1
|
Zhou L, Zhou G, Li J, Guo R, Dong H. NCX1 interacts with TRPA1 to promote cell proliferation and tumor growth of colon cancer via disruption of calcium homeostasis. J Adv Res 2025:S2090-1232(25)00129-8. [PMID: 40010607 DOI: 10.1016/j.jare.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025] Open
Abstract
INTRODUCTION Aberrant Ca2+ signaling plays a critical role in the hallmark of cancer, but its regulatory mechanisms in tumorigenesis remain largely unclear. Na+/Ca2+ exchanger 1 (NCX1) functions as a bidirectional Na+ and Ca2+ transporter, operating in either Ca2+ entry or exit mode, while the transient receptor potential ankyrin 1 (TRPA1) serves as a Ca2+-permeable channel. Both play crucial roles in maintaining normal homeostasis of cytosolic Ca2+ ([Ca2+]cyt). Although each of them has been implicated in some tumorigenesis, the potential coordination between NCX1 and TRPA1 in the pathogenesis of colon cancer (CC) remains unexplored. OBJECTIVES We investigated the impact of NCX1- and TRPA1-mediated Ca2+ signaling on CC and the underlying mechanisms. METHODS The cell experiments were conducted using the human normal colonic epithelial cell line (HCoEpiC) and human colon cancer cell lines (Caco-2, SW620, and DLD-1). We performed stable transfection to knock down NCX1 or TRPA1 genes and employed CCK8, colony formation, and flow cytometry assays to assess cell proliferation. We employed RT-qPCR, Western blotting, immunofluorescence and co-immunoprecipitation assays to explore the expression and regulatory relationship between NCX1 and TRPA1. Calcium and sodium assays were used to determine [Ca2+]cyt and [Na+]cyt. Finally, we used the xenografted tumor model to verify their impact on CC development in vivo. RESULTS NCX1 and TRPA1 were parallelly over-expressed, co-localized, and bound, and their functional activities were enhanced in human CC cells. NCX1 functions in Ca2+ exit mode to expel [Ca2+]cyt, in which TRPA1 function was clearly verified as well. Moreover, when the Ca2+ exit mode of NCX1 was inhibited, TRPA1 activation resulted in a larger amount of [Ca2+]cyt to suppress cell proliferation through inhibiting ERK1/2 and β-catenin phosphorylation. NCX1 or TRPA1 knockdown significantly diminished tumor growth in vivo. CONCLUSION TRPA1 channels couple with the Ca2+ exit mode of NCX1 to maintain a moderate increase in [Ca2+]cyt in CC cells, thereby promoting CC cell proliferation and tumor growth through ERK1/2 and β-catenin phosphorylation. Consequently, the NCX1/TRPA1 coupling may serve as an innovative target for preventing and treating CC.
Collapse
Affiliation(s)
- Liyong Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Guolong Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Junhui Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Ruihong Guo
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
2
|
ONO N, HORIKOSHI J, IZAWA T, NISHIYAMA K, TANAKA M, KUWAMURA M, AZUMA YT. L-arginine-induced pancreatitis aggravated by inhibiting Na +/Ca 2+ exchanger 1. J Vet Med Sci 2023; 85:657-666. [PMID: 37100607 PMCID: PMC10315542 DOI: 10.1292/jvms.22-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Na+/Ca2+ exchangers (NCX) are an exchange transporter of Na+ and Ca2+ ions on the plasma membrane. There are three types of NCX: NCX1, NCX2, and NCX3. We have been working for many years to understand the role of NCX1 and NCX2 in gastrointestinal motility. In this study, we focused on the pancreas, an organ closely related to the gastrointestinal tract, and used a mouse model of acute pancreatitis to investigate a possible role for NCX1 in the pathogenesis of pancreatitis. We characterized a model of acute pancreatitis induced by excessive doses of L-arginine. We administered the NCX1 inhibitor SEA0400 (1 mg/kg) 1 hr prior to L-arginine-induced pancreatitis and evaluated pathological changes. Mice treated with NCX1 inhibitors show exacerbation of the disease with decreased survival and increased amylase activity in response to L-arginine-induced experimental acute pancreatitis, and this exacerbation correlates with increased autophagy mediated by LC3B and p62. These results suggest that NCX1 has a role in regulating pancreatic inflammation and acinar cell homeostasis.
Collapse
Affiliation(s)
- Naoshige ONO
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Joji HORIKOSHI
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Takeshi IZAWA
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Kazuhiro NISHIYAMA
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Miyuu TANAKA
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Mitsuru KUWAMURA
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| | - Yasu-Taka AZUMA
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan
University Graduate School of Veterinary Science, Osaka, Japan
| |
Collapse
|
3
|
Azuma YT, Suzuki S, Nishiyama K, Yamaguchi T. Gastrointestinal motility modulation by stress is associated with reduced smooth muscle contraction through specific transient receptor potential channel. J Vet Med Sci 2021; 83:622-629. [PMID: 33583865 PMCID: PMC8111361 DOI: 10.1292/jvms.20-0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive stress response causes disability in social life. There are many diseases
caused by stress, such as gastrointestinal motility disorders, depression, eating
disorders, and cardiovascular diseases. Transient receptor potential (TRP) channels
underlie non-selective cation currents and are downstream effectors of G protein-coupled
receptors. Ca2+ influx is important for smooth muscle contraction, which is
responsible for gastrointestinal motility. Little is known about the possible involvement
of TRP channels in the gastrointestinal motility disorders due to stress. The purpose of
this study was to measure the changes in gastrointestinal motility caused by stress and to
elucidate the mechanism of these changes. The stress model used the water immersion
restraint stress. Gastrointestinal motility, especially the ileum, was recorded responses
to electric field stimulation (EFS) by isometric transducer. EFS-induced contraction was
significantly reduced in the ileum of stressed mouse. Even under the conditions treated
with atropine, EFS-induced contraction was significantly reduced in the ileum of stressed
mouse. In addition, carbachol-induced, neurokinin A-induced, and substance P-induced
contractions were all significantly reduced in the ileum of stressed mouse. Furthermore,
the expression of TRPC3 was decreased in the ileum of stressed mouse. These results
suggest that the gastrointestinal motility disorders due to stress is associated with
specific non-selective cation channel.
Collapse
Affiliation(s)
- Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Sho Suzuki
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, Izumisano, Osaka 598-8531, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
4
|
Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Peralta López ME. Intestinal Ca 2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26:3344-3364. [PMID: 32655262 PMCID: PMC7327788 DOI: 10.3748/wjg.v26.i24.3344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.
Collapse
Affiliation(s)
- Vanessa A Areco
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Romina Kohan
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Germán Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori G Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María E Peralta López
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
5
|
Molinaro P, Natale S, Serani A, Calabrese L, Secondo A, Tedeschi V, Valsecchi V, Pannaccione A, Scorziello A, Annunziato L. Genetically modified mice to unravel physiological and pathophysiological roles played by NCX isoforms. Cell Calcium 2020; 87:102189. [PMID: 32199207 DOI: 10.1016/j.ceca.2020.102189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/30/2022]
Abstract
Since the discovery of the three isoforms of the Na+/Ca2+ exchanger, NCX1, NCX2 and NCX3 in 1990s, many studies have been devoted to identifying their specific roles in different tissues under several physiological or pathophysiological conditions. In particular, several seminal experimental works laid the foundation for better understanding gene and protein structures, tissue distribution, and regulatory functions of each antiporter isoform. On the other hand, despite the efforts in the development of specific compounds selectively targeting NCX1, NCX2 or NCX3 to test their physiological or pathophysiological roles, several drawbacks hampered the achievement of these goals. In fact, at present no isoform-specific compounds have been yet identified. Moreover, these compounds, despite their potency, possess some nonspecific actions against other ion antiporters, ion channels, and channel receptors. As a result, it is difficult to discriminate direct effects of inhibition/activation of NCX isoforms from the inhibitory or stimulatory effects exerted on other antiporters, channels, receptors, or enzymes. To overcome these difficulties, some research groups used transgenic, knock-out and knock-in mice for NCX isoforms as the most straightforward and fruitful strategy to characterize the biological role exerted by each antiporter isoform. The present review will survey the techniques used to study the roles of NCXs and the current knowledge obtained from these genetic modified mice focusing on the advantages obtained with these strategies in understanding the contribution exerted by each isoform.
Collapse
Affiliation(s)
- Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy.
| | - Silvia Natale
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, 80131, Naples, Italy
| | | |
Collapse
|
6
|
Osanai T, Tanaka M, Mikami K, Kitajima M, Tomisawa T, Magota K, Tomita H, Okumura K. Novel anti-aging gene NM_026333 contributes to proton-induced aging via NCX1-pathway. J Mol Cell Cardiol 2018; 125:174-184. [DOI: 10.1016/j.yjmcc.2018.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
|
7
|
Nishiyama K, Tanioka K, Azuma YT, Hayashi S, Fujimoto Y, Yoshida N, Kita S, Suzuki S, Nakajima H, Iwamoto T, Takeuchi T. Na +/Ca 2+ exchanger contributes to stool transport in mice with experimental diarrhea. J Vet Med Sci 2016; 79:403-411. [PMID: 27928109 PMCID: PMC5326949 DOI: 10.1292/jvms.16-0475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) is a bidirectional transporter that is
controlled by membrane potential and transmembrane gradients of Na+ and
Ca2+. To reveal the functional role of NCX on gastrointestinal motility, we
have previously used NCX1 and NCX2 heterozygote knockout mice (HET). We found that NCX1
and NCX2 play important roles in the motility of the gastric fundus, ileum and distal
colon. Therefore, we believed that NCX1 and NCX2 play an important role in transport of
intestinal contents. Here, we investigated the role of NCX in a mouse model of
drug-induced diarrhea. The fecal consistencies in NCX1 HET and NCX2 HET were assessed
using a diarrhea induced by magnesium sulfate, 5-hydroxytryptamine (5-HT) and
prostaglandin E2 (PGE2). NCX2 HET, but not NCX1 HET, exacerbated
magnesium sulfate-induced diarrhea by increasing watery fecals. Likewise, 5-HT-induced
diarrheas were exacerbated in NCX2 HET, but not NCX1 HET. However, NCX1 HET and NCX2 HET
demonstrated PGE2 induced diarrhea similar to those of wild-type mice (WT). As
well as the result of the distal colon shown previously, in the proximal and transverse
colons of WT, the myenteric plexus layers and the longitudinal and circular muscle layers
were strongly immunoreactive to NCX1 and NCX2. In this study, we demonstrate that NCX2 has
important roles in development of diarrhea.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fujimoto Y, Hayashi S, Azuma YT, Mukai K, Nishiyama K, Kita S, Morioka A, Nakajima H, Iwamoto T, Takeuchi T. Overexpression of Na +/Ca 2+ exchanger 1 display enhanced relaxation in the gastric fundus. J Pharmacol Sci 2016; 132:181-186. [PMID: 27816547 DOI: 10.1016/j.jphs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023] Open
Abstract
In gastric smooth muscles, the released Ca2+ activates the contractile proteins and Ca2+ taken up from the cytosol cause relaxation. The Na+/Ca2+ exchanger (NCX) is an antiporter membrane protein that controls Ca2+ influx and efflux across the membrane. However, the possible relation of NCX in gastric fundus motility is largely unknown. Here, we investigated electric field stimulation (EFS)-induced relaxations in the circular muscles of the gastric fundus in smooth muscle-specific NCX1 transgenic mice (Tg). EFS caused a bi-phasic response, transient and sustained relaxation. The sustained relaxation prolonged for an extended period after the end of the stimulus. EFS-induced transient relaxation and sustained relaxation were greater in Tg than in wild-type mice (WT). Disruption of nitric oxide component by N-nitro-l-arginine, EFS-induced transient and sustained relaxations caused still marked in Tg compared to WT. Inhibition of PACAP by antagonist, EFS-induced sustained relaxation in Tg was not seen, similar to WT. Nevertheless, transient relaxation remained more pronounced in Tg than in WT. Next, we examined responses to NO and PACAP in smooth muscles. The magnitudes of NOR-1, which generates NO, and PACAP-induced relaxations were greater in Tg than in WT. In this study, we demonstrate that NCX1 regulates gastric fundus motility.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Satomi Hayashi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan.
| | - Kazunori Mukai
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Satomi Kita
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ai Morioka
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| |
Collapse
|
9
|
Roles of Na+/Ca2+ exchanger isoforms NCX1 and NCX2 in motility in mouse ileum. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1081-90. [DOI: 10.1007/s00210-016-1271-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
|
10
|
Azuma YT, Hayashi S, Nishiyama K, Kita S, Mukai K, Nakajima H, Iwamoto T, Takeuchi T. Na(+) /Ca(2+) exchanger-heterozygote knockout mice display increased relaxation in gastric fundus and accelerated gastric transit in vivo. Neurogastroenterol Motil 2016; 28:827-36. [PMID: 26787195 DOI: 10.1111/nmo.12779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/25/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND For the contraction and relaxation of gastric smooth muscles to occur, the intracellular Ca(2+) concentration must be increased and decreased, respectively. The Na(+) /Ca(2+) exchanger (NCX) is a plasma membrane transporter that is involved in regulating intracellular Ca(2+) concentrations. METHODS To determine the role of NCX in gastrointestinal tissues, we examined electric field stimulation (EFS)-induced relaxations in the circular muscles of the gastric fundus in NCX1 and NCX2 heterozygote knockout mice (HET). KEY RESULTS The myenteric plexus layers and the longitudinal and circular muscle layers in the gastric fundus of wild-type mice (WT) were strongly immunoreactive to NCX1 and NCX2. EFS induced a transient relaxation that was apparent during the stimulus and a sustained relaxation that persisted after the end of the stimulus. The amplitudes of EFS-induced transient relaxation and sustained relaxation were greater in NCX1 HET and NCX2 HET than in WT. When an inhibitor of nitric oxide synthase was added following the EFS, neither NCX1 HET nor NCX2 HET exhibited transient relaxation, similar to WT. Furthermore, when a PACAP antagonist was added following the EFS, sustained relaxation in NCX1 HET and NCX2 HET was not observed, similar to WT. Next, we examined the effect of NCX heterozygous deficiency on relaxation in response to NO and PACAP in smooth muscles. The magnitude of NOR-1- and PACAP-induced relaxations in NCX1 HET and NCX2 HET was similar to that of WT. CONCLUSIONS & INFERENCES In this study, we demonstrate that NCX1 and NCX2 expressed in neurons regulate the motility in the gastric fundus.
Collapse
Affiliation(s)
- Y T Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - S Hayashi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - K Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - S Kita
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - K Mukai
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - H Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| | - T Iwamoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - T Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka, Japan
| |
Collapse
|
11
|
Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol 2015; 21:7142-7154. [PMID: 26109800 PMCID: PMC4476875 DOI: 10.3748/wjg.v21.i23.7142] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal Ca2+ absorption is a crucial physiological process for maintaining bone mineralization and Ca2+ homeostasis. It occurs through the transcellular and paracellular pathways. The first route comprises 3 steps: the entrance of Ca2+ across the brush border membranes (BBM) of enterocytes through epithelial Ca2+ channels TRPV6, TRPV5, and Cav1.3; Ca2+ movement from the BBM to the basolateral membranes by binding proteins with high Ca2+ affinity (such as CB9k); and Ca2+ extrusion into the blood. Plasma membrane Ca2+ ATPase (PMCA1b) and sodium calcium exchanger (NCX1) are mainly involved in the exit of Ca2+ from enterocytes. A novel molecule, the 4.1R protein, seems to be a partner of PMCA1b, since both molecules co-localize and interact. The paracellular pathway consists of Ca2+ transport through transmembrane proteins of tight junction structures, such as claudins 2, 12, and 15. There is evidence of crosstalk between the transcellular and paracellular pathways in intestinal Ca2+ transport. When intestinal oxidative stress is triggered, there is a decrease in the expression of several molecules of both pathways that inhibit intestinal Ca2+ absorption. Normalization of redox status in the intestine with drugs such as quercetin, ursodeoxycholic acid, or melatonin return intestinal Ca2+ transport to control values. Calcitriol [1,25(OH)2D3] is the major controlling hormone of intestinal Ca2+ transport. It increases the gene and protein expression of most of the molecules involved in both pathways. PTH, thyroid hormones, estrogens, prolactin, growth hormone, and glucocorticoids apparently also regulate Ca2+ transport by direct action, indirect mechanism mediated by the increase of renal 1,25(OH)2D3 production, or both. Different physiological conditions, such as growth, pregnancy, lactation, and aging, adjust intestinal Ca2+ absorption according to Ca2+ demands. Better knowledge of the molecular details of intestinal Ca2+ absorption could lead to the development of nutritional and medical strategies for optimizing the efficiency of intestinal Ca2+ absorption and preventing osteoporosis and other pathologies related to Ca2+ metabolism.
Collapse
|
12
|
Effect of da-cheng-qi decoction on the repair of the injured enteric nerve-interstitial cells of cajal-smooth muscle cells network in multiple organ dysfunction syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:596723. [PMID: 25477993 PMCID: PMC4247919 DOI: 10.1155/2014/596723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023]
Abstract
Wistar rats were randomly divided into control group, multiple organ dysfunction syndrome (MODS) group, and Da-Cheng-Qi decoction (DCQD) group. The network of enteric nerves-interstitial cells of Cajal- (ICC-) smooth muscle cells (SMC) in small intestine was observed using confocal laser scanning microscopy and transmission electron microscopy. The results showed that the numbers of cholinergic/nitriergic nerves, and the deep muscular plexus of ICC (ICC-DMP) and connexin43 (Cx43) in small intestine with MODS were significantly decreased. The network integrity of enteric nerves-ICC-SMC was disrupted. The ultrastructures of ICC-DMP, enteric nerves, and SMC were severely damaged. After treatment with DCQD, the damages were repaired and the network integrity of enteric nerves ICC-SMC was significantly recovered. In conclusion, the pathogenesis of gastrointestinal motility dysfunction in MODS in part may be due to the damages to enteric nerves-ICC-SMC network and gap junctions. The therapeutic mechanism of DCQD in part may be that it could repair the damages and maintain the integrity of enteric nerves ICC-SMC network.
Collapse
|
13
|
Nishiyama K, Azuma YT, Shintaku K, Yoshida N, Nakajima H, Takeuchi T. Evidence that Nitric Oxide Is a Non-Adrenergic Non-Cholinergic Inhibitory Neurotransmitter in the Circular Muscle of the Mouse Distal Colon: A Study on the Mechanism of Nitric Oxide-Induced Relaxation. Pharmacology 2014; 94:99-108. [DOI: 10.1159/000363191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|