1
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
2
|
Lee J, Chai M, Bleiholder C. Differentiation of Isomeric, Nonseparable Carbohydrates Using Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2023; 95:747-757. [PMID: 36547374 PMCID: PMC10126951 DOI: 10.1021/acs.analchem.2c02844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates play important roles in biological processes, but their identification remains a significant analytical problem. While mass spectrometry has increasingly enabled the elucidation of carbohydrates, current approaches are limited in their abilities to differentiate isomeric carbohydrates when these are not separated prior to tandem-mass spectrometry analysis. This analytical challenge takes on increased relevance because of the pervasive presence of isomeric carbohydrates in biological systems. Here, we demonstrate that TIMS2-MS2 workflows enabled by tandem-trapped ion mobility spectrometry-mass spectrometry (tTIMS/MS) provide a general approach to differentiate isomeric, nonseparated carbohydrates. Our analysis shows that (1) cross sections measured by TIMS are sufficiently precise and robust for ion identification; (2) fragment ion cross sections from TIMS2 analysis can be analytically exploited to identify carbohydrate precursors even if the precursor ions are not separated by TIMS; (3) low-abundant fragment ions can be exploited to identify carbohydrate precursors even if the precursor ions are not separated by IMS. (4) MS2 analysis of fragment ions produced by TIMS2 can be used to validate and/or further characterize carbohydrate structures. Taken together, our analysis underlines the opportunities that tandem-ion mobility spectrometry/MS methods offer for the characterization of mixtures of isomeric carbohydrates.
Collapse
Affiliation(s)
- Jusung Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
3
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Cavallero GJ, Zaia J. Resolving Heparan Sulfate Oligosaccharide Positional Isomers Using Hydrophilic Interaction Liquid Chromatography-Cyclic Ion Mobility Mass Spectrometry. Anal Chem 2022; 94:2366-2374. [PMID: 35090117 PMCID: PMC8943687 DOI: 10.1021/acs.analchem.1c03543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heparan sulfate (HS) is a linear polysaccharide covalently attached to proteoglycans on cell surfaces and within extracellular matrices in all animal tissues. Many biological processes are triggered by the interactions among HS binding proteins and short structural motifs in HS chains. The determination of HS oligosaccharide structures using liquid chromatography-mass spectrometry (LC-MS) is made challenging by the existence of positional sulfation and acetylation isomers. The determination of uronic acid epimer positions is even more challenging. While hydrophilic interaction liquid chromatography (HILIC) separates HS saccharides based on their composition, there is a very limited resolution of positional isomers. This lack of resolution places a burden on the tandem mass spectrometry step for assigning saccharide isomers. In this work, we explored the use of the ion mobility dimension to separate HS saccharide isomers based on molecular shape in the gas phase. We showed that the combination of HILIC and cyclic ion mobility mass spectrometry (cIM-MS) was extremely useful for resolving HS positional isomers including uronic acid epimers and sulfate positions. Furthermore, HILIC-cIM-MS differentiated multicomponent HS isomeric saccharide mixtures. In summary, HILIC-cIM-MS provided high-quality data for analysis of HS oligosaccharide isomeric mixtures that may prove useful in the discovery of new structural motifs for HS binding proteins and for the targeted quality control analysis of commercial HS products.
Collapse
Affiliation(s)
- Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
6
|
Karlsson R, Chopra P, Joshi A, Yang Z, Vakhrushev SY, Clausen TM, Painter CD, Szekeres GP, Chen YH, Sandoval DR, Hansen L, Esko JD, Pagel K, Dyer DP, Turnbull JE, Clausen H, Boons GJ, Miller RL. Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. SCIENCE ADVANCES 2021; 7:eabl6026. [PMID: 34936441 PMCID: PMC8694587 DOI: 10.1126/sciadv.abl6026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)–specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.
Collapse
Affiliation(s)
- Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Apoorva Joshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gergo P. Szekeres
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Douglas P. Dyer
- Wellcome Centre for Cell-Matrix Research, Geoffrey Jefferson Brain Research Centre, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy E. Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Centre for Glycobiology, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Song Y, Zhang F, Linhardt RJ. Analysis of the Glycosaminoglycan Chains of Proteoglycans. J Histochem Cytochem 2021; 69:121-135. [PMID: 32623943 PMCID: PMC7841699 DOI: 10.1369/0022155420937154] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG-ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.
Collapse
Affiliation(s)
- Yuefan Song
- National R & D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, P.R. China
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
8
|
Lettow M, Grabarics M, Greis K, Mucha E, Thomas DA, Chopra P, Boons GJ, Karlsson R, Turnbull JE, Meijer G, Miller RL, von Helden G, Pagel K. Cryogenic Infrared Spectroscopy Reveals Structural Modularity in the Vibrational Fingerprints of Heparan Sulfate Diastereomers. Anal Chem 2020; 92:10228-10232. [PMID: 32658472 DOI: 10.1021/acs.analchem.0c02048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heparan sulfate and heparin are highly acidic polysaccharides with a linear sequence, consisting of alternating glucosamine and hexuronic acid building blocks. The identity of hexuronic acid units shows a variability along their sequence, as d-glucuronic acid and its C5 epimer, l-iduronic acid, can both occur. The resulting backbone diversity represents a major challenge for an unambiguous structural assignment by mass spectrometry-based techniques. Here, we employ cryogenic infrared spectroscopy on mass-selected ions to overcome this challenge and distinguish isomeric heparan sulfate tetrasaccharides that differ only in the configuration of their hexuronic acid building blocks. High-resolution infrared spectra of a systematic set of synthetic heparan sulfate stereoisomers were recorded in the fingerprint region from 1000 to 1800 cm-1. The experiments reveal a characteristic combination of spectral features for each of the four diastereomers studied and imply structural modularity in the vibrational fingerprints. Strong spectrum-structure correlations were found and rationalized by state-of-the-art quantum chemical calculations. The findings demonstrate the potential of cryogenic infrared spectroscopy to extend the mass spectrometry-based toolkit for the sequencing of heparan sulfate and structurally related biomolecules.
Collapse
Affiliation(s)
- Maike Lettow
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Márkó Grabarics
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Kim Greis
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Eike Mucha
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniel A Thomas
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Richard Karlsson
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Jeremy E Turnbull
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark.,Centre for Glycobiology, Department of Biochemistry, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Gerard Meijer
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rebecca L Miller
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Gert von Helden
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
9
|
Miller RL, Guimond SE, Schwörer R, Zubkova OV, Tyler PC, Xu Y, Liu J, Chopra P, Boons GJ, Grabarics M, Manz C, Hofmann J, Karlsson NG, Turnbull JE, Struwe WB, Pagel K. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nat Commun 2020; 11:1481. [PMID: 32198425 PMCID: PMC7083916 DOI: 10.1038/s41467-020-15284-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a “Shotgun” Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation. Heparan sulfates (HS) contain functionally relevant structural motifs, but determining their monosaccharide sequence remains challenging. Here, the authors develop an ion mobility mass spectrometry-based method that allows unambiguous characterization of HS sequences and structure-activity relationships.
Collapse
Affiliation(s)
- Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark. .,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK. .,Laboratory of Cancer Biology, Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Scott E Guimond
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Márkó Grabarics
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Christian Manz
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Johanna Hofmann
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, Copenhagen, N 2200, Denmark.,Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Weston B Struwe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3QZ, UK
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
10
|
Jin C, Harvey DJ, Struwe WB, Karlsson NG. Separation of Isomeric O-Glycans by Ion Mobility and Liquid Chromatography–Mass Spectrometry. Anal Chem 2019; 91:10604-10613. [DOI: 10.1021/acs.analchem.9b01772] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Weston B. Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Chemistry Research laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
|
12
|
Abstract
Introduction Hereditary multiple exostoses (HME) is a rare congenital pediatric disorder characterized by osteochondromas forming next to the growth plates in young patients. The osteochondromas cause multiple health problems that include skeletal deformities and chronic pain. Surgery is used to remove the most symptomatic osteochondromas but because of their large number, many are left in place, causing life-long problems and increasing the probability of malignant transformation. There is no other treatment to prevent or reduce osteochondromas formation at present. Areas covered Recent studies reviewable through PubMed are providing new insights into cellular and molecular mechanisms of osteochondroma development. The resulting data are suggesting rational and plausible new therapeutic strategies for osteochondroma prevention some of which are being tested in HME animal models and one of which is part of a just announced clinical trial. Expert Commentary This section summarizes and evaluates such strategies and points also to possible future alternatives.
Collapse
Affiliation(s)
- Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
13
|
Persson A, Gomez Toledo A, Vorontsov E, Nasir W, Willén D, Noborn F, Ellervik U, Mani K, Nilsson J, Larson G. LC-MS/MS characterization of xyloside-primed glycosaminoglycans with cytotoxic properties reveals structural diversity and novel glycan modifications. J Biol Chem 2018; 293:10202-10219. [PMID: 29739851 DOI: 10.1074/jbc.ra118.002971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Structural characterization of glycosaminoglycans remains a challenge but is essential for determining structure-function relationships between glycosaminoglycans and the biomolecules with which they interact and for gaining insight into the biosynthesis of glycosaminoglycans. We have recently reported that xyloside-primed chondroitin/dermatan sulfate derived from a human breast carcinoma cell line, HCC70, has cytotoxic effects and shown that it differs in disaccharide composition from nontoxic chondroitin/dermatan sulfate derived from a human breast fibroblast cell line, CCD-1095Sk. To further investigate the structural requirements for the cytotoxic effect, we developed a novel LC-MS/MS approach based on reversed-phase dibutylamine ion-pairing chromatography and negative-mode higher-energy collision dissociation and used it in combination with cell growth studies and disaccharide fingerprinting. This strategy enabled detailed structural characterization of linkage regions, internal oligosaccharides, and nonreducing ends, revealing not only differences between xyloside-primed chondroitin/dermatan sulfate from HCC70 cells and CCD-1095Sk cells, but also sialylation of the linkage region and previously undescribed methylation and sulfation of the nonreducing ends. Although the xyloside-primed chondroitin/dermatan sulfate from HCC70 cells was less complex in terms of presence and distribution of iduronic acid than that from CCD-1095Sk cells, both glucuronic acid and iduronic acid appeared to be essential for the cytotoxic effect. Our data have moved us one step closer to understanding the structure of the cytotoxic chondroitin/dermatan sulfate from HCC70 cells primed on xylosides and demonstrate the suitability of the LC-MS/MS approach for structural characterization of glycosaminoglycans.
Collapse
Affiliation(s)
- Andrea Persson
- From the Department of Experimental Medical Science, Lund University, SE-22184 Lund.,the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Alejandro Gomez Toledo
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Egor Vorontsov
- the Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Gothenburg, and
| | - Waqas Nasir
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Daniel Willén
- the Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Fredrik Noborn
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Ulf Ellervik
- the Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Katrin Mani
- From the Department of Experimental Medical Science, Lund University, SE-22184 Lund
| | - Jonas Nilsson
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg
| | - Göran Larson
- the Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-41345 Gothenburg,
| |
Collapse
|
14
|
Morrison KA, Clowers BH. Contemporary glycomic approaches using ion mobility-mass spectrometry. Curr Opin Chem Biol 2017; 42:119-129. [PMID: 29248736 DOI: 10.1016/j.cbpa.2017.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Characterization of complex oligosaccharides has historically required extensive sample handling and separations before analysis using nuclear magnetic resonance spectroscopy and electron impact mass spectra following hydrolysis, derivatization, and gas chromatographic separation. Advances in liquid chromatography separations and tandem mass spectrometry have expanded the range of intact glycan analysis, but carbohydrate structure and conformation-integral chemical characteristics-are often difficult to assess with minimal amounts of sample in a rapid fashion. Because ion mobility spectrometry (IMS) separates analytes based upon an effective 'size-to-charge' ratio, IMS is, by extension, highly applicable to glycomics. Furthermore, the speed of IMS, its growing levels of separation efficiency, and direct compatibility with all forms of mass spectrometry, illustrates is core role in the future of glycomics efforts. This review assesses the current state of ion mobility-mass spectrometry applied to glycan, glycoprotein, and glycoconjugate analysis. Currently, assessing optimal ion polarity and adduct type for a glycan class along with the appropriate tandem mass spectrometry technique underpin many of the current glycan analysis efforts using ion mobility-mass spectrometry (IMMS). Once determined, these parameters have enabled a growing and impressive range of glycomics campaigns employing this technique. Additionally, the combination of IMS with tandem mass spectrometry, and even spectroscopic methods, further expands the dimensionality of hybrid instrumentation to provide a more comprehensive assessment of glycan structure across a wide dynamic range. Continued computational efforts to complement experimental and instrumental advancements also serve as a core component of IMMS workflows applied to glycomics and promise to maximize the information gained from mobility separations.
Collapse
Affiliation(s)
- Kelsey A Morrison
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
15
|
Miller RL, Guimond SE, Prescott M, Turnbull JE, Karlsson N. Versatile Separation and Analysis of Heparan Sulfate Oligosaccharides Using Graphitized Carbon Liquid Chromatography and Electrospray Mass Spectrometry. Anal Chem 2017; 89:8942-8950. [DOI: 10.1021/acs.analchem.7b01417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
- Oncology
Department, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Mark Prescott
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Niclas Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| |
Collapse
|
16
|
Electrospray ionization ion mobility mass spectrometry provides novel insights into the pattern and activity of fetal hippocampus gangliosides. Biochimie 2017; 139:81-94. [DOI: 10.1016/j.biochi.2017.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
|
17
|
Miller RL, Dykstra AB, Wei W, Holsclaw C, Turnbull JE, Leary JA. Enrichment of Two Isomeric Heparin Oligosaccharides Exhibiting Different Affinities toward Monocyte Chemoattractant Protein-1. Anal Chem 2016; 88:11551-11558. [PMID: 27801570 DOI: 10.1021/acs.analchem.6b02803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemokine-GAG interactions are crucial to facilitate chemokine immobilization, resulting in the formation of chemokine gradients that guide cell migration. Here we demonstrate chromatographic isolation and purification of two heparin hexasaccharide isomers that interact with the oligomeric chemokine Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 with different binding affinities. The sequences of these two hexasaccharides were deduced from unique MS/MS product ions and HPLC compositional analysis. Ion mobility mass spectrometry (IM-MS) showed that the two isolated oligosaccharides have different conformations and both displayed preferential binding for one of the two distinct conformations known for MCP-1 dimers. A significant shift in arrival time distribution of close to 70 Å2 was observed, indicating a more compact protein:hexasaccharide conformation. Clear differences in the MS spectra between bound and unbound protein allowed calculation of Kd values from the resulting data. The structural difference between the two hexasaccharides was defined as the differential location of a single sulfate at either C-6 of glucosamine or C-2 of uronic acid in the reducing disaccharide, resulting in a 200-fold difference in binding affinity for MCP-1. These data indicate sequence specificity for high affinity binding, supporting the view that sulfate position, and not simply the number of sulfates, is important for heparan sulfate protein binding.
Collapse
Affiliation(s)
- Rebecca L Miller
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Andrew B Dykstra
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Wei Wei
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Cynthia Holsclaw
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Jeremy E Turnbull
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, England
| | - Julie A Leary
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| |
Collapse
|
18
|
Miller RL, Guimond SE, Shivkumar M, Blocksidge J, Austin JA, Leary JA, Turnbull JE. Heparin Isomeric Oligosaccharide Separation Using Volatile Salt Strong Anion Exchange Chromatography. Anal Chem 2016; 88:11542-11550. [DOI: 10.1021/acs.analchem.6b02801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
- Departments
of Molecular and Cellular Biology and Chemistry, University of California, 1 Shields Drive, Davis, California 95616, United States
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Maitreyi Shivkumar
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jemma Blocksidge
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - James A. Austin
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Julie A. Leary
- Departments
of Molecular and Cellular Biology and Chemistry, University of California, 1 Shields Drive, Davis, California 95616, United States
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
19
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
20
|
Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE, Zamfir AD. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal Chem 2016; 88:5166-78. [PMID: 27088833 DOI: 10.1021/acs.analchem.6b00155] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.
Collapse
Affiliation(s)
- Mirela Sarbu
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Adrian C Robu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania.,West University of Timisoara , 300223 Timisoara, Romania
| | - Roxana M Ghiulai
- Department of Pharmacy, Victor Babes University of Medicine and Pharmacy , 300041 Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School , HR-10000 Zagreb, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Alina D Zamfir
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| |
Collapse
|