1
|
Zhang Z, Wang Q, Zhang H, Wang S, Ma X, Wang H. Golm1 facilitates the CaO2-DOPC-DSPE200-PEI -CsPbBr3 QDs -induced apoptotic death of hepatocytes through the stimulation of mitochondrial autophagy and mitochondrial reactive oxygen species production through interactions with P53/Beclin-1/Bcl-2. Chem Biol Interact 2024; 398:111076. [PMID: 38815669 DOI: 10.1016/j.cbi.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Mitophagy is a distinct physiological process that can have beneficial or deleterious effects in particular tissues. Prior research suggests that mitophagic activity can be triggered by CaO2-PM-CsPbBr3 QDs, yet the specific role that mitophagy plays in hepatic injury induced by CaO2-PM-CsPbBr3 QDs has yet to be established. Accordingly, in this study a series of mouse model- and cell-based experiments were performed that revealed the ability of CaO2-PM-CsPbBr3 QDs to activate mitophagic activity. Golm1 was upregulated in response to CaO2-PM-CsPbBr3 QDs treatment, and overexpressing Golm1 induced autophagic flux in the murine liver and hepatocytes, whereas knocking down Golm1 had the opposite effect. CaO2-PM-CsPbBr3 QDs were also able to Golm1 expression, in turn promoting the degradation of P53 and decreasing the half-life of this protein. Overexpressing Golm1 was sufficient to suppress the apoptotic death of hepatocytes in vitro and in vivo, whereas the knockdown of Golm1 had the opposite effect. The ability of Golm1 to promote p53-mediated autophagy was found to be associated with the disruption of Beclin-1 binding to Bcl-2, and the Golm1 N-terminal domain was determined to be required for p53 interactions, inducing autophagic activity in a manner independent of helicase activity or RNA binding. Together, these results indicate that inhibiting Golm1 can promote p53-dependent autophagy via disrupting Beclin-1 binding to Bcl-2, highlighting a novel approach to mitigating liver injury induced by CaO2-PM-CsPbBr3 QDs.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China.
| | - Qinglong Wang
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Haibo Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China
| | - Xia Ma
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, Henan Province, China.
| |
Collapse
|
2
|
Liu Y, Li J, Liu X, Li Z, Men Y, Sun Y, Chen B. Design, synthesis, and screening for the antiproliferative activity of new 1,3,4-thiadiazole scaffold linked to substituted phenacyl derivatives and disulfides. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| | - Junjie Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| | - Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| | - Yongyue Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, People’s Republic of China
| |
Collapse
|
3
|
Therapeutic Potential of Oridonin and Its Analogs: From Anticancer and Antiinflammation to Neuroprotection. Molecules 2018; 23:molecules23020474. [PMID: 29470395 PMCID: PMC6017549 DOI: 10.3390/molecules23020474] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Oridonin, a diterpenoid natural product commonly used in East Asian herbal medicine, is garnering increased attention in the biomedical community due to its extensive biological activities that include antitumor, anti-inflammatory, antimicrobial, hepatic fibrosis prevention, and neurological effects. Over the past decade, significant progress has been made in structure activity relationship and mechanism of action studies of oridonin for the treatment of cancer and other diseases. This review provides a brief summary on oridonin and its analogs in cancer drug discovery and antiinflammation and highlights its emerging therapeutic potential in neuroprotection applications.
Collapse
|
4
|
Prado JR, Chen J, Kharlampieva E, Vyazovkin S. Melting of gelatin gels confined to silica nanopores. Phys Chem Chem Phys 2018; 18:29056-29063. [PMID: 27472066 DOI: 10.1039/c6cp03339c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoconfinement is a way to create materials whose properties differ from the bulk. For the first time, this research explores the effect of nanoconfinement on the thermodynamics and kinetics of gel melting. Differential scanning calorimetry has been employed to study gelatin gels prepared inside 4, 6, 15, and 30 nm pores of a silica matrix. It has been found that with decreasing the pore size the heat of melting decreases from 3.5 J g-1 in bulk to 0.6 J g-1 in 6 nm pores, which is linked to a decrease in crosslinks formed via hydrogen bonding. Despite decreases in crosslink formation, the melting temperature for gels confined to 6 nm pores increased nearly 10 °C compared to bulk gel. In 4 nm pores, no gel melting was observed. Isoconversional kinetic analysis of the melting data has revealed that the increase in thermal stability is associated with a decrease in the pre-exponential factor that occurs upon nanoconfinement. The origins of the effect have been linked to diminished molecular mobility of the gelatin chains confined inside the nanopores, which leads to enhanced restoration of broken crosslinks.
Collapse
Affiliation(s)
- J Rachel Prado
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL 35294, USA.
| | - Jun Chen
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL 35294, USA.
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL 35294, USA.
| | - Sergey Vyazovkin
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Abstract
Oridonin has attracted considerable attention in the last decade because of its anti-cancer pharmacological properties. This ent-kaurane diterpenoid, isolated from the Chinese herb Rabdosia rubescens and some related species, has
demonstrated great potential in the treatment profile of many diseases by exerting anti-tumor, anti-inflammatory, pro-apoptotic, and neurological effects. Unfortunately, the mechanisms via which oridonin exerts these effects remain poorly understood. This review provides an overview of the multifunctional effects of oridonin as well as the reasons for its potential for investigations in the treatment of many diseases other than cancer.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Calwer Street 3, Tübingen, Germany,
| | | |
Collapse
|
6
|
Kang N, Cao SJ, Zhou Y, He H, Tashiro SI, Onodera S, Qiu F, Ikejima T. Inhibition of caspase-9 by oridonin, a diterpenoid isolated from Rabdosia rubescens, augments apoptosis in human laryngeal cancer cells. Int J Oncol 2015; 47:2045-56. [PMID: 26648189 PMCID: PMC4665153 DOI: 10.3892/ijo.2015.3186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/11/2015] [Indexed: 12/26/2022] Open
Abstract
Rabdosia rubescens, a commonly used traditional Chinese medicine, has increasingly gained attention for its use as an antitumor herb. Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been reported to induce apoptosis in human laryngeal cancer HEp-2 cells by our group. Here, we made unexpected observations that the caspase-9 inhibitor (C9i) enhanced apoptosis in response to selected stimuli, and HEp-2 cells which were made deficient in caspase-9 using siRNA exhibited no resistance to apoptotic signals and actually demonstrated increased apoptotic sensitivity to oridonin. The results were reversed by the transfection of an exogenous caspase-9 expression vector. Caspase-9 reduced sensitivity to apoptotic stimuli through reactive oxygen species (ROS)-suppressing and autophagy-promoting methods. ROS triggered the progression of apoptosis through activation of both the caspase-9-independent mitochondrial pathway and death receptor pathways, and the autophagy had an anti-apoptotic function in oridonin-treated HEp-2 cells. These collective results suggest that oridonin targets caspase-9 to alter ROS production and autophagy situation to promote HEp-2 cell apoptosis. Therefore, oridonin has the potential to be developed as an anticancer agent, and the combination of oridonin with those agents leading to reduction of caspase-9 expression in tumor cells could represent a novel approach to human laryngeal cancer treatment.
Collapse
Affiliation(s)
- Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Shi-Jie Cao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yan Zhou
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao He
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shin-Ichi Tashiro
- Institute for Clinical and Biomedical Sciences, Kyoto 603-8072, Japan
| | - Satoshi Onodera
- Department of Clinical and Biomedical Science, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Feng Qiu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
7
|
Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol 2014; 11:672-87. [PMID: 25330794 DOI: 10.1038/nrurol.2014.285] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexually transmitted diseases (STDs) are caused by several pathogens, including bacteria, viruses and protozoa, and can induce male infertility through multiple pathophysiological mechanisms. Additionally, horizontal transmission of STD pathogens to sexual partners or vertical transmission to fetuses and neonates is possible. Chlamydia trachomatis, Ureaplasma spp., human papillomavirus, hepatitis B and hepatitis C viruses, HIV-1 and human cytomegalovirus have all been detected in semen from symptomatic and asymptomatic men with testicular, accessory gland and urethral infections. These pathogens are associated with poor sperm quality and decreased sperm concentration and motility. However, the effects of these STD agents on semen quality are unclear, as are the effects of herpes simplex virus type 1 and type 2, Neisseria gonorrhoeae, Mycoplasma spp., Treponema pallidum and Trichomonas vaginalis, because few studies have evaluated the influence of these pathogens on male infertility. Chronic or inadequately treated infections seem to be more relevant to infertility than acute infections are, although in many cases the exact aetiological agents remain unknown.
Collapse
|
8
|
Sun KW, Ma YY, Guan TP, Xia YJ, Shao CM, Chen LG, Ren YJ, Yao HB, Yang Q, He XJ. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol 2012; 18:7166-74. [PMID: 23326121 PMCID: PMC3544018 DOI: 10.3748/wjg.v18.i48.7166] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/21/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect and mechanism of oridonin on the gastric cancer cell line HGC-27 in vitro.
METHODS: The inhibitory effect of oridonin on HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treatment with 10 μg/mL oridonin for 24 h and 48 h, the cells were stained with acridine orange/ethidium bromide. The morphologic changes were observed under an inverted fluorescence microscope. DNA fragmentation (a hallmark of apoptosis) and lactate dehydrogenase activity were examined using DNA ladder assay and lactate dehydrogenase-release assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 μg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected. After treatment with oridonin for 24 h, the effects of oridonin on expression of Apaf-1, Bcl-2, Bax, caspase-3 and cytochrome c were also analyzed using reverse-transcript polymerase chain reaction (RT-PCR) and Western blotting.
RESULTS: Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 μg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05). The inhibition rates of HGC-27 treated with oridonin at the four concentrations for 48 h were 14.77% ± 4.21%, 21.57% ± 3.75%, 30.31% ± 4.91% and 61.19% ± 5.81%, with a significant difference (P < 0.05). The inhibition rates of HGC-27 treated with oridonin for 72 h at the four concentrations were 25.77% ± 4.85%, 31.86% ± 3.86%, 48.30% ± 4.16% and 81.80% ± 6.72%, with a significant difference (P < 0.05). Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. Lactate dehydrogenase (LDH) release assay showed that after treated with 1.25 μg/mL and 20 μg/mL oridonin for 24 h, LDH release of HGC-27 caused by apoptosis increased from 22.94% ± 3.8% to 52.68% ± 2.4% (P < 0.001). However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05). And the apoptosis rates of HGC-27 induced by the four different concentrations of oridonin were 5.3% ± 1.02%, 12.8% ± 2.53%, 28.5% ± 4.23% and 49.6% ± 3.76%, which were in a dose-dependent manner (P < 0.05). After treatment for 24 h, DNA ladder showed that oridonin induced a significant increase in DNA fragmentation in a dose-dependent manner. RT-PCR revealed that mRNA expression levels were up-regulated compared with the controls in caspase-3 (0.917 ± 0.103 vs 0.357 ± 0.019, P < 0.05), cytochrome c (1.429 ± 0.111 vs 1.002 ± 0.014, P < 0.05), Apaf-1 (0.688 ± 0.101 vs 0.242 ± 0.037, P < 0.05) and Bax (0.856 ± 0.101 vs 0.278 ± 0.027, P < 0.05) (P < 0.05), whereas down-regulated in Bcl-2 (0.085 ± 0.012 vs 0.175 ± 0.030, P < 0.05). Western blotting analysis also confirmed this result.
CONCLUSION: Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway.
Collapse
|
9
|
Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 2012; 64:866-84. [PMID: 22349241 DOI: 10.1016/j.addr.2012.01.020] [Citation(s) in RCA: 768] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/08/2023]
Abstract
The use of polymeric nanocarriers to transport active compounds like small-molecular drugs, peptides, or genes found an increased attention throughout the different fields of natural sciences. Not only that these nanocarriers enhance the properties of already existing drugs in terms of solubility, bioavailability, and prolonged circulation times, furthermore they can be tailor-made in such a manner that they selectively release their cargo at the desired site of action. For the triggered release, these so-called smart drug delivery systems are designed to react on certain stimuli like pH, temperature, redox potential, enzymes, light, and ultrasound. Some of these stimuli are naturally occurring in vivo, for example the difference in pH in different cellular compartments while others are caused by the disease, which is to be treated, like differences in pH and temperature in some tumor tissues. Other external applied stimuli, like light and ultrasound, allow the temporal and spatial control of the release, since they are not triggered by any biological event. This review gives a brief overview about some types of stimuli-responsive nanocarriers with the main focus on organic polymer-based systems. Furthermore, the different stimuli and the design of corresponding responsive nanocarriers will be discussed with the help of selected examples from the literature.
Collapse
|
10
|
Yao Y, Li L, Zhang H, Jia R, Liu B, Zhao X, Zhang L, Qian G, Fan X, Ge S. Enhanced therapeutic efficacy of vitamin K2 by silencing BCL-2 expression in SMMC-7721 hepatocellular carcinoma cells. Oncol Lett 2012; 4:163-167. [PMID: 22807981 DOI: 10.3892/ol.2012.682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/03/2012] [Indexed: 01/15/2023] Open
Abstract
Vitamin K2 (VK2) exerts cell growth inhibitory effects in various human cancer cells such as SMMC-7721 hepatocellular carcinoma (HCC) cells. BCL-2 is an antiapoptotic protein that is frequently overexpressed in numerous tumors. Modulation of multiple antiapoptotic signaling pathways involving BCL-2, which are related to growth factor-stimulated signal transduction in cell survival, is essential for enhancement of the cytotoxic effect of anticancer drugs. In this study, we tested a new strategy of gene therapy by combining BCL-2 siRNA with VK2. In SMMC-7721 HCC cells, the combined treatment significantly enhanced cytotoxicity compared with treatment with either VK2 or siBCL-2 alone. We found that combined treatment induced a significantly different level of G2 stage inhibition. Furthermore, the p53 protein was overexpressed 24 h subsequent to combination treatment, and p21 was clearly increased at 36 h as a consequence of the increased p53 activity. In conclusion, these data suggest that the antitumor effect of VK2 may be improved by silencing BCL-2 expression in SMMC-7721 HCC cells and provides support for the combined use of VK2 and siBCL-2 as a promising approach in cancer gene therapy.
Collapse
Affiliation(s)
- Yuting Yao
- Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kang X, Xie Q, Zhou X, Li F, Huang J, Liu D, Huang T. Effects of hepatitis B virus S protein exposure on sperm membrane integrity and functions. PLoS One 2012; 7:e33471. [PMID: 22470450 PMCID: PMC3314651 DOI: 10.1371/journal.pone.0033471] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/09/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis B is a public health problem worldwide. Viral infection can affect a man's fertility, but only scant information about the influence of hepatitis B virus (HBV) infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs) on human sperm membrane integrity and functions. METHODS/PRINCIPAL FINDINGS Reactive oxygen species (ROS), lipid peroxidation (LP), total antioxidant capacity (TAC) and phosphatidylserine (PS) externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and flow cytometric analyses were performed. (1) After 3 h incubation with 25 µg/ml of HBs, the average rates of ROS positive cells, annexin V-positive/propidium iodide (PI)-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA) in the sperm cells exposed to 50 µg/ml of HBs for 3 h was significantly higher than that in the control (P<0.05-0.01). (2) HBs increased the MDA levels and the numbers of ROS positive cells, annexin V-positive/PI-negative cells, caspases-3, -8, -9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3) HBs monoclonal antibody (MAb) and N-Acetylcysteine (NAC) reduced the number of ROS-positive sperm cells. (4) HBs decreased the TAC levels in sperm cells in a dose-dependent manner. CONCLUSION HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation of caspases, and DNA fragmentation, resulting in increased apoptosis of sperm cells and loss of sperm membrane integrity and causing sperm dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - TianHua Huang
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou, China
- * E-mail:
| |
Collapse
|
12
|
Reactive oxygen species contribute to oridonin-induced apoptosis and autophagy in human cervical carcinoma HeLa cells. Acta Pharmacol Sin 2011; 32:1266-75. [PMID: 21892202 DOI: 10.1038/aps.2011.92] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM To investigate the role of reactive oxygen species (ROS) in oridonin-induced apoptosis and autophagy in HeLa cells. METHODS The cell viability was measured using MTT assay. Morphological changes of apoptosis and autophagy were examined using Hoechst 33258 staining and monodansylcadaverine (MDC) staining, respectively. The mitochondrial membrane potential (ΔΨm) was measured using fluorescent dye rhodamine 123. DCF-induced fluorescence was used to measure the intracellular ROS level. Protein expression was examined using Western blot. RESULTS Treatment of HeLa cells with oridonin (20-160 μmol/L) inhibited the cell growth in time- and concentration-dependent manners. The cells treated with oridonin (80 μmol/L) for 24 h displayed marked DNA fragmentation and MDC-positive autophagosomes. In the presence of the specific autophagy inhibitor 3-MA (2 mmol/L), the oridonin-induced apoptosis was significantly enhanced. Treatment of HeLa cells with oridonin (20-120 μmol/L) induced intracellular ROS generation in a concentration-dependent manner. In the presence of the ROS scavenger NAC (5 mmol/L), the oridinin-induced ROS generation was markedly reduced. NAC (5 mmol/L) or non-thiol antioxidant catalase (1000 U/mL) significantly reduced the oridonin-induced inhibition of cell growth and apoptosis. Furthermore, oridonin significantly reduced ΔΨm, which was blocked by NAC. Oridonin markedly increased Bax expression in mitochondria, and decreased Bcl-2 expression in both the cytosol and mitochondria. Oridonin also markedly increased the phosphorylation of Bcl-2 in the cytosol. All the effects were blocked by NAC. Oridonin increased the levels of caspase-3 and caspase-8, and decreased the expression of pro-caspase 3 and pro-caspase 9, which were blocked by NAC. CONCLUSION ROS plays a critical role in oridonin-induced apoptosis and autophagy.
Collapse
|
13
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011. [PMID: 21777476 DOI: 10.1186/1749-8546-6- 27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
14
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6:27. [PMID: 21777476 PMCID: PMC3149025 DOI: 10.1186/1749-8546-6-27] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/22/2011] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
15
|
Jilani K, Qadri SM, Zelenak C, Lang F. Stimulation of suicidal erythrocyte death by oridonin. Arch Biochem Biophys 2011; 511:14-20. [PMID: 21575590 DOI: 10.1016/j.abb.2011.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/26/2011] [Accepted: 05/01/2011] [Indexed: 01/04/2023]
Abstract
Oridonin triggers apoptosis of cancer cells and was suggested as anticancer agent. Oridonin is partially effective through mitochondrial depolarization and partially by modifying gene expression. Erythrocytes lack mitochondria and nuclei but may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity, ATP depletion and ceramide formation. The present study explored, whether oridonin triggers eryptosis. Cytosolic Ca(2+)-concentration was estimated from Fluo3-fluorescence, cell volume from forward scatter in FACS analysis, phosphatidylserine exposure from binding of fluorescent annexin V, hemolysis from hemoglobin release, ATP concentration utilizing a luciferin-luciferase assay and ceramide abundance utilizing fluorescent anti-ceramide antibodies. A 48 h exposure to oridonin (≥25μM) significantly increased cytosolic Ca(2+)-concentration, increased ceramide formation, decreased forward scatter and triggered annexin V-binding (the latter in >20% of the erythrocytes). Oridonin didn't decrease ATP concentration and hemolysed <5% of erythrocytes. The effects of oridonin on annexin V binding were partially reversed in the nominal absence of Ca(2+) and by the addition of amiloride (1mM). The present observations reveal a completely novel effect of oridonin, i.e. triggering of Ca(2+) entry and ceramide formation as well as suicidal death of erythrocytes.
Collapse
Affiliation(s)
- Kashif Jilani
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, D-72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
16
|
Li MM, Wu LY, Zhao T, Xiong L, Huang X, Liu ZH, Fan XL, Xiao CR, Gao Y, Ma YB, Chen JJ, Zhu LL, Fan M. The protective role of 5-HMF against hypoxic injury. Cell Stress Chaperones 2011; 16:267-73. [PMID: 21057989 PMCID: PMC3077221 DOI: 10.1007/s12192-010-0238-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 12/15/2022] Open
Abstract
In an attempt to find new types of anti-hypoxic agents from herbs, we identified 5-hydroxymethyl-2-furfural (5-HMF) as a natural agent that fulfills the criterion. 5-HMF, the final product of carbohydrate metabolism, has favorable biological effects such as anti-oxidant activity and inhibiting sickling of red blood cells. The role of 5-HMF in hypoxia, however, is not yet. Our pilot results showed that pretreatment with 5-HMF markedly increased both the survival time and the survival rate of mice under hypoxic stress. The present study was aimed to further investigate the protective role of 5-HMF and the underlying mechanisms in hypoxic injury using ECV304 cells as an in vitro model. ECV304 cells pretreated with or without 5-HMF for 1 h were exposed to hypoxic condition (0.3% O(2)) for 24 h and then cell apoptosis, necrosis, the changes of mitochondrial membrane potential (MMP) and the expressions of phosphorylation- extracellular signal-regulated kinase (p-ERK) were investigated. Pretreatment with 5-HMF markedly attenuated hypoxia-induced cell necrosis and apoptosis at late stage (p < 0.01). Furthermore, pretreatment with 5-HMF rescued both the decline of the MMP and the increase of p-ERK protein under hypoxia. In a word, these results indicated that 5-HMF had protective effects against hypoxic injury in ECV304 cells, and its effects on MMP and p-ERK may be involved in the mechanism.
Collapse
Affiliation(s)
- Ming-Ming Li
- Beijing Institute for Neuro-Science, Capital Medical University School of Basic Medical Sciences, Beijng, 100069 People’s Republic of China
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Li-Ying Wu
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Tong Zhao
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Lei Xiong
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Xin Huang
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Zhao-Hui Liu
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Xue-Lai Fan
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Cheng-Rong Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850 People’s Republic of China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, 100850 People’s Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, People’s Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in Western China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, People’s Republic of China
| | - Ling-Ling Zhu
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- Beijing Institute for Neuro-Science, Capital Medical University School of Basic Medical Sciences, Beijng, 100069 People’s Republic of China
- Department of Brain protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Rd, Beijing, 100850 People’s Republic of China
| |
Collapse
|
17
|
Mikami Y, Senoo M, Lee M, Yamada K, Ochiai K, Honda MJ, Watanabe E, Watanabe N, Somei M, Takagi M. Inhibitory Effects of a Tryptamine Derivative on Ultraviolet Radiation–Induced Apoptosis in MC3T3-E1 Mouse Osteoblasts. J Pharmacol Sci 2011; 115:214-220. [DOI: 10.1254/jphs.10208fp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022] Open
|
18
|
|
19
|
Schuhmann D, Godoy P, Weiss C, Gerloff A, Singer MV, Dooley S, Böcker U. Interfering with interferon-γ signalling in intestinal epithelial cells: selective inhibition of apoptosis-maintained secretion of anti-inflammatory interleukin-18 binding protein. Clin Exp Immunol 2010; 163:65-76. [PMID: 21078084 DOI: 10.1111/j.1365-2249.2010.04250.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The intestinal epithelial barrier represents an important component in the pathogenesis of inflammatory bowel diseases. Interferon (IFN)-γ, a T helper type 1 (Th1) cytokine, regulated by the interleukin (IL)-18/IL-18 binding protein (bp) system, modulates the integrity of this barrier. The aim of this work was to study functionally the consequences of IFN-γ on intestinal epithelial cells (IEC) and to interfere selectively with identified adverse IFN-γ effects. IEC lines were stimulated with IFN-γ. IL-18 and IL-18bp were assessed by enzyme-linked immunosorbent assay. Staining of phosphatidylserine, DNA laddering, lactate dehydrogenase (LDH) release, cleavage of poly-adenosine diphosphate-ribose-polymerase (PARP) and activation of caspase-3 were analysed to determine cell death. Inhibitors of tyrosine kinase, caspase-3 or p38 mitogen-activated kinase ((MAP) activity were used. Cytokines were measured in supernatants of colonic biopsies of healthy controls and inflammatory bowel disease (IBD) patients. In IEC lines, IFN-γ up-regulated IL-18bp selectively. Ex vivo, IFN-γ was present in supernatants from cultured biopsies and up-regulated with inflammation. Contrary to previous reports, IFN-γ alone induced apoptosis in IEC lines, as demonstrated by phosphatidylserin staining, DNA cleavage and LDH release. Further, activation of caspase-3, PARP cleavage and expression of pro-apoptotic Bad were induced. Partial inhibition of caspase-3 and of p38 but not JAK tyrosine kinase, preserved up-regulation of IL-18bp expression. Selective inhibition of IFN-γ mediated apoptosis, while preserving its beneficial consequences on the ratio of IL-18/IL-18bp, could contribute to the integrity of the mucosal barrier in intestinal inflammation.
Collapse
Affiliation(s)
- D Schuhmann
- Department of Medicine II and Department of Pediatrics, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang J, Wu LJ, Tashino SI, Onodera S, Ikejima T. Protein tyrosine kinase pathway-derived ROS/NO productions contribute to G2/M cell cycle arrest in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res 2010; 44:792-802. [PMID: 20446899 DOI: 10.3109/10715762.2010.481302] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A previous study indicated that reactive oxygen species (ROS) and nitric oxide (NO) played pivotal roles in mediating cytotoxicity of evodiamine in human cervix carcinoma HeLa cells. This study suggested that G2/M cell cycle arrest was triggered by ROS/NO productions with regulations of p53, p21, cell division cycle 25C (Cdc25C), Cdc2 and cyclin B1, which were able to be prevented by protein tyrosine kinase (PTK) activity inhibitor genistein or JNK inhibitor SP600125. The decreased JNK phosphorylation by addition of Ras or Raf inhibitor, as well as the increased cell viability by addition of insulin-like growth factor-1 receptor (IGF-1R), Ras, Raf or c-Jun N-terminal kinase (JNK) inhibitor, further demonstrated that the Ras-Raf-JNK pathway was responsible for this PTK-mediated signalling. These observations provide a distinct look at PTK pathway for its suppressive effect on G2/M transition by inductions of ROS/NO generations.
Collapse
Affiliation(s)
- Jia Yang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, P R China
| | | | | | | | | |
Collapse
|
21
|
Gao LW, Zhang J, Yang WH, Wang B, Wang JW. Glaucocalyxin A induces apoptosis in human leukemia HL-60 cells through mitochondria-mediated death pathway. Toxicol In Vitro 2010; 25:51-63. [PMID: 20851175 DOI: 10.1016/j.tiv.2010.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/19/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
Glaucocalyxin A (GLA) is a biologically active ent-kauranoid diterpenoid isolated from Rabdosia japonica var. glaucocalyx, a traditional Chinese medicinal herb, which has been shown to inhibit tumor cell proliferation. However, the mechanism underlying GLA-induced cytotoxicity remains unclear. In this study, we focused on the effect of GLA induction on apoptosis, the mitochondria-mediated death pathway and the accumulation of reactive oxygen species (ROS) in human leukemia cells (HL-60). GLA could induce a dose-dependent apoptosis in HL-60 cells as characterized by cell morphology, DNA fragmentation, activation of caspase-3, -9 and an increased expression ratio of Bax/Bcl-2. The mitochondrial membrane potential (Δψ(m)) loss and cytochrome c release from mitochondria to cytosol were observed during the induction. Moreover, GLA caused a time- and dose-dependent elevation of intracellular ROS level in HL-60 cells, and N-acetyl-l-cysteine (NAC, a well-known antioxidant) could block GLA-induced ROS generation and apoptosis. These data suggest that GLA induces apoptosis in HL-60 cells through ROS-dependent mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Li Wen Gao
- School of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | | | | | | | | |
Collapse
|
22
|
Induction of apoptosis in hepatocellular carcinoma Smmc-7721 cells by vitamin K(2) is associated with p53 and independent of the intrinsic apoptotic pathway. Mol Cell Biochem 2010; 342:125-31. [PMID: 20449638 DOI: 10.1007/s11010-010-0476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/17/2010] [Indexed: 01/13/2023]
Abstract
Vitamin K(2) (VK(2)) can exert cell growth inhibitory effects in various human cancer cells. In this study, we investigated the cell growth inhibitory effects of VK(2) in hepatocellular carcinoma Smmc-7721 cells and the mechanisms involved. We found that VK(2)-inhibited cell proliferation in Smmc-7721 cells in a dose-dependent manner, and the IC50 of VK(2) in Smmc-7721 cells was 9.73 microM at 24 h. The data from flow cytometric analyses, DNA fragmentation assays, and caspase 3 activity assays revealed that apoptosis was the determining factor in VK(2) activity. Furthermore, a significant increase in p53 phosphorylation and protein level was exhibited in apoptotic cells treated with VK(2), although there were no changes in p53 mRNA expression. Bax expression was unaffected by VK(2) in Smmc-7721 cells. In addition, our study showed that caspase 3 was activated by caspase 8, not caspase 9, in Smmc-7721 cells treated with VK(2). In summary, these data suggested that VK(2) can inhibit the growth of Smmc-7721 cells by induction of apoptosis involving caspase 8 activation and p53. This apoptotic process was not mediated by the intrinsic apoptotic pathway.
Collapse
|
23
|
Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway. Biochem Biophys Res Commun 2010; 394:976-80. [PMID: 20307495 DOI: 10.1016/j.bbrc.2010.03.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/17/2010] [Indexed: 01/07/2023]
Abstract
Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72h. Peak expression occurred at 12h (3- to 4-fold, p<0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs' proliferation and migration. Over-expression of Bcl-2 increased HAECs' tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation. Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.
Collapse
|
24
|
Zhang Y, Wu Y, Wu D, Tashiro SI, Onodera S, Ikejima T. NF-kappab facilitates oridonin-induced apoptosis and autophagy in HT1080 cells through a p53-mediated pathway. Arch Biochem Biophys 2009; 489:25-33. [PMID: 19646415 DOI: 10.1016/j.abb.2009.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/15/2009] [Accepted: 07/23/2009] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the molecular mechanisms involving in oridonin-induced apoptosis and autophagy. We found that apoptosis and autophagy were simultaneously induced by oridonin time-dependently in HT1080 cells, and inhibition of autophagy by 3MA decreased oridonin-induced apoptosis, indicating that they act in synergy to mediate cell death. In addition, treatment with oridonin caused an increase in NF-kappaB and p53 activities in a time-dependent manner. Inhibition of NF-kappaB or p53 activation by its specific inhibitor PDTC or pifithrin-alpha respectively, significantly reduced both oridonin-induced apoptosis and autophagy accompanied by the decrease in Beclin 1 and LC3 levels. Further experiments confirmed that oridonin-induced p53 activation was reduced by the NF-kappaB inhibitor whereas the activation of NF-kappaB was not affected by p53 inhibition. Taken together, these results demonstrate that NF-kappaB promotes oridonin-induced apoptotic and autophagic cell death through regulating p53 activation in HT1080 cells.
Collapse
Affiliation(s)
- Yahong Zhang
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Jiang YY, Wang HJ, Wang J, Tashiro SI, Onodera S, Ikejima T. The Protective Effect of Silibinin Against Mitomycin C–Induced Intrinsic Apoptosis in Human Melanoma A375-S2 Cells. J Pharmacol Sci 2009; 111:137-46. [DOI: 10.1254/jphs.09171fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|