1
|
Wang X, Harty KR, Wan TC, Qu Z, Smith BC, Lough JW, Auchampach JA. Mitigation of Injury from Myocardial Infarction by Pentamidine, an Inhibitor of the Acetyltransferase Tip60. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07696-z. [PMID: 40202550 DOI: 10.1007/s10557-025-07696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE There is an urgent unmet need for new pharmacologic approaches that promote re-muscularization and repair following myocardial infarction (MI). We previously reported that genetic depletion of the acetyltransferase Tip60 after MI in a mouse model activates the CM cell-cycle, reduces scarring, and restores cardiac function, and that these beneficial effects are mimicked by the Tip60-selective inhibitor TH1834. Here, we investigated whether the FDA-approved anti-microbial agent pentamidine, a Tip60 inhibitor from which TH1834 is derived, also protects from the damaging effects of MI. METHODS Adult (10-14 weeks old) C57Bl/6 mice were subjected to permanent left coronary artery ligation to induce MI. Subsequently, echocardiography, electrocardiography, cardiac staining, and molecular analyses were performed to monitor the effects of treatment with pentamidine on cardiac injury and function. RESULTS We report that transient systemic administration of pentamidine on days 3-16 post-MI at a daily dose of 3 mg/kg efficiently improved cardiac function for up to ten months. This was accompanied by improved survival, diminished scarring, and increased activation of cell-cycle markers in CMs located in the infarct border zone in the absence of hypertrophy. Histological assessments suggested that post-MI treatment with pentamidine reduced site-specific acetylation of the minor histone variant H2A.Z at lysines K4 and K7 in CMs, indicative of the dedifferentiation process which must occur prior to CM proliferation. Treating mice with pentamidine post-MI produced no prominent electrophysiological changes. CONCLUSIONS These findings support the translational potential of pentamidine for treatment of MI, and provide evidence that functional improvement is mediated, in part, by CM renewal due to inhibition of the acetyltransferase activity of Tip60.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katherine R Harty
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhuocheng Qu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - John W Lough
- Department of Cell Biology Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Sunagawa Y, Tsukabe R, Irokawa Y, Funamoto M, Suzuki Y, Yamada M, Shimizu S, Katanasaka Y, Hamabe-Horiike T, Kawase Y, Naruta R, Shimizu K, Mori K, Hosomi R, Komiyama M, Hasegawa K, Morimoto T. Anserine, a Histidine-Containing Dipeptide, Suppresses Pressure Overload-Induced Systolic Dysfunction by Inhibiting Histone Acetyltransferase Activity of p300 in Mice. Int J Mol Sci 2024; 25:2344. [PMID: 38397020 PMCID: PMC10889817 DOI: 10.3390/ijms25042344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Ryosuke Tsukabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Yudai Irokawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuto Suzuki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Miho Yamada
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Ryuya Naruta
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
- Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| |
Collapse
|
3
|
Olabiyi AA, de Castro Brás LE. Cardiovascular Remodeling Post-Ischemia: Herbs, Diet, and Drug Interventions. Biomedicines 2023; 11:1697. [PMID: 37371792 DOI: 10.3390/biomedicines11061697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health burden with increasing prevalence, and CVD continues to be the principal global source of illness and mortality. For several disorders, including CVD, the use of dietary and medicinal herbs instead of pharmaceutical drugs continues to be an alternate therapy strategy. Despite the prevalent use of synthetic pharmaceutical medications, there is currently an unprecedented push for the use of diet and herbal preparations in contemporary medical systems. This urge is fueled by a number of factors, the two most important being the common perception that they are safe and more cost-effective than modern pharmaceutical medicines. However, there is a lack of research focused on novel treatment targets that combine all these strategies-pharmaceuticals, diet, and herbs. In this review, we looked at the reported effects of pharmaceutical drugs and diet, as well as medicinal herbs, and propose a combination of these approaches to target independent pathways that could synergistically be efficacious in treating cardiovascular disease.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Wang X, Wan TC, Kulik KR, Lauth A, Smith BC, Lough JW, Auchampach JA. Pharmacological inhibition of the acetyltransferase Tip60 mitigates myocardial infarction injury. Dis Model Mech 2023; 16:dmm049786. [PMID: 36341679 PMCID: PMC9672930 DOI: 10.1242/dmm.049786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacologic strategies that target factors with both pro-apoptotic and anti-proliferative functions in cardiomyocytes (CMs) may be useful for the treatment of ischemic heart disease. One such multifunctional candidate for drug targeting is the acetyltransferase Tip60, which is known to acetylate both histone and non-histone protein targets that have been shown in cancer cells to promote apoptosis and to initiate the DNA damage response, thereby limiting cellular expansion. Using a murine model, we recently published findings demonstrating that CM-specific disruption of the Kat5 gene encoding Tip60 markedly protects against the damaging effects of myocardial infarction (MI). In the experiments described here, in lieu of genetic targeting, we administered TH1834, an experimental drug designed to specifically inhibit the acetyltransferase domain of Tip60. We report that, similar to the effect of disrupting the Kat5 gene, daily systemic administration of TH1834 beginning 3 days after induction of MI and continuing for 2 weeks of a 4-week timeline resulted in improved systolic function, reduced apoptosis and scarring, and increased activation of the CM cell cycle, effects accompanied by reduced expression of genes that promote apoptosis and inhibit the cell cycle and reduced levels of CMs exhibiting phosphorylated Atm. These results support the possibility that drugs that inhibit the acetyltransferase activity of Tip60 may be useful agents for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tina C. Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katherine R. Kulik
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amelia Lauth
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C. Smith
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John W. Lough
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A. Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Sunagawa Y, Kawaguchi S, Miyazaki Y, Katanasaka Y, Funamoto M, Shimizu K, Shimizu S, Hamabe-Horiike T, Kawase Y, Komiyama M, Mori K, Murakami A, Hasegawa K, Morimoto T. Auraptene, a citrus peel-derived natural product, prevents myocardial infarction-induced heart failure by activating PPARα in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154457. [PMID: 36223697 DOI: 10.1016/j.phymed.2022.154457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Auraptene derived from the peel of Citrus hassaku possesses anti-tumor, anti-inflammatory, and neuroprotective activities. Thus, it could be a valuable pharmacological alternative to treat some diseases. However, the therapeutic value of auraptene for heart failure (HF) is unknown. STUDY DESIGN/METHODS In cultured cardiomyocytes from neonatal rats, the effect of auraptene on phenylephrine-induced hypertrophic responses and peroxisome proliferator-activated receptor-alpha (PPARα)-dependent gene transcriptions. To investigate whether auraptene prevents the development of heart failure after myocardial infarction (MI) in vivo, Sprague-Dawley rats with moderate MI (fractional shortening < 40%) were randomly assigned for treatment with low- or high-dose auraptene (5 or 50 mg/kg/day, respectively) or vehicle for 6 weeks. The effects of auraptene were evaluated by echocardiography, histological analysis, and the measurement of mRNA levels of hypertrophy, fibrosis, and PPARα-associated genes. RESULTS In cultured cardiomyocytes, auraptene repressed phenylephrine-induced hypertrophic responses, such as increases in cell size and activities of atrial natriuretic factor and endothelin-1 promoters. Auraptene induced PPARα-dependent gene activation by enhancing cardiomyocyte peroxisome proliferator-responsive element reporter activity. The inhibition of PPARα abrogated the protective effect of auraptene on phenylephrine-induced hypertrophic responses. In rats with MI, auraptene significantly improved MI-induced systolic dysfunction and increased posterior wall thickness compared to the vehicle. Auraptene treatment also suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, and expression of hypertrophy and fibrosis response markers at the mRNA level compared with vehicle treatment. MI-induced decreases in the expression of PPARα-dependent genes were improved by auraptene treatment. CONCLUSIONS Auraptene has beneficial effects on MI-induced cardiac hypertrophy and left ventricular systolic dysfunction in rats, at least partly due to PPARα activation. Further clinical studies are required to evaluate the efficacy of auraptene in patients with HF.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Shogo Kawaguchi
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Komiyama
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Division of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Department of Nephrology, Shizuoka General Hospital, Shizuoka 420-8527, Japan; Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Akira Murakami
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan.
| |
Collapse
|
6
|
Pang BY, Wang YH, Ji XW, Leng Y, Deng HB, Jiang LH. Systematic review and meta-analysis of the intervention effect of curcumin on rodent models of myocardial infarction. Front Pharmacol 2022; 13:999386. [PMID: 36330084 PMCID: PMC9623107 DOI: 10.3389/fphar.2022.999386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to evaluate the intervention effect of curcumin in myocardial infarction rodent models. Methods: A systematic retrieval of relevant studies on curcumin intervention in rats or mice myocardial infarction models was conducted, and the data were extracted. The outcome indicators included biochemical blood indicators, such as creatine kinase (CK), creatine kinase isoenzyme (CK-MB), malondialdehyde (MDA), lactate dehydrogenase (LDH) and superoxide dismutase (SOD), as well as cardiac tissue structure indicators, such as left ventricular weight to body weight ratio (LVW/BW), apoptosis index, left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic diameter (LVESD), and myocardial infarction area, and hemodynamic indexes, such as systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular end-diastolic pressure (LVEDP), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), maximum rate of left ventricular pressure rise (+dp/dtmax), and maximum rate of left ventricular pressure decline (-dp/dtmax). These results were then analyzed by meta-analysis. Studies were evaluated for methodological quality using the syrcle's bias risk tool. Results: A total of 24 studies were included in the meta-analysis. The quality assessment of included studies revealed that the evidence was low quality and none of studies was judged as having a low risk of bias across all domains. The results revealed that curcumin could reduce CK-MB, CK, LDH, and MDA levels. They also revealed that it could lower SBP, DBP, LVEDP, LVW/BW, apoptosis index, LVEDD, LVESD, and myocardial infarction area and increase LVEF, LVFS, +dp/dtmax, and-dp/dtmax. However, it had no significant impact on the heart rate and the levels of SOD in the models. Conclusion: Curcumin alleviates myocardial injury and oxidative stress in myocardial infarction rodent models in terms of blood biochemistry indicators, improves the diastolic and systolic capacity of the ventricle in terms of hemodynamic indexes, and reduces the necrosis and apoptosis of cardiomyocytes in terms of tissue structure. The methodological quality of the studies was low and additional research is warranted.
Collapse
Affiliation(s)
- Bing-Yao Pang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ya-Hong Wang
- Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xing-Wang Ji
- Department of Emergency, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Yan Leng
- Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hou-Bo Deng
- Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Li-Hong Jiang
- Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Wang A, Zhao W, Yan K, Guo L, Gao F, Chen J, Wang Y, Ma X. Investigating the cardioprotective effects of Fuzheng Yangxin recipe based on network pharmacology and experimental evaluation. Front Pharmacol 2022; 13:1004929. [PMID: 36225565 PMCID: PMC9549113 DOI: 10.3389/fphar.2022.1004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Under Chinese medicine theory guidance, Fuzheng Yangxin Recipe (FZYX) is clinically effective for the treatment of heart failure (HF) caused by ischemic heart disease (IHD). This study aimed to investigate the mechanism of the myocardial protective effects of FZYX on HF. Materials and methods: The Gene expression omnibus database was used to identify differential genes of the IHD subtype. Through network pharmacological methods, the targets of the active components of FZYX were obtained. We also constructed IHD-induced HF model rats by ligating the left anterior descending coronary artery. Echocardiography, pathological section staining, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry, and quantitative real-time PCR analyses were performed to verify the protective effects of FZYX on the myocardium. Results: We identified 53 active components and 37 potential targets of FZYX associated with the IHD subtype. Signal transducer and activator of transcription 3 (STAT3) is a key protein in the protein-protein interaction (PPI) network. A total of 146 biological processes, 10 cellular components and 40 molecular function subcategories were identified by Gene Ontology (GO) enrichment analysis, and 18 signalling pathways, including apoptosis, were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In vivo experiments showed that FZYX significantly inhibited cardiomyocyte apoptosis, promoted the expression and phosphorylation of STAT3, and improved cardiac function. Conclusion: FZXY improves cardiac function and protects cardiomyocytes from injury via multi-component, multi-target and multi-pathway action, especially its possible role in regulating STAT3 expression and anti-apoptotic effect.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma,
| |
Collapse
|
8
|
The Polyunsaturated Fatty Acids, EPA and DHA, Ameliorate Myocardial Infarction-induced Heart Failure by Inhibiting p300-HAT Activity in Rats. J Nutr Biochem 2022; 106:109031. [DOI: 10.1016/j.jnutbio.2022.109031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/24/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022]
|
9
|
Sheida A, Taghavi T, Shafabakhsh R, Ostadian A, Razaghi Bahabadi Z, Khaksary Mahabady M, Hamblin MR, Mirzaei H. Potential of natural products in the treatment of myocardial infarction: focus on molecular mechanisms. Crit Rev Food Sci Nutr 2022; 63:5488-5505. [PMID: 34978223 DOI: 10.1080/10408398.2021.2020720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although conventional drugs are widely used in the prevention and treatment of cardiovascular disease (CVD), they are being used less frequently due to concerns about possible side effects over the long term. There has been a renewed research interest in medicinal plant products, and their role in protecting the cardiovascular system and treating CVD, which are now being considered as potential alternatives to modern drugs. The most important mechanism causing damage to the myocardium after heart attack and reperfusion, is increased levels of free radicals and oxidative stress. Therefore, treatment approaches often focus on reducing free radicals or enhancing antioxidant defense mechanism. It has been previously reported that bioactive natural products can protect the heart muscle in myocardial infarction (MI). Since these compounds are readily available in fruits and vegetables, they could prevent the risk of MI if they are consumed daily. Although the benefits of a healthy diet are well known, many scientific studies have focused on whether pure natural compounds can prevent and treat MI. In this review we summarize the effects of curcumin, resveratrol, quercitin, berberine, and tanshinone on MI and CVD, and focus on their proposed molecular mechanisms of action.
Collapse
Affiliation(s)
- Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Shimizu K, Sunagawa Y, Funamoto M, Honda H, Katanasaka Y, Murai N, Kawase Y, Hirako Y, Katagiri T, Yabe H, Shimizu S, Sari N, Wada H, Hasegawa K, Morimoto T. The Selective Serotonin 2A Receptor Antagonist Sarpogrelate Prevents Cardiac Hypertrophy and Systolic Dysfunction via Inhibition of the ERK1/2-GATA4 Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:ph14121268. [PMID: 34959669 PMCID: PMC8708651 DOI: 10.3390/ph14121268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.
Collapse
Affiliation(s)
- Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Hiroki Honda
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Noriyuki Murai
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuta Hirako
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Takahiro Katagiri
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Harumi Yabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Hiromichi Wada
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Correspondence: ; Tel.: +81-54-264-5763
| |
Collapse
|
11
|
Bao Z, Jing Y. Brominated flame retardant TBPH induced oxidative damage and reduced the expression of memory-related proteins in mice, with no discernable impairment of learning and memory. Hum Exp Toxicol 2021; 40:S684-S692. [PMID: 34784780 DOI: 10.1177/09603271211058876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is one of the new brominated flame retardants with adverse neurobehavioral potential. These flame retardants are often added to household furnishings where children would come into contact with them. This study explores whether oral exposure to TBPH for 28 days would impair neurobehavioral function in mice and the role of curcumin (CUR) in this process. CUR is a natural antioxidant and is thought to be of use in the treatment of neurological toxicity due to its neuroprotective effects. Learning and memory of mice exposed to TBPH was investigated using the Morris water maze. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were determined to assess oxidative damage. Western blot was used to detect the expression of glucose-regulated protein 78-kDa (GRP78), PKR-like ER kinase (PERK), and C/EBP homologous protein (CHOP) in the hippocampus. End-point effects were evaluated through observing post-synaptic density protein-95 (PSD-95), brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element binding protein (p-CREB). Although TBPH exposure alone does not impair learning and memory, oxidative stress markers and endoplasmic reticulum stress-associated proteins were adversely affected in exposed mice. TBPH could significantly decrease the levels of BDNF, p-CREB, and PSD-95 in the hippocampus, and these TBPH-induced neurotoxic effects were attenuated by CUR. These findings provide further understanding of the neurotoxic effects of TBPH and the protective effect of CUR on TBPH exposure.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Emergency, 117732Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Yin Jing
- Department of Anesthesiology, 117732Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
12
|
Yin J, Zhang B. Effects of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate on liver injury in Balb/c mice. Toxicol Ind Health 2021; 37:547-554. [PMID: 34486454 DOI: 10.1177/07482337211031688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH) has been used as a replacement in some commercial flame-retardant mixtures. It is widely used in industrial products, so the probability of human exposure to TBPH is high. Yet, little is known about how it is metabolized or its toxicity. To this end, we investigated what effect oral exposure of Balb/c mice to TBPH at concentrations of 200 mg kg-1 had on hepatic damage. Staining results showed liver injury in the mice exposed to TBPH. Oxidative stress markers and endoplasmic reticulum stress associated proteins were altered in the TBPH exposed mice, and these changes could be attenuated by administration of curcumin at 25 mg kg-1. Overall, TBPH induces hepatic damage via increasing oxidative stress, and curcumin plays a protective role in alleviating the TBPH-mediated histopathological alterations in the liver.
Collapse
Affiliation(s)
- Jing Yin
- Department of Emergency, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Bao Zhang
- Department of Emergency, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
13
|
Curcumin, an Inhibitor of p300-HAT Activity, Suppresses the Development of Hypertension-Induced Left Ventricular Hypertrophy with Preserved Ejection Fraction in Dahl Rats. Nutrients 2021; 13:nu13082608. [PMID: 34444769 PMCID: PMC8397934 DOI: 10.3390/nu13082608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
We found that curcumin, a p300 histone acetyltransferase (HAT) inhibitor, prevents cardiac hypertrophy and systolic dysfunction at the stage of chronic heart failure in Dahl salt-sensitive rats (DS). It is unclear whether curcumin suppresses the development of hypertension-induced left ventricular hypertrophy (LVH) with a preserved ejection fraction. Therefore, in this study, we randomized DS (n = 16) and Dahl salt-resistant (DR) rats (n = 10) at 6 weeks of age to either curcumin or vehicle groups. These rats were fed a high-salt diet and orally administrated with 50 mg/kg/d curcumin or its vehicle for 6 weeks. Both curcumin and vehicle treatment groups exhibited similar degrees of high-salt diet-induced hypertension in DS rats. Curcumin significantly decreased hypertension-induced increase in posterior wall thickness and LV mass index, without affecting the systolic function. It also significantly reduced hypertension-induced increases in myocardial cell diameter, perivascular fibrosis and transcriptions of the hypertrophy-response gene. Moreover, it significantly attenuated the acetylation levels of GATA4 in the hearts of DS rats. A p300 HAT inhibitor, curcumin, suppresses the development of hypertension-induced LVH, without affecting blood pressure and systolic function. Therefore, curcumin may be used for the prevention of development of LVH in patients with hypertension.
Collapse
|
14
|
Liao CL, Liu Y, Huang MZ, Liu HY, Ye ZL, Su Q. Myocardial ischemia reperfusion injury is alleviated by curcumin-peptide hydrogel via upregulating autophagy and protecting mitochondrial function. Stem Cell Res Ther 2021; 12:89. [PMID: 33509263 PMCID: PMC7842017 DOI: 10.1186/s13287-020-02101-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important factor limiting the success of cardiac reperfusion therapy. Curcumin has a significant cardioprotective effect against IRI, can inhibit ventricular remodeling induced by pressure load or MI, and improve cardiac function. However, the poor water solubility and low bioavailability of curcumin restrict its clinical application. METHODS In this study, we prepared and evaluated a curcumin-hydrogel (cur-hydrogel) to reduce cardiomyocyte apoptosis and reactive oxygen species formation induced by hypoxia-reoxygenation injury, promote autophagy, and reduce mitochondrial damage by maintaining the phosphorylation of Cx43. RESULTS Meanwhile, cur-hydrogel can restore cardiac function, inhibit myocardial collagen deposition and apoptosis, and activate JAK2/STAT3 pathway to alleviate myocardial ischemia-reperfusion injury in rats. CONCLUSIONS The purpose of this study is to elucidate the protective effects of cur-hydrogel on myocardial ischemia-reperfusion injury by regulating apoptosis, autophagy, and mitochondrial injury in vitro and in vivo, which lays a new theoretical and experimental foundation for the prevention and reduction of IRI.
Collapse
Affiliation(s)
- Chi-Lin Liao
- Department of Cardiology, People's Hospital of Baise, Baise, 533000, People's Republic of China
| | - Yang Liu
- Department of Cardiology, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, People's Republic of China
| | - Meng-Zhao Huang
- Department of Cardiology, People's Hospital of Baise, Baise, 533000, People's Republic of China
| | - Hua-Yong Liu
- Department of Cardiology, People's Hospital of Baise, Baise, 533000, People's Republic of China
| | - Zi-Liang Ye
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Xiufeng District, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
15
|
Sari N, Katanasaka Y, Honda H, Miyazaki Y, Sunagawa Y, Funamoto M, Shimizu K, Shimizu S, Wada H, Hasegawa K, Morimoto T. Cacao Bean Polyphenols Inhibit Cardiac Hypertrophy and Systolic Dysfunction in Pressure Overload-induced Heart Failure Model Mice. PLANTA MEDICA 2020; 86:1304-1312. [PMID: 32645737 DOI: 10.1055/a-1191-7970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pathological stresses such as pressure overload and myocardial infarction induce cardiac hypertrophy, which increases the risk of heart failure. Cacao bean polyphenols have recently gained considerable attention for their beneficial effects on cardiovascular diseases. This study investigated the effect of cacao bean polyphenols on the development of cardiac hypertrophy and heart failure. Cardiomyocytes from neonatal rats were pre-treated with cacao bean polyphenols and then stimulated with 30 µM phenylephrine. C57BL/6j male mice were subjected to sham or transverse aortic constriction surgery and then orally administered with vehicle or cacao bean polyphenols. Cardiac hypertrophy and function were examined by echocardiography. In cardiomyocytes, cacao bean polyphenols significantly suppressed phenylephrine-induced cardiomyocyte hypertrophy and hypertrophic gene transcription. Extracellular signal-regulated kinase 1/2 and GATA binding protein 4 phosphorylation induced by phenylephrine was inhibited by cacao bean polyphenols treatment in the cardiomyocytes. Cacao bean polyphenols treatment at 1200 mg/kg significantly ameliorated left ventricular posterior wall thickness, fractional shortening, hypertrophic gene transcription, cardiac hypertrophy, cardiac fibrosis, and extracellular signal-regulated kinase 1/2 phosphorylation induced by pressure overload. In conclusion, these findings suggest that cacao bean polyphenols prevent pressure overload-induced cardiac hypertrophy and systolic dysfunction by inhibiting the extracellular signal-regulated kinase 1/2-GATA binding protein 4 pathway in cardiomyocytes. Thus, cacao bean polyphenols may be useful for heart failure therapy in humans.
Collapse
Affiliation(s)
- Nurmila Sari
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Hiroki Honda
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiromichi Wada
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
16
|
Gorabi AM, Hajighasemi S, Kiaie N, Rosano GMC, Sathyapalan T, Al-Rasadi K, Sahebkar A. Anti-fibrotic effects of curcumin and some of its analogues in the heart. Heart Fail Rev 2020; 25:731-743. [PMID: 31512150 DOI: 10.1007/s10741-019-09854-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiac fibrosis stems from the changes in the expression of fibrotic genes in cardiac fibroblasts (CFs) in response to the tissue damage induced by various cardiovascular diseases (CVDs) leading to their transformation into active myofibroblasts, which produce high amounts of extracellular matrix (ECM) proteins leading, in turn, to excessive deposition of ECM in cardiac tissue. The excessive accumulation of ECM elements causes heart stiffness, tissue scarring, electrical conduction disruption and finally cardiac dysfunction and heart failure. Curcumin (Cur; also known as diferuloylmethane) is a polyphenol compound extracted from rhizomes of Curcuma longa with an influence on an extensive spectrum of biological phenomena including cell proliferation, differentiation, inflammation, pathogenesis, chemoprevention, apoptosis, angiogenesis and cardiac pathological changes. Cumulative evidence has suggested a beneficial role for Cur in improving disrupted cardiac function developed by cardiac fibrosis by establishing a balance between degradation and synthesis of ECM components. There are various molecular mechanisms contributing to the development of cardiac fibrosis. We presented a review of Cur effects on cardiac fibrosis and the discovered underlying mechanisms by them Cur interact to establish its cardio-protective effects.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Shimizu K, Sunagawa Y, Funamoto M, Wakabayashi H, Genpei M, Miyazaki Y, Katanasaka Y, Sari N, Shimizu S, Katayama A, Shibata H, Iwabuchi Y, Kakeya H, Wada H, Hasegawa K, Morimoto T. The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice. Sci Rep 2020; 10:7172. [PMID: 32346115 PMCID: PMC7188884 DOI: 10.1038/s41598-020-64207-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/07/2020] [Indexed: 11/17/2022] Open
Abstract
Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice.
Collapse
Affiliation(s)
- Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan.,Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Hiroki Wakabayashi
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mai Genpei
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan.,Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan.,Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Ayumi Katayama
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Akita, 010-8543, Japan
| | - Yoshiharu Iwabuchi
- Laboratory of Synthetic Chemistry, Department of Organic Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiromichi Wada
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan. .,Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan. .,Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
| |
Collapse
|
18
|
Abstract
Chronic heart failure is the final stage of such heart diseases as hypertension, cardiomyopathy, and myocardial infarction. Since the incidence of heart failure has increased in recent decades, heart failure is now a major public health problem in developed countries, including Japan. Recently, some studies have demonstrated that natural products, used as nutritional supplements, play an important role in preventing the development of heart failure in animal studies. In our previous study, we showed that curcumin, a natural polyphenol compound derived from Curcuma longa, exhibits therapeutic potency against heart failure. To establish the pharmacological therapeutic value of curcumin in heart failure, we have investigated the translational research of curcumin. This report reviews our basic studies and clinical trials using curcumin therapeutically to prevent heart failure, as well as the possibility of clinical applications of curcumin.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka.,Division of Translational Research, Clinical Research Institute, NHO Kyoto Medical Center.,Division of Clinical Research, Shizuoka General Hospital
| |
Collapse
|
19
|
Cardioprotective Effects of Dietary Phytochemicals on Oxidative Stress in Heart Failure by a Sex-Gender-Oriented Point of View. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2176728. [PMID: 31998434 PMCID: PMC6975222 DOI: 10.1155/2020/2176728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023]
Abstract
Dietary phytochemicals are considered an innovative strategy that helps to reduce cardiovascular risk factors. Some phytochemicals have been shown to play a beneficial role in lipid metabolism, to improve endothelial function and to modify oxidative stress pathways in experimental and clinical models of cardiovascular impairment. Importantly, investigation on phytochemical effect on cardiac remodeling appears to be promising. Nowadays, drug therapy and implantation of devices have demonstrated to ameliorate survival. Of interest, sex-gender seems to influence the response to HF canonical therapies. In fact, starting by the evidence of the feminization of world population and the scarce efficacy and safety of the traditional drugs in women, the search of alternative therapeutic tools has become mandatory. The aim of this review is to summarize the possible role of dietary phytochemicals in HF therapy and the evidence of a different sex-gender-oriented response.
Collapse
|
20
|
Motaharinia J, Panahi Y, Barreto GE, Beiraghdar F, Sahebkar A. Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. Biofactors 2019; 45:690-702. [PMID: 31246346 DOI: 10.1002/biof.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022]
Abstract
Drug-induced nephrotoxicity is a frequent serious adverse effect, contributing to morbidity and increased healthcare utilization. Prevention or reversal is key. Curcumin has useful biological features that include antioxidant, anti-inflammatory, and anticancer properties. This review covers aspects of curcumin in relation to prevention of drug-induced nephrotoxicity: dosage and schedule, effect on kidney biomarkers and histological changes, and mechanisms of curcumin's protective effects. Despite success in some animal models, human studies and clinical administration of curcumin for nephroprotection remains limited due to difficulty in achieving therapeutic levels following oral administration and in determining the optimal dosing schedule. Lack of sufficient evidence from animal studies, coupled with low systemic bioavailability, continues to limit the utilization of curcumin in addressing and controlling drug-induced nephrotoxicity. Therefore, human studies are required to fully assess and validate the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Javad Motaharinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Ahmed S, Khan H, Mirzaei H. Mechanics insights of curcumin in myocardial ischemia: Where are we standing? Eur J Med Chem 2019; 183:111658. [PMID: 31514063 DOI: 10.1016/j.ejmech.2019.111658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Cardiovascular disorders are known as one of the main health problems which are associated with mortality worldwide. Myocardial ischemia (MI) is improper blood supply to myocardium which leads from serious complications to life-threatening problems like AMI, atherosclerosis, hypertension, cardiac-hypertrophy as well as diabetic associated complications as diabetic atherosclerosis/cardiomyopathy/hypertension. Despite several efforts, the current therapeutic platforms are not related with significant results. Hence, it seems, developing novel therapies are required. In this regard, increasing evidences indicated, curcumin (CRC) acts as cardioprotective agent. Given that CRC and its analogs exert their cardioprotective effects via affecting on a variety of cardiovascular diseases-related mechanisms (i.e., Inflammation, and oxidative stress). Herein, for first time, we have highlighted the protective impacts of CRC against MI. This review might be a steppingstone for further investigation into the clinical implications of the CRC against MI. Furthermore, it pulls in light of a legitimate concern for scientific community, seeking novel techniques and characteristic dynamic biopharmaceuticals for use against myocardial ischemia.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
22
|
Akpinar A, Calisir M, Cansın Karakan N, Lektemur Alpan A, Goze F, Poyraz O. Effects of Curcumin on Alveolar Bone Loss in Experimental Periodontitis in Rats: A Morphometric and Histopathologic Study. INT J VITAM NUTR RES 2018; 87:262-270. [PMID: 30272534 DOI: 10.1024/0300-9831/a000243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Curcumin is found in the rhizomes of the turmeric plant that has been showed antioxidant and anti-inflammatory effect. The aim of this study was to evaluate the effects of systemic curcumin therapy on alveolar bone loss in an experimental periodontitis model in rats. Material and Methods: Thirty-two male Wistar rats were randomly divided to 4 groups: 75 mg/kg/daily curcumin (C75; n =8), 150 mg/kg/daily curcumin (C150; n =8), Control (n =8), and Ligated (n =8). Curcumin was administrated using gastric gavage. After 12 days, the rats were sacrificed. Right mandibles samples were histopathologically examined. Alveolar bone loss was measured. Interleukin 1β (IL-1β) and interleukin 10 (IL-10) were evaluated in the serum samples and gingival homogenates. Results: The measurements of alveolar bone loss in the mandibular molars revealed significantly higher bone-loss values in the Ligated group than the Control, C75 and C150 groups. The IL-1β levels in the gingival homogenates were significantly increased in the Ligated group compared to those of the Control, C75 and C150 groups. The serum IL-1β levels in the Ligated group were significantly higher than the Control group. The mean osteoblast numbers in the Ligated group were lower than those of the Control, C75 and C150 groups. The C150 groups showed significantly more osteoblasts than the Control group. The osteoclast numbers in the Ligated group increased significantly compared to the C75, C150 and control groups. Conclusion: This study demonstrates that systemic administration of curcumin at the 75 and 150mg/kg doses reduced alveolar bone loss in the periodontal disease in rats. Keywords: Alveolar bone loss, Antioxidant, Curcumin, Ligature-induced, Histomorphometric, Micronutrition.
Collapse
Affiliation(s)
- Aysun Akpinar
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Metin Calisir
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Nebi Cansın Karakan
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Aysan Lektemur Alpan
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Fahrettin Goze
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| | - Omer Poyraz
- 1 Cumhuriyet University, Faculty Of Dentistry Periodontology Department, Sivas, Turkey
| |
Collapse
|
23
|
Saeidinia A, Keihanian F, Butler AE, Bagheri RK, Atkin SL, Sahebkar A. Curcumin in heart failure: A choice for complementary therapy? Pharmacol Res 2018; 131:112-119. [PMID: 29550354 DOI: 10.1016/j.phrs.2018.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Heart failure is a major public health concern and one of the most common reasons for a cardiac hospital admission. Heart failure may be classified as having a reduced or preserved ejection fraction and its severity is based on the symptom score. Given the aging population, it is predicted that admissions with heart failure will increase. Whilst pharmacological therapy has improved the associated morbidity and mortality, there is a need for additional therapies to improve the clinical outcome as the death rate remains high. Curcumin is a natural product derived from turmeric that appears to have cardiovascular benefit through a number of mechanisms. In this review, we have assessed the mechanisms by which curcumin may exert its effects in different models of heart failure and show that it has promise as a complementary treatment in heart failure.
Collapse
Affiliation(s)
- Amin Saeidinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Keihanian
- Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Sports City Road, Doha, Qatar
| | - Ramin Khameneh Bagheri
- Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes. J Pharmacol Sci 2018; 136:212-217. [PMID: 29602708 DOI: 10.1016/j.jphs.2017.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022] Open
Abstract
The natural compound, curcumin (CUR), possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT) inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy. Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure-activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy.
Collapse
|
25
|
Zhang N, Wei WY, Li LL, Hu C, Tang QZ. Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Front Pharmacol 2018; 9:122. [PMID: 29497382 PMCID: PMC5818417 DOI: 10.3389/fphar.2018.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 01/02/2023] Open
Abstract
Cardiac fibrosis, in response to injury and stress, is central to a broad constellation of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic function and causing arrhythmogenesis. Although some conventional drugs, such as β-blockers and renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to alleviate cardiac fibrosis in clinical trials, these traditional therapies do not tend to target all the fibrosis-associated mechanisms, and do not hamper the progression of cardiac fibrosis in patients with heart failure. Polyphenols are present in vegetables, fruits, and beverages and had been proposed as attenuators of cardiac fibrosis in different models of cardiovascular diseases. Together with results found in the literature, we can show that some polyphenols exert anti-fibrotic and myocardial protective effects by mediating inflammation, oxidative stress, and fibrotic molecular signals. This review considers an overview of the mechanisms of cardiac fibrosis, illustrates their involvement in different animal models of cardiac fibrosis treated with some polyphenols and projects the future direction and therapeutic potential of polyphenols on cardiac fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
26
|
Bai XJ, Hao JT, Wang J, Zhang WF, Yan CP, Zhao JH, Zhao ZQ. Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na +/Ca 2+ exchanger expression after transverse abdominal aortic constriction in rats. Pharmacol Rep 2017; 70:60-68. [PMID: 29331788 DOI: 10.1016/j.pharep.2017.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study tested the hypothesis that inhibition of cardiac hypertrophy and preservation of cardiac/endothelial function by the natural yellow pigment curcumin are associated with upregulated expression of Na+/Ca2+ exchanger (NCX) after transverse aortic constriction (TAC). METHODS Male Wistar rats were subjected to TAC for 10 weeks and curcumin (50 mg/kg/day) was fed by gastric gavage during TAC. Expression of NCX and endothelial nitric oxide synthase (eNOS) was analyzed by Western blot and immunohistochemistry. RESULTS Compared with the animals in the TAC group, curcumin significantly increased the survival rate and reduced the ratio of heart or left ventricle (LV) to body weight and the cross sectional area of cardiomyocytes. In coincidence with improved LV systolic pressure and reduced LV end-diastolic pressure, curcumin significantly reduced LV end-systolic and diastolic diameter/dimension, and enhanced LV ejection fraction and LV fractional shortening as measured by echocardiography. Furthermore, endothelium-dependent relaxation of aortic rings in response to acetylcholine was significantly improved by curcumin. Along with these modifications, the expression and localization of NCX and eNOS in the myocardium and vascular endothelium were significantly upregulated by curcumin. The protective effect of curcumin on endothelium-dependent relaxation was partly blocked by pretreatment with the NCX inhibitor, KB-R7943. CONCLUSIONS These results demonstrate that inhibition of cardiac hypertrophy, improvement of cardiac systolic/diastolic function and preservation of vascular endothelium by curcumin might be associated with upregulated NCX expression level in response to increased afterload.
Collapse
Affiliation(s)
- Xiao-Jie Bai
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Jun-Tao Hao
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Wei-Fang Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Cai-Ping Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jia-Hui Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
27
|
Sunagawa Y, Funamoto M, Suzuki A, Shimizu K, Sakurai R, Katanasaka Y, Miyazaki Y, Asakawa T, Kan T, Inagaki J, Wada H, Hasegawa K, Morimoto T. A Novel Target Molecule of Nobiletin Derived from Citrus Peels has a Therapeutic Potency Against the Development of Heart Failure. Eur Cardiol 2017; 12:105. [PMID: 30416575 DOI: 10.15420/ecr.2017:23:14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Anna Suzuki
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Ryoga Sakurai
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| | - Tomohiro Asakawa
- Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences - University of Shizuoka
| | - Toshiyuki Kan
- Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences - University of Shizuoka
| | - Junya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine - Kyoto University
| | - Hiromichi Wada
- Division of Translational Research, Clinical Research Institute - Kyoto Medical Center
| | - Koji Hasegawa
- Division of Translational Research, Clinical Research Institute - Kyoto Medical Center
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences - University of Shizuoka
| |
Collapse
|
28
|
Lv FH, Yin HL, He YQ, Wu HM, Kong J, Chai XY, Zhang SR. Effects of curcumin on the apoptosis of cardiomyocytes and the expression of NF-κB, PPAR-γ and Bcl-2 in rats with myocardial infarction injury. Exp Ther Med 2016; 12:3877-3884. [PMID: 28105120 PMCID: PMC5228430 DOI: 10.3892/etm.2016.3858] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Curcumin is a natural polyphenol with powerful antioxidant and anti-inflammatory properties. The present study evaluated the protective effect of curcumin on myocardial injury in rats as well as the mechanisms underlying these effects, and examined the expression of nuclear factor-κB (NF-κB), peroxisome proliferator-activated receptor-γ (PPAR-γ) and B-cell leukemia/lymphoma-2 (Bcl-2) following myocardial infarction. A rat model of myocardial infarction was successfully established. Hematoxylin and eosin staining showed cellular atrophy and hyperchromatic cytoplasm in the myocardial infarction area. The myocardial cells displayed lysis and breakage of cardiac muscle fibers, karyopyknosis and karyorrhexis associated with infiltration of inflammatory cells and proliferation of fibrous tissue. Curcumin treatment at a dosage of 150 mg/kg/body weight resulted in an increase in surviving cells, fewer apoptotic cells, decreased proliferation of fibrous tissue and reduced infiltration of inflammatory cells, though necrosis was still present compared with the rats without curcumin treatment. The immunohistochemical assay demonstrated that curcumin treatment inhibited the expression of NF-κB, but increased the expression of PPAR-γ. The results of the reverse transcription-polymerase chain reaction indicated that curcumin treatment significantly increased the mRNA expression levels of Bcl-2 (P<0.01). Therefore, curcumin antagonizes cardiomyocyte apoptosis and inhibits inflammatory cell infiltration following myocardial infarction, which may be associated with its inhibitory effects on the expression of NF-κB, and activating effects on the expression of PPAR-γ and Bcl-2 in myocardial cells. Curcumin may be useful in clinical practice for saving more living heart muscle in the area of myocardial infarction and improving cardiac function following the elective opening of obstructed coronary arteries.
Collapse
Affiliation(s)
- Feng-Hua Lv
- Department of Cardiology, The First Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| | - Hong-Lei Yin
- Department of Cardiology, The First Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| | - Yi-Qun He
- Department of Psychosomatic Medicine, The Second Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| | - Hui-Min Wu
- Department of Cardiology, The Third Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| | - Juan Kong
- Department of Cardiology, The Third Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| | - Xiao-Yan Chai
- Department of Cardiology, The First Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| | - Su-Rong Zhang
- Department of Cardiology, The First Teaching Hospital of Xinxiang Medical College, Weihui, Henan 453100, P.R. China
| |
Collapse
|
29
|
Xiao J, Sheng X, Zhang X, Guo M, Ji X. Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1267-77. [PMID: 27099472 PMCID: PMC4820283 DOI: 10.2147/dddt.s104925] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Curcumin, a polyphenolic compound derived from turmeric, protects against myocardial injury by alleviating oxidative stress, inflammation, apoptosis, and fibrosis. However, the role of curcumin and its mechanism of action on interstitial fibrosis after myocardial infarction (MI) are poorly understood. To clarify, MI was induced by a permanent ligation of the left anterior descending coronary artery in adult mice, and the effects of curcumin were evaluated 4 weeks after the MI event. In vitro, we treated cardiac fibroblasts (CFs) with Ang II, and investigated the anti-fibrotic mechanism of curcumin. Our results showed that curcumin significantly attenuated collagen deposition in vivo and inhibited CF proliferation and migration, and MMP expression. In addition, we found that the down-regulation of SIRT1 after MI was attenuated by curcumin pretreatment, which indicated that the activation of SIRT1 might be involved in the protective action of curcumin. This hypothesis was confirmed by genetic inhibition of SIRT1 (siRNA-SIRT1) in Ang II-treated CFs. Our results provide new insights into the mechanism underlying the anti-fibrotic effects of curcumin in the heart.
Collapse
Affiliation(s)
- Jie Xiao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xi Sheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|