1
|
Pazarci P, Özler S, Kaplan HM. Effect of alpha-linolenic acid on aminoglycoside nephrotoxicity and RhoA/Rho-kinase pathway in kidney. PeerJ 2024; 12:e18335. [PMID: 39434789 PMCID: PMC11493068 DOI: 10.7717/peerj.18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Aminoglycoside nephrotoxicity stands as a primary contributor to the development of acute intrinsic renal failure. Distinctive characteristic associated with this nephrotoxicity is the occurrence of tubular necrosis, which is why it is commonly referred to as acute tubular necrosis. Studies have demonstrated that inhibiting rhoA/rho-kinase pathway is beneficial for kidney damage induced by diabetes and renal ischemia. Comparable pathological conditions can be observed in aminoglycoside nephrotoxicity, like those found in diabetes and renal ischemia. Gentamicin, an aminoglycoside, is known to activate Rho/Rho-kinase pathway. The primary goal of this study is to explore influence of oxidative stress on this pathway by concurrently administering gentamicin and alpha-linolenic acid (ALA) possessing known antioxidant properties. To achieve this, gentamicin (100 mg kg-1) and ALA (70 mg kg-1) were administered to mice for a period of 9 days, and Rho/Rho-kinase pathway was examined by using ELISA. Administration of gentamicin to mice led to an elevation in RhoA and rho-kinase II levels, along with the activity of rho-kinase in kidneys. However, ALA effectively reversed this heightened response. ALA, known for its antioxidant properties, inhibited activation of Rho/Rho-kinase pathway induced by gentamicin. This finding suggests that gentamicin induces nephrotoxicity through oxidative stress.
Collapse
Affiliation(s)
- Percin Pazarci
- Department of Medical Biology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Serkan Özler
- Department of Urology, Mustafa Kemal University Faculty of Medicine, Hatay, Turkey
| | - Halil Mahir Kaplan
- Department of Pharmacology, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
2
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
3
|
Xiang C, Yan Y, Zhang D. Alleviation of the doxorubicin-induced nephrotoxicity by fasudil in vivo and in vitro. J Pharmacol Sci 2021; 145:6-15. [PMID: 33357780 DOI: 10.1016/j.jphs.2020.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Treatment with the chemotherapeutic agent, doxorubicin (DOX), is limited by side effects. We have previously demonstrated that fasudil, a Rho/ROCK inhibitor, has antioxidant, anti-inflammatory and anti-apoptotic effects in contrast-induced acute kidney injury model. The present study to investigated the possible protective effect of fasudil, on DOX-induced nephrotoxicity. MATERIALS AND METHOD In vivo: Forty male C57BL/6 male mice were randomly divided into 4 groups: Control group, DOX treatment group (DOX group), DOX + low dose fasudil (DOX + L group), DOX + high dose fasudil (DOX + H group). Mice in 2-4 groups received DOX (2.5 mg/kg, i.p.) once a week for 8 weeks. The 3 and 4 group were given 2 mg/kg/d or 10 mg/kg/d fasudil before DOX injection. respectively. Meanwhile, the control group received saline. At the end of week eight, blood samples were collected for biochemical testing. The kidneys were removed for histological, immunohistochemical, Western blot, quantitative real-time PCR (qRT-PCR), and molecular detection. In vitro: NRK-52E cells were treated with 40 uM fasudil for 12 h, then incubated with 1 uM DOX for 24 h. Cells then collected for qRT-PCR and Western blot. RESULTS In vivo, fasudil treatment ameliorated DOX-induced immunofluorescence reaction of DNA damage-related factors (8-OHdG), decreased the expression of Bax, Caspase-3, p16, p21 and p53, and increased the expression of protein of Bcl-2, Bmi-1 and Sirt-1. In the mouse model, administration of fasudil significantly ameliorated DOX-induced kidney damage, suppressed cell apoptosis and senescence, ameliorated redox imbalance and DNA damage. At the same time, DOX produced obvious kidney damage revealed by kidney functions changes: increased serum creatinine (SCr) and blood urea nitrogen (BUN) concentrations. In addition, kidney tissue staining in the DOX group showed abnormal structure and fibroproliferative disorders. And DOX could promote the oxidation and senescence of kidney cells, leading to increased expression of 8-OHdG and senescence and apoptosis-related factors. On the contrary, fasudil treatment can effectively inhibit redox imbalance and DNA damage caused by DOX, and inhibit cell senescence and apoptosis. Fasudil can inhibit excessive activation of Rho/ROCK signaling pathway, thereby improving kidney tissue fibrosis and recovery kidney function. CONCLUSION Fasudil has a protective effect on DOX-induced nephrotoxicity in mice and NRK-52E cells, which can inhibit oxidative stress and DNA damage, inhibit apoptosis, and delays cell senescence by inhibiting RhoA/Rho kinase (ROCK) signaling pathway.
Collapse
Affiliation(s)
- Chengyu Xiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nangjing, China
| | - Yi Yan
- Department of Cardiology, Jiangyin People's Hospital, Jiangyin, China
| | - Dingguo Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nangjing, China.
| |
Collapse
|
4
|
Shahbazi R, Baradaran B, Khordadmehr M, Safaei S, Baghbanzadeh A, Jigari F, Ezzati H. Targeting ROCK signaling in health, malignant and non-malignant diseases. Immunol Lett 2020; 219:15-26. [PMID: 31904392 DOI: 10.1016/j.imlet.2019.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A Rho-associated coiled-coil kinase (ROCK) is identified as a critical downstream effector of GTPase RhoA which contains two isoforms, ROCK1 (also known as p160ROCK and ROKβ) and ROCK2 (also known as Rho-kinase and ROKα), the gene of which is placed on chromosomes 18 (18q11.1) and 2 (2p24), respectively. ROCKs have a principal function in the generation of actin-myosin contractility and regulation of actin cytoskeleton dynamics. They represent a chief role in regulating various cellular functions, such as apoptosis, growth, migration, and metabolism through modulation of cytoskeletal actin synthesis, and cellular contraction through phosphorylation of numerous downstream targets. Emerging evidence has indicated that ROCKs present a significant function in cardiac physiology. Of note, dysregulation of ROCKs involves in several cardiac pathological processes like cardiac hypertrophy, cardiac fibrosis, systemic blood pressure disorder, and pulmonary hypertension. Moreover, ROCKs, in addition to their role in regulating renal arteriolar contraction, glomerular blood flow, and filtration, can also play a role in controlling podocytes, tubular cells, and mesangial cell structure and function. Hyperactivity disorder and over-gene expression of Rho/ROCK have been indicated in different cancers. Furthermore, it seems that increasing the expression of mRNA or ROCK protein has an undesirable effect on patient survival and has a positive impact on the progression and worsening of disease prognosis. This review focuses on the physiological and pathological functions of ROCKs with a particular view on its possible value of ROCK inhibitors as a new therapy in cancers and non-cancer diseases.
Collapse
Affiliation(s)
- Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.
| | - Farinaz Jigari
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| |
Collapse
|
5
|
Gao Z, Zhu W, Zhang H, Li Z, Cui T. The influence of fasudil on renal proximal tubular cell epithelial-mesenchymal transition induced by parathormone. Ren Fail 2018; 39:575-581. [PMID: 28741985 PMCID: PMC6446168 DOI: 10.1080/0886022x.2017.1349677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway through which a variety of chronic kidney diseases progress to end-stage renal disease. Epithelial-mesenchymal transition (EMT) of renal proximal tubular cells is one of the most important factors in renal fibrosis. This study investigates if fasudil could influence EMT of renal proximal tubular cells. METHODS HK-2 cells in passage 3-4 were used for all experiments. The cells were divided into five groups and treated with different concentrations of PTH and then observe cellular morphological changes at 0, 24 and 48 h using an inverted microscope and investigate the expression of the epithelial cell marker E-cadherin and the renal fibroblast marker α-smooth muscle actin (α-SMA). RESULTS PTH significantly induced EMT, fasudil-inhibited EMT induced by PTH to different degrees, and the inhibitory effect of fasudil was most pronounced at 20 μmol/L. CONCLUSION Monitoring PTH levels, early prevention and control of hyperparathyroidism and reducing the concentration of PTH are important means to improve prognosis and delay the progression of chronic kidney disease. Fasudil can restrain EMT induced by PTH; this conclusion provides experimental data for the application of fasudil in the clinical prevention and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ziqing Gao
- a Department of Ultrasound , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Weiping Zhu
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Hua Zhang
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Zhonghe Li
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Tongxia Cui
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| |
Collapse
|
6
|
Angiotensin II-Induced Mesangial Cell Damaged Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels. Int J Mol Sci 2018; 19:ijms19040957. [PMID: 29570626 PMCID: PMC5979336 DOI: 10.3390/ijms19040957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43), pannexin1 (Panx1) and P2X7 receptor (P2X7R) are expressed in kidneys and are known to constitute a feedforward mechanism leading to inflammation in other tissues. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remain unknown. In the present work, we found that MES-13 cells, from a cell line derived from mesangial cells, stimulated with angiotensin II (AngII) developed oxidative stress (OS, thiobarbituric acid reactive species (TBARS) and generated pro-inflammatory cytokines (ELISA; IL-1β and TNF-α). The membrane permeability increased progressively several hours before the latter outcome, which was a response prevented by Losartan, indicating the involvement of AT1 receptors. Western blot analysis showed that the amount of phosphorylated MYPT (a substrate of RhoA/ROCK) and Cx43 increased progressively and in parallel in cells treated with AngII, a response followed by an increase in the amount in Panx1 and P2X7R. Greater membrane permeability was partially explained by opening of Cx43 hemichannels (Cx43 HCs) and Panx1 channels (Panx1 Chs), as well as P2X7Rs activation by extracellular ATP, which was presumably released via Cx HCs and Panx1 Chs. Additionally, inhibition of RhoA/ROCK blocked the progressive increase in membrane permeability, and the remaining response was explained by the other non-selective channels. The rise of activity in the RhoA/ROCK-dependent pathway, as well as in Cx HCs, P2X7R, and to a minor extent in Panx1 Chs led to higher amounts of TBARS and pro-inflammatory cytokines. We propose that AngII-induced mesangial cell damage could be effectively inhibited by concomitantly inhibiting the RhoA/ROCK-dependent pathway and one or more non-selective channel(s) activated through this pathway.
Collapse
|
7
|
Suárez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC. T cells and autoimmune kidney disease. Nat Rev Nephrol 2017; 13:329-343. [PMID: 28287110 DOI: 10.1038/nrneph.2017.34] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glomerulonephritis is traditionally considered to result from the invasion of the kidney by autoantibodies and immune complexes from the circulation or following their formation in situ, and by cells of the innate and the adaptive immune system. The inflammatory response leads to the proliferation and dysfunction of cells of the glomerulus, and invasion of the interstitial space with immune cells, resulting in tubular cell malfunction and fibrosis. T cells are critical drivers of autoimmunity and related organ damage, by supporting B-cell differentiation and antibody production or by directly promoting inflammation and cytotoxicity against kidney resident cells. T cells might become activated by autoantigens in the periphery and become polarized to secrete inflammatory cytokines before entering the kidney where they have the opportunity to expand owing to the presence of costimulatory molecules and activating cytokines. Alternatively, naive T cells could enter the kidney where they become activated after encountering autoantigen and expand locally. As not all individuals with a peripheral autoimmune response to kidney antigens develop glomerulonephritis, the contribution of local kidney factors expressed or produced by kidney cells is probably of crucial importance. Improved understanding of the biochemistry and molecular biology of T cells in patients with glomerulonephritis offers unique opportunities for the recognition of treatment targets for autoimmune kidney disease.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - Sean J Bradley
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - David Klatzmann
- Sorbonne Universités, Pierre and Marie Curie University, INSERM UMR_S 959, 83 Boulevard de l'Hôpital, F-75013, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 83 boulevard de l'Hôpital, F-75013, Paris, France
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Loirand G. Rho Kinases in Health and Disease: From Basic Science to Translational Research. Pharmacol Rev 2015; 67:1074-95. [PMID: 26419448 DOI: 10.1124/pr.115.010595] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rho-associated kinases ROCK1 and ROCK2 are key regulators of actin cytoskeleton dynamics downstream of Rho GTPases that participate in the control of important physiologic functions, S including cell contraction, migration, proliferation, adhesion, and inflammation. Several excellent review articles dealing with ROCK function and regulation have been published over the past few years. Although a brief overview of general molecular, biochemical, and functional properties of ROCKs is included, an effort has been made to produce an original work by collecting and synthesizing recent studies aimed at translating basic discoveries from cell and experimental models into knowledge of human physiology, pathophysiological mechanisms, and medical therapeutics. This review points out the specificity and distinct roles of ROCK1 and ROCK2 isoforms highlighted in the last few years. Results obtained from genetically modified mice and genetic analysis in humans are discussed. This review also addresses the involvement of ROCKs in human diseases and the potential use of ROCK activity as a biomarker or a pharmacological target for specific inhibitors.
Collapse
Affiliation(s)
- Gervaise Loirand
- Institut National de la Santé et de la Recherche Médicale UMR1087, Université de Nantes, CHU Nantes, l'institut du thorax, Nantes, France
| |
Collapse
|
9
|
Blocking VEGF/Caveolin-1 signaling contributes to renal protection of fasudil in streptozotocin-induced diabetic rats. Acta Pharmacol Sin 2015; 36:831-40. [PMID: 25937636 DOI: 10.1038/aps.2015.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/10/2014] [Indexed: 01/02/2023]
Abstract
AIM RhoA/ROCK signaling plays an important role in diabetic nephropathy, and ROCK inhibitor fasudil exerts nephroprotection in experimental diabetic nephropathy. In this study we investigated the molecular mechanisms underlying the protective actions of fasudil in a rat model of diabetic nephropathy. METHODS Streptozotocin (STZ)-induced diabetic rats, to which fasudil or a positive control drug enalapril were orally administered for 8 months. Metabolic parameters and blood pressure were assessed during the treatments. After the rats were euthanized, kidney samples were collected for histological and molecular biological studies. VEGF, VEGFR1, VEGFR2 and fibronectin expression, and Src and caveolin-1 phosphorylation in the kidneys were assessed using RT-PCR, Western blot and immunohistochemistry assays. The association between VEGFR2 and caveolin-1 was analyzed with immunoprecipitation. RESULTS Chronic administration of fasudil (30 and 100 mg·kg(-1)·d(-1)) or enalapril (10 mg/kg, bid) significantly attenuated the glomerular sclerosis and albuminuria in the diabetic rats. Furthermore, fasudil treatment prevented the upregulation of VEGF, VEGFR1, VEGFR2 and fibronectin, and the increased association between VEGFR2 and caveolin-1 in the renal cortices, and partially blocked Src activation and caveolin-1 phosphorylation on tyrosine 14 in the kidneys, whereas enalapril treatment had no effects on the VEGFR2/Src/caveolin-1 signaling pathway. CONCLUSION Fasudil exerts protective actions in STZ-induced diabetic nephropathy by blocking the VEGFR2/Src/caveolin-1 signaling pathway and fibronectin upregulation. Thus, VEGFR2 may be a potential therapeutic target for the treatment of diabetic nephropathy.
Collapse
|
10
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Isgro J, Gupta S, Jacek E, Pavri T, Duculan R, Kim M, Kirou KA, Salmon JE, Pernis AB. Enhanced rho-associated protein kinase activation in patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 65:1592-602. [PMID: 23508371 DOI: 10.1002/art.37934] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 03/07/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Rho-associated protein kinases (ROCKs) have been implicated in the pathogenesis of cardiovascular and renal disorders. We recently showed that ROCKs could regulate the differentiation of murine Th17 cells and the production of interleukin-17 (IL-17) and IL-21, two cytokines associated with systemic lupus erythematosus (SLE). The goal of this study was to assess ROCK activation in human Th17 cells and to evaluate ROCK activity in SLE patients. METHODS An enzyme-linked immunosorbent assay (ELISA)-based ROCK activity assay was used to evaluate ROCK activity in human cord blood CD4+ T cells differentiated under Th0 or Th17 conditions. We then performed a cross-sectional analysis of 28 SLE patients and 25 healthy matched controls. ROCK activity in peripheral blood mononuclear cell (PBMC) lysates was determined by ELISA. Cytokine and chemokine profiles were analyzed by ELISA. RESULTS Human cord blood CD4+ T cells differentiated under Th17 conditions expressed higher levels of ROCK activity than did CD4+ T cells stimulated under Th0 conditions. Production of IL-17 and IL-21 was inhibited by the addition of a ROCK inhibitor. SLE PBMCs expressed significantly higher levels of ROCK activity than did healthy control PBMCs (1.25 versus 0.56; P = 0.0015). Sixteen SLE patients (57%) expressed high levels of ROCK (optical density at 450 nm >1). Disease duration, lymphocyte count, and azathioprine use were shown to be significant independent predictors of ROCK activity in multivariable analyses. CONCLUSION Consistent with previous results in the murine system, increased ROCK activation was associated with Th17 cell differentiation. Moreover, enhanced ROCK activity was observed in a subgroup of SLE patients. These data support the concept that the ROCK pathway could represent an important therapeutic target for SLE.
Collapse
Affiliation(s)
- Josephine Isgro
- Hospital for Special Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mouawad F, Tsui H, Takano T. Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function. Can J Physiol Pharmacol 2013; 91:773-82. [PMID: 24144047 DOI: 10.1139/cjpp-2013-0135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Podocytes play a critical role in maintaining glomerular permselectivity. It has been long recognized that their intricate actin-based structures are tightly associated with their normal function; however, the precise mechanisms by which podocytes form and maintain their complex structure had been poorly understood until the intensive investigations on podocyte biology began in 1998, triggered by the breakthrough discovery of nephrin. This review summarizes the recent discoveries of the molecular mechanisms by which the actin cytoskeleton is regulated in podocytes. A particular focus will be on the role of the Rho-family of small GTPases, represented by RhoA, Rac1, and Cdc42. Rho-GTPases are known for their versatile cellular functions, most importantly for the actin regulatory roles. We will also discuss the potential roles of the 3 groups of proteins known to regulate Rho-GTPases, namely GTPase-activating proteins, guanine nucleotide exchange factors, and guanine nucleotide dissociation inhibitors.
Collapse
Affiliation(s)
- Flaviana Mouawad
- Department of Medicine, McGill University Health Centre, Montreal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
13
|
Kania DS, Smith CT, Nash CL, Gonzalvo JD, Bittner A, Shepler BM. Potential new treatments for diabetic kidney disease. Med Clin North Am 2013; 97:115-34. [PMID: 23290734 DOI: 10.1016/j.mcna.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antifibrotic agents, antioxidant agents, ET-a receptor antagonists, and a few other agents with nonspecific or multifaceted mechanisms of action have been evaluated and progressed to small clinical studies in human subjects. Although there are limited data at the present time, these early evaluations have produced some favorable results that at least warrant further investigation. There is certainly not enough compelling evidence to justify the routine use of any of these products specifically for DKD at the moment; however, more well-controlled and adequately powered studies in several hundred patients will help determine which of these may have a place in the DKD treatment armamentarium of the future.
Collapse
Affiliation(s)
- Deanna S Kania
- Purdue University College of Pharmacy, West Lafayette, IN 47907-2091, USA
| | | | | | | | | | | |
Collapse
|
14
|
Meyer-Schwesinger C, Dehde S, Sachs M, Mathey S, Arefi K, Gatzemeier S, Balabanov S, Becker JU, Thaiss F, Meyer TN. Rho-kinase inhibition prevents proteinuria in immune-complex-mediated antipodocyte nephritis. Am J Physiol Renal Physiol 2012; 303:F1015-25. [PMID: 22811486 DOI: 10.1152/ajprenal.00380.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Podocyte foot process retraction is a hallmark of proteinuric glomerulonephritis. Cytoskeletal rearrangement causes a redistribution of slit membrane proteins from the glomerular filtration barrier towards the cell body. However, the underlying signaling mechanisms are presently unknown. Recently, we have developed a new experimental model of immune-mediated podocyte injury in mice, the antipodocyte nephritis (APN). Podocytes were targeted with a polyclonal antipodocyte antibody causing massive proteinuria around day 10. Rho-kinases play a central role in the organization of the actin cytoskeleton of podocytes. We therefore investigated whether inhibition of Rho-kinases would prevent podocyte disruption. C57/BL6 mice received antipodocyte serum with or without daily treatment with the specific Rho-kinase inhibitor HA-1077 (5 mg/kg). Immunoblot analysis demonstrated activation of Rho-kinase in glomeruli of antipodocyte serum-treated mice, which was prevented by HA-1077. Increased Rho-kinase activity was localized to podocytes in APN mice by immunostainings against the phosphorylated forms of Rho-kinase substrates. Rho-kinase inhibition significantly reduced podocyte loss from the glomerular tuft. Periodic acid staining demonstrated less podocyte hypertrophy in Rho-kinase-inhibited APN mice, despite similar amounts of immune complex deposition. Electron microscopy revealed reduced foot process effacement compared with untreated APN mice. Internalization of the podocyte slit membrane proteins nephrin and synaptopodin was prevented by Rho-kinase inhibition. Functionally, Rho-kinase inhibition significantly reduced proteinuria without influencing blood pressure. In rats with passive Heymann nephritis and human kidney biopsies from patients with membranous nephropathy, Rho-kinase was activated in podocytes. Together, these data suggest that increased Rho-kinase activity in the podocyte may be a mechanism for in vivo podocyte foot process retraction.
Collapse
Affiliation(s)
- Catherine Meyer-Schwesinger
- Renal Unit, Dept. of Internal Medicine, Univ. Affiliated Hospital Hamburg Barmbek, Rübenkamp 220, 22291 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gur S, Kadowitz PJ, Hellstrom WJ. RhoA/Rho‐Kinase as a Therapeutic Target for the Male Urogenital Tract. J Sex Med 2011; 8:675-87. [DOI: 10.1111/j.1743-6109.2010.02084.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Intact cytoskeleton is required for small G protein dependent activation of the epithelial Na+ channel. PLoS One 2010; 5:e8827. [PMID: 20098689 PMCID: PMC2809106 DOI: 10.1371/journal.pone.0008827] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/04/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Epithelial Na(+) Channel (ENaC) plays a central role in control of epithelial surface hydration and vascular volume. Similar to other ion channels, ENaC activity is regulated, in part, by cortical cytoskeleton. Besides, the cytoskeleton is an established target for small G proteins signaling. Here we studied whether ENaC activity is modulated by changes in the state of the cytoskeleton and whether cytoskeletal elements are involved in small G protein mediated increase of ENaC activity. METHODS AND FINDINGS First, the functional importance of the cytoskeleton was established with whole-cell patch clamp experiments recording ENaC reconstituted in CHO cells. Pretreatment with Cytochalasin D (CytD; 10 microg/ml; 1-2 h) or colchicine (500 microM; 1-3 h) to disassembly F-actin and destroy microtubules, respectively, significantly decreased amiloride sensitive current. However, acute application of CytD induced rapid increase in macroscopic current. Single channel measurements under cell-attached conditions revealed similar observations. CytD rapidly increased ENaC activity in freshly isolated rat collecting duct, polarized epithelial mouse mpkCCD(c14) cells and HEK293 cells transiently transfected with ENaC subunits. In contrast, colchicine did not have an acute effect on ENaC activity. Small G proteins RhoA, Rac1 and Rab11a markedly increase ENaC activity. 1-2 h treatment with colchicine or CytD abolished effects of these GTPases. Interestingly, when cells were coexpressed with ENaC and RhoA, short-term treatment with CytD decreased ENaC activity. CONCLUSIONS We conclude that cytoskeleton is involved in regulation of ENaC and is necessary for small G protein mediated increase of ENaC activity.
Collapse
|
17
|
Sturiale A, Campo S, Crascì E, Aloisi C, Buemi M. Experimental Models of Acute Renal Failure and Erythropoietin: What Evidence of a Direct Effect? Ren Fail 2009; 29:379-86. [PMID: 17497457 DOI: 10.1080/08860220701193290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The kidney can achieve a structural and functional recovery after the damage induced by ischemia and reperfusion. This is due to the regeneration of epithelial tubular cells, the intervention of immature cells mainly localized in the medulla, and a small number of bone marrow-derived stem cells. In many instances, however, recovery is delayed or does not occur at all. The mechanisms allowing the renal cells to de-differentiate still need to be clarified in order to find a therapeutic approach that can amplify this ability and then stop the fibroid involution and the progression toward renal failure. Several authors have hypothesized a protective effect of EPO against ischemic and cytotoxic renal damage and observed that patients precociously treated with EPO showed a slower progression of renal failure. EPO has been demonstrated to have proliferative and anti-apoptotic effects in ischemia-reperfusion models in the brain and cell cultures. Moreover, EPO can mobilize stem cells and increase the plasmatic levels and the renal expression of VEGF. These effects seem to be dose-dependent and could be due to the activation of signal transduction systems, like Jak and STAT. In the presence of high doses of exogenous EPO or during the treatment with long-acting EPO-like molecules, non-specific receptors may be activated through a low-affinity link. Further investigations are needed to determine new therapeutic applications for EPO and other analogous hormones. Very long-acting molecules or molecules with cyto-protective but no erythropoietic effect may represent useful tools in the study of the molecular mechanisms underlying EPO's action and may have a rapid and safe therapeutic application.
Collapse
Affiliation(s)
- Alessio Sturiale
- Department of Internal Medicine, Chair of Nephrology, University of Messina, Italy
| | | | | | | | | |
Collapse
|
18
|
Kassimatis TI, Konstantinopoulos PA. The role of statins in chronic kidney disease (CKD): Friend or foe? Pharmacol Ther 2009; 122:312-23. [DOI: 10.1016/j.pharmthera.2009.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
19
|
Whaley-Connell A, Habibi J, Wei Y, Gutweiler A, Jellison J, Wiedmeyer CE, Ferrario CM, Sowers JR. Mineralocorticoid receptor antagonism attenuates glomerular filtration barrier remodeling in the transgenic Ren2 rat. Am J Physiol Renal Physiol 2009; 296:F1013-22. [PMID: 19261739 DOI: 10.1152/ajprenal.90646.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent evidence suggests that mineralocorticoid receptor (MR) antagonism has beneficial effects on tissue oxidative stress and insulin metabolic signaling as well as reducing proteinuria. However, the mechanisms by which MR antagonism corrects both renin-angiotensin-aldosterone system (RAAS) impairments in renal insulin metabolic signaling and filtration barrier/podocyte injury remain unknown. To explore this potential beneficial interactive effect of MR antagonism we used young transgenic (mRen2)27 (Ren2) rats with increased tissue RAAS activity and elevated serum aldosterone levels. Ren2 and age-matched Sprague-Dawley (SD) control rats (age 6-7 wk) were implanted with a low dose of the MR antagonist spironolactone (0.24 mg/day) or vehicle, both delivered over 21 days. Albuminuria, podocyte-specific proteins (synaptopodin, nephrin, and podocin), and ultrastructural analysis of the glomerular filtration barrier were measured in relation to RAAS activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, reactive oxygen species (ROS), and the redox-sensitive Rho kinase (ROK). Insulin metabolic signaling was determined via measurement of insulin receptor substrate-1 (IRS-1) phosphorylation, IRS-1 ubiquitin/proteasomal degradation, and phosphorylation of Akt. Ren2 rats exhibited albuminuria, loss of podocyte-specific proteins, and podocyte foot process effacement contemporaneous with reduced renal IRS-1 and protein kinase B/Akt phosphorylation compared with SD control rats (each P < 0.05). Ren2 kidneys also manifested increased NADPH oxidase/ROS/ROK in conjunction with enhanced renal tissue levels of angiotensin II (ANG II), ANG-(1-12), and angiotensin type 1 receptor. Low-dose spironolactone treatment reduced albuminuria and tissue RAAS activity and improved podocyte structural and protein integrity with improvements in IRS-1/Akt phosphorylation. Thus, in this model of RAAS activation, MR antagonism attenuates glomerular/podocyte remodeling and albuminuria, in part through reductions in redox-mediated impairment of insulin metabolic signaling.
Collapse
Affiliation(s)
- Adam Whaley-Connell
- Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Meyer-Schwesinger C, Dehde S, von Ruffer C, Gatzemeier S, Klug P, Wenzel UO, Stahl RAK, Thaiss F, Meyer TN. Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. Am J Physiol Renal Physiol 2009; 296:F1088-99. [PMID: 19225047 DOI: 10.1152/ajprenal.90746.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rho kinase signaling regulates inflammatory cell migration and chemokine production. We therefore investigated the mechanisms of Rho-kinase-dependent inflammation in lipopolysaccharide (LPS)-induced renal failure. C57/BL6 mice received intraperitoneal LPS with or without daily treatment with specific Rho kinase inhibitors (Y-27632 or HA-1077; 5 mg/kg). Rho kinase inhibitors were applied in a preventive (12 or 1 h before LPS) or a therapeutic (6 h after LPS) scheme. Both protected renal function and decreased tubular injury in LPS-treated mice. Enhanced Rho kinase activity was inhibited by HA-1077 in capillary endothelial cells, inflammatory cells, and tubuli by analysis of Rho kinase substrate phosphorylation. Early neutrophil influx was reduced by HA-1077 without reduction of the proinflammatory cytokine TNFalpha. In contrast, HA-1077 decreased the influx of monocytes/macrophages coinciding with reduced expression of the NF-kappaB-regulated chemokines CCL5 and CCL2. We therefore examined NF-kappaB signal transduction and found that NF-kappaB p65 phosphorylation and nuclear translocation were reduced by Rho kinase inhibition. IkappaBalpha degradation was not altered during the first 6 h but was reduced by HA-1077 at later time points. NF-kappaB p50-deficient mice were similarly protected from renal injury by Rho kinase inhibition further supporting the prominent role for p65 in Rho kinase inhibition. Together, these data suggest that Rho kinase inhibition by preventive or therapeutic treatment effectively reduced endotoxic kidney injury in part by attenuation of NF-kappaB p65 activation.
Collapse
|
21
|
Dolman M, Fretz M, Segers G, Lacombe M, Prakash J, Storm G, Hennink W, Kok R. Renal targeting of kinase inhibitors. Int J Pharm 2008; 364:249-57. [DOI: 10.1016/j.ijpharm.2008.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 01/19/2023]
|
22
|
Hayashi K. [Kidney disease: potential of anti-inflammatory approaches for drug therapy]. Nihon Yakurigaku Zasshi 2008; 132:89-95. [PMID: 18689957 DOI: 10.1254/fpj.132.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
23
|
Prakash J, de Borst MH, Lacombe M, Opdam F, Klok PA, van Goor H, Meijer DKF, Moolenaar F, Poelstra K, Kok RJ. Inhibition of renal rho kinase attenuates ischemia/reperfusion-induced injury. J Am Soc Nephrol 2008; 19:2086-97. [PMID: 18650485 DOI: 10.1681/asn.2007070794] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rho kinase pathway plays an important role in dedifferentiation of epithelial cells and infiltration of inflammatory cells. For testing of the hypothesis that blockade of this cascade within the kidneys might be beneficial in the treatment of renal injury the Rho kinase inhibitor, Y27632 was coupled to lysozyme, a low molecular weight protein that is filtered through the glomerulus and is reabsorbed in proximal tubular cells. Pharmacokinetic studies with Y27632-lysozyme confirmed that the conjugate rapidly and extensively accumulated in the kidney. Treatment with Y27632-lysozyme substantially inhibited ischemia/reperfusion-induced tubular damage, indicated by reduced staining of the dedifferentiation markers kidney injury molecule 1 and vimentin, and increased E-cadherin relative to controls. Rho kinase activation was inhibited by Y27632-lysozyme within tubular cells and the interstitium. Y27632-lysozyme also inhibited inflammation and fibrogenesis, indicated by a reduction in gene expression of monocyte chemoattractant protein 1, procollagen Ialpha1, TGF-beta1, tissue inhibitor of metalloproteinase 1, and alpha-smooth muscle actin. Immunohistochemistry revealed reduced macrophage infiltration and decreased expression of alpha-smooth muscle actin, collagen I, collagen III, and fibronectin. In contrast, unconjugated Y27632 did not have these beneficial effects but instead caused systemic adverse effects, such as leukopenia. Neither treatment improved renal function in the bilateral ischemia/reperfusion model. In conclusion, the renally targeted Y27632-lysozyme conjugate strongly inhibits tubular damage, inflammation, and fibrogenesis induced by ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Pharmacokinetics and Drug Delivery, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Leon A Bach
- Department of Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Giehl K, Graness A, Goppelt-Struebe M. The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. Am J Physiol Renal Physiol 2007; 294:F407-13. [PMID: 18045834 DOI: 10.1152/ajprenal.00093.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thrombospondin-1 (TSP-1), which is synthesized by mesangial cells, is known for its anti-angiogenic activity and its ability to activate latent TGF-beta. TSP-1 is upregulated in renal diseases associated with tissue remodeling. Therefore, we hypothesized that the expression of TSP-1 might be modulated by changes in cell morphology involving proteins of the Rho family. Spreading of mesangial cells after detachment and reseeding was characterized by the formation of lamellipodia and focal adhesions, pointing toward a Rac-1-mediated rearrangement of actin structures. Clustering of focal adhesion proteins was also observed in a model system of nocodazole-induced disruption of microtubules. These morphological alterations were impeded by pharmacological inhibition of Src family kinases, of the small GTPase Rac-1, or by downregulation of Rac-1 by siRNA. Upon cell spreading, TSP-1 was upregulated in the absence and much more prominently in the presence of serum, but also after nocodazole treatment. TSP-1 upregulation was controlled by activation of Src family kinases, ERK 1/2 and Rac-1, whereas activation of RhoA-ROCK signaling was not linked to TSP-1 induction. We thus provide evidence that TSP-1 expression is induced by common signaling pathways, which are activated by morphological alterations of renal mesangial cells or by soluble factors as contained in serum, and these pathways include Src family kinases, ERK 1/2 and Rac-1. Our data suggest that tissue remodeling activates gene expression of pathophysiologically relevant proteins such as TSP-1.
Collapse
Affiliation(s)
- Klaudia Giehl
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | |
Collapse
|
26
|
Abstract
The increasing global prevalence of chronic kidney disease (CKD) and end-stage renal disease with the associated spiraling cost has profound public health and economic implications. This has made slowing the progression of CKD, a major health-care priority. CKD is invariably characterized by progressive kidney fibrosis and at present, treatment aiming to slow the progression of CKD is limited to aggressive blood pressure control, with few therapies targeting the fibrotic process itself. In this review, we explore the potential of experimental therapeutic strategies, based on preventing or reversing the pathophysiologic steps of kidney remodeling that lead to fibrosis.
Collapse
Affiliation(s)
- A Khwaja
- Department of Academic Nephrology, Sheffield Kidney Institute, Sheffield, UK.
| | | | | | | |
Collapse
|
27
|
Abstract
A large body of evidence has accrued indicating that voltage-gated Ca(2+) channel subtypes, including L-, T-, N-, and P/Q-type, are present within renal vascular and tubular tissues, and the blockade of these Ca(2+) channels produces diverse actions on renal microcirculation. Because nifedipine acts exclusively on L-type Ca(2+) channels, the observation that nifedipine predominantly dilates afferent arterioles implicates intrarenal heterogeneity in the distribution of L-type Ca(2+) channels and suggests that it potentially causes glomerular hypertension. In contrast, recently developed Ca(2+) channel blockers (CCBs), including mibefradil and efonidipine, exert blocking action on L-type and T-type Ca(2+) channels and elicit vasodilation of afferent and efferent arterioles, which suggests the presence of T-type Ca(2+) channels in both arterioles and the distinct impact on intraglomerular pressure. Recently, aldosterone has been established as an aggravating factor in kidney disease, and T-type Ca(2+) channels mediate aldosterone release as well as its effect on renal efferent arteriolar tone. Furthermore, T-type CCBs are reported to exert inhibitory action on inflammatory process and renin secretion. Similarly, N-type Ca(2+) channels are present in nerve terminals, and the inhibition of neurotransmitter release by N-type CCBs (eg, cilnidipine) elicits dilation of afferent and efferent arterioles and reduces glomerular pressure. Collectively, the kidney is endowed with a variety of Ca(2+) channel subtypes, and the inhibition of these channels by their specific CCBs leads to variable impact on renal microcirculation. Furthermore, multifaceted activity of CCBs on T- and N-type Ca(2+) channels may offer additive benefits through nonhemodynamic mechanisms in the progression of chronic kidney disease.
Collapse
MESH Headings
- Aldosterone/physiology
- Animals
- Antihypertensive Agents/adverse effects
- Antihypertensive Agents/classification
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Arterioles/drug effects
- Arterioles/physiology
- Blood Pressure/drug effects
- Calcium Channel Blockers/adverse effects
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Calcium Channels/chemistry
- Calcium Channels/classification
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Calcium Channels, N-Type/chemistry
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/physiology
- Calcium Channels, T-Type/chemistry
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Diabetes Mellitus/physiopathology
- Disease Progression
- Humans
- Hydronephrosis/physiopathology
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney/blood supply
- Kidney/drug effects
- Kidney/physiology
- Kidney Diseases/drug therapy
- Kidney Diseases/metabolism
- Mice
- Mice, Knockout
- Microcirculation/drug effects
- Microcirculation/physiology
- Models, Biological
- Neurotransmitter Agents/metabolism
- Protein Subunits
- Rats
- Renal Circulation/drug effects
- Renal Circulation/physiology
- Renin/metabolism
- Renin-Angiotensin System/physiology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Koichi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|