1
|
Katsuyama M, Arakawa N, Yaoi T, Kimura E, Matsumoto M, Iwata K, Umemura A, Yabe-Nishimura C. Clioquinol induces mitochondrial toxicity in SH-SY5Y neuroblastoma cells by affecting the respiratory chain complex IV and OPA1 dynamin-like GTPase. FEBS Lett 2025; 599:1135-1145. [PMID: 40125820 DOI: 10.1002/1873-3468.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Clioquinol has been thought of as the causative drug of subacute myelo-optic neuropathy (SMON). The underlying mechanisms of clioquinol toxicity, however, have not been elucidated in detail. Here, we revealed that clioquinol (20 μm) suppressed the expression of SCO1 and SCO2 copper chaperones for mitochondrial respiratory chain Complex IV (cytochrome c oxidase) in SH-SY5Y neuroblastoma cells. The assembly of Complex IV components and Complex IV activity were suppressed in clioquinol-treated cells. Clioquinol (10-50 μm) decreased cellular ATP levels in glucose-free media. Clioquinol (10-50 μm) induced OMA1 mitochondrial protease-dependent degradation of the dynamin-related GTPase OPA1 and suppressed the expression of CHCHD10 and CHCHD2 involved in the maintenance of cristae structure. These results suggest that mitochondrial toxicity is one of the mechanisms of clioquinol-induced neuronal cell death.
Collapse
Affiliation(s)
- Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Japan
| | - En Kimura
- National Hospital Organization Suzuka National Hospital, Japan
- En's Lab, Kumamoto, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | | |
Collapse
|
2
|
Katsuyama M. [Toward the complete understanding of the pathogenic mechanism of clioquinol-induced subacute myelo-optic neuropathy (SMON)]. Nihon Yakurigaku Zasshi 2024; 159:78-82. [PMID: 38432923 DOI: 10.1254/fpj.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Clioquinol was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. We previously performed a global analysis of human neuroblastoma cells using DNA chips and demonstrated that clioquinol induced 1) DNA double-strand breaks and subsequent activation of ATM/p53 signaling; 2) the expression of VGF, the precursor of neuropeptides involved in pain reactions, by inducing c-Fos; 3) the expression of interleukin-8, which is reported to be involved in intestinal inflammation, optic neuropathy, and neuropathic pain, by down-regulating GATA-2 and GATA-3. We also demonstrated that clioquinol induced zinc influx and oxidation of the copper chaperone ATOX1, leading to the impairment of the functional maturation of a copper-dependent enzyme dopamine-β-hydroxylase and the inhibition of noradrenaline biosynthesis. Thus, clioquinol-induced neurotoxicity in SMON seems to be mediated by multiple pathways.
Collapse
|
3
|
Abstract
SMON (subacute myelo-optico-neuropathy) is toxic neurological disease which had a profound impact on the population in Japan in 1960's. The clinical characteristics of SMON includes an ascending sensory disturbance, spasticity, and visual impairment typically following abdominal symptoms. Infection was first suspected as an underlying cause of this epidemic. The disorder was ultimately attributed to the overuse of clioquinol, based on the analysis of green urine from affected patients and confirmed by the epidemiological surveys and experimental animal studies. The factors that contributed to the prevalence of SMON which remains the worst example of drug-associated toxicity in Japan to date include the conversion of clioquinol from a purely topical agent to an orally-administered drug, dogma associated with drug safety, relatively limited regulation of drug use, an increase in the number of prescriptions due to the availability of universal insurance, as well as the complexity of the associated abdominal symptoms. Periodical examination of the patients diagnosed with SMON continues to this day. As such, it is important to have a better understanding of clioquinol-induced neurotoxicity together with the mechanisms underlying drug susceptibility; we should not permit the memory of this severe and prominent drug-associated toxicity fade from view.
Collapse
Affiliation(s)
- Satoshi Kuru
- Department of Neurology, National Hospital Organization Suzuka Hospital
| |
Collapse
|
4
|
Clioquinol inhibits dopamine-β-hydroxylase secretion and noradrenaline synthesis by affecting the redox status of ATOX1 and copper transport in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2020; 95:135-148. [PMID: 33034664 DOI: 10.1007/s00204-020-02894-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Clioquinol (5-chloro-7-indo-8-quinolinol), a chelator and ionophore of copper/zinc, was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. In the present study, a reporter assay revealed that clioquinol (20-50 µM) activated metal response element-dependent transcription in human neuroblastoma SH-SY5Y cells. Clioquinol significantly increased the cellular level of zinc within 1 h, suggesting zinc influx due to its ionophore effects. On the other hand, clioquinol (20-50 µM) significantly increased the cellular level of copper within 24 h. Clioquinol (50 µM) induced the oxidation of the copper chaperone antioxidant 1 (ATOX1), suggesting its inactivation and inhibition of copper transport. The secretion of dopamine-β-hydroxylase (DBH) and lysyl oxidase, both of which are copper-dependent enzymes, was altered by clioquinol (20-50 µM). Noradrenaline levels were reduced by clioquinol (20-50 µM). Disruption of the ATOX1 gene suppressed the secretion of DBH. This study suggested that the disturbance of cellular copper transport by the inactivation of ATOX1 is one of the mechanisms involved in clioquinol-induced neurotoxicity in SMON.
Collapse
|
5
|
Toba T, Suzuki R, Futamura-Takahashi J, Kawamoto Y, Tamura S, Kuroda M, Shimmyo Y, Kadokura M, Goto K, Inoue T, Muto T, Annoura H. Synthesis and evaluation of N-(4-benzylphenyl)piperazines as VGF inducers. Bioorg Med Chem Lett 2018; 28:2528-2532. [PMID: 29871846 DOI: 10.1016/j.bmcl.2018.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022]
Abstract
A series of compounds was discovered that induce the production of VGF mRNA in SH-SY5Y cells and exhibit cytoprotection under tunicamycin induced endoplasmic reticulum (ER) stress. The aminophenol ring and linker chain of the template SUN N8075 (1) was modified to yield compounds with higher efficacy and lower propensity for adverse effects.
Collapse
Affiliation(s)
- Tetsuya Toba
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Ryosuke Suzuki
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | - Yoshito Kawamoto
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shigeki Tamura
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Mariko Kuroda
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yoshiari Shimmyo
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Michinori Kadokura
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazumichi Goto
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Teruyoshi Inoue
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tsuyoshi Muto
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hirokazu Annoura
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
6
|
Clioquinol increases the expression of interleukin-8 by down-regulating GATA-2 and GATA-3. Neurotoxicology 2018; 67:296-304. [DOI: 10.1016/j.neuro.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
|
7
|
Ray JD, Kener KB, Bitner BF, Wright BJ, Ballard MS, Barrett EJ, Hill JT, Moss LG, Tessem JS. Nkx6.1-mediated insulin secretion and β-cell proliferation is dependent on upregulation of c-Fos. FEBS Lett 2016; 590:1791-803. [PMID: 27164028 DOI: 10.1002/1873-3468.12208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/02/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Understanding the molecular pathways that enhance β-cell proliferation, survival, and insulin secretion may be useful to improve treatments for diabetes. Nkx6.1 induces proliferation through the Nr4a nuclear receptors, and improves insulin secretion and survival through the peptide hormone VGF. Here we demonstrate that Nkx6.1-mediated upregulation of Nr4a1, Nr4a3, and VGF is dependent on c-Fos expression. c-Fos overexpression results in activation of Nkx6.1 responsive genes and increases β-cell proliferation, insulin secretion, and cellular survival. c-Fos knockdown impedes Nkx6.1-mediated β-cell proliferation and insulin secretion. These data demonstrate that c-Fos is critical for Nkx6.1-mediated expansion of functional β-cell mass.
Collapse
Affiliation(s)
- Jason D Ray
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Kyle B Kener
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin F Bitner
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Brent J Wright
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Matthew S Ballard
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Emily J Barrett
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Jonathon T Hill
- Physiology and Developmental Biology Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Larry G Moss
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC, USA
| | - Jeffery S Tessem
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|