [PMID: 24834318 PMCID: PMC4021842 DOI: 10.1186/2045-3701-4-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Background Steroid receptor coactivator 3 (SRC-3) is a multifunctional protein that plays an important role in malignancy of several cancers and in regulation of bacterial LPS-induced inflammation. However, the involvement of SRC-3 in allergic response remains unclear. Herein we used passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA) mouse models to assess the role of SRC-3 in allergic response. Results SRC-3-deficient mice exhibited more severe allergic response as demonstrated by a significant drop in body temperature and a delayed recovery period compared to wild-type mice in PSA mouse model, whereas no significant difference was observed between two kinds of mice in PCA mouse models. Mast cells play a pivotal role in IgE-mediated allergic response. Antigen-induced aggregation of IgE receptor (FcϵRI) on the surface of mast cell activates a cascade of signaling events leading to the degranulation and cytokine production in mast cells. SRC-3-deficient bone marrow derived mast cells (BMMCs) developed normally but secreted more proinflammatory cytokines such as TNF-α and IL-6 than wild-type cells after antigen stimulation, whereas there was no significant difference in degranulation between two kinds of mast cells. Further studies showed that SRC-3 inhibited the activation of nuclear factor NF-κB pathway and MAPKs including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in antigen-stimulated mast cells. Conclusions Our data demonstrate that SRC-3 suppresses cytokine production in antigen-stimulated mast cells as well as PSA in mice at least in part through inhibiting NF-κB and MAPK signaling pathways. Therefore, SRC-3 plays a protective role in PSA and it may become a drug target for anaphylactic diseases.
Collapse
Affiliation(s)
- Xiaochun Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China.,The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wei Wan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Kun Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Sidra Majaz
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| |
Collapse
|
6
|
Mycoepoxydiene inhibits antigen-stimulated activation of mast cells and suppresses IgE-mediated anaphylaxis in mice. Int Immunopharmacol 2013; 17:336-41. [PMID: 23859869 DOI: 10.1016/j.intimp.2013.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 12/24/2022]
|
7
|
Abstract
A range of mediators are generated during anaphylaxis, with redundancy of effects, multiple overlapping pathways, and involvement of several cell types. Key steps in the reaction occur at the site of initial contact, and mediators may not be detectable systemically. Furthermore, the potencies of various mediators vary enormously, and clinical effects may occur below our level of detection. We also do not know what converts (amplifies) a local reaction into systemic anaphylaxis. Murine models have identified several novel mediators that may propagate and/or regulate this process and also indicate that circulating neutrophils may play an important role in reaction amplification. Differential expression of various genes within specific intracellular signalling pathways of mediator release may further explain the varying severities of anaphylactic reactions. As our knowledge of the mechanisms of activation, key mediators, and the regulation of mediator release improves, new treatments for prevention and acute management may emerge.
Collapse
Affiliation(s)
- Shelley F Stone
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research, University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|