1
|
Trimpin S, Yenchick FS, Lee C, Hoang K, Pophristic M, Karki S, Marshall DD, Lu IC, Lutomski CA, El-Baba TJ, Wang B, Pagnotti VS, Meher AK, Chakrabarty S, Imperial LF, Madarshahian S, Richards AL, Lietz CB, Moreno-Pedraza A, Leach SM, Gibson SC, Elia EA, Thawoos SM, Woodall DW, Jarois DR, Davis ETJ, Liao G, Muthunayake NS, Redding MJ, Reynolds CA, Anthony TM, Vithanarachchi SM, DeMent P, Adewale AO, Yan L, Wager-Miller J, Ahn YH, Sanderson TH, Przyklenk K, Greenberg ML, Suits AG, Allen MJ, Narayan SB, Caruso JA, Stemmer PM, Nguyen HM, Weidner SM, Rackers KJ, Djuric A, Shulaev V, Hendrickson TL, Chow CS, Pflum MKH, Grayson SM, Lobodin VV, Guo Z, Ni CK, Walker JM, Mackie K, Inutan ED, McEwen CN. New Processes for Ionizing Nonvolatile Compounds in Mass Spectrometry: The Road of Discovery to Current State-of-the-Art. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39374043 DOI: 10.1021/jasms.3c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ionization processes for use in mass spectrometry that guided us in a series of subsequent discoveries, instrument developments, and commercialization. Vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was simply unbelievable, at first. Individually and as a whole, the various discoveries and inventions started to paint, inter alia, an exciting new picture and outlook in mass spectrometry from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence. We, and others, have demonstrated exceptional analytical utility. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platforms and source developments. These ionization processes convert volatile and nonvolatile compounds from solid or liquid matrixes into gas-phase ions for analysis by mass spectrometry using, e.g., mass-selected fragmentation and ion mobility spectrometry to provide accurate, and sometimes improved, mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementation to increase coverage of complex materials through complementary strengths.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Vincent S Pagnotti
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Shubhashis Chakrabarty
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
| | - Lorelei F Imperial
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sara Madarshahian
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Samantha M Leach
- Department of Forensic Sciences (DFS), Washington, D.C. 20024, United States
| | - Stephen C Gibson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Shameemah M Thawoos
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Daniel W Woodall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Eric T J Davis
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guochao Liao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - McKenna J Redding
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Christian A Reynolds
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Thilani M Anthony
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Paul DeMent
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Adeleye O Adewale
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lu Yan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Thomas H Sanderson
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Karin Przyklenk
- Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Srinivas B Narayan
- Detroit Medical Center: Detroit Hospital (DMC), Detroit, Michigan 48201, United States
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Steffen M Weidner
- Federal Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
| | - Kevin J Rackers
- Automation Techniques, Inc, Greensboro, North Carolina 27407, United States
| | - Ana Djuric
- College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Vladimir Shulaev
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, Texas 76210, United States
| | - Tamara L Hendrickson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Scott M Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Zhongwu Guo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - J Michael Walker
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- MSTM, LLC, Newark, Delaware 19711, United States
- Mindanao State University Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware 19711, United States
- Saint Joseph's University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Trimpin S, Inutan ED, Pagnotti VS, Karki S, Marshall DD, Hoang K, Wang B, Lietz CB, Richards AL, Yenchick FS, Lee C, Lu IC, Fenner M, Madarshahian S, Saylor S, Chubatyi ND, Zimmerman T, Moreno-Pedraza A, Wang T, Adeniji-Adele A, Meher AK, Madagedara H, Owczarzak Z, Musavi A, Hendrickson TL, Peacock PM, Tomsho JW, Larsen BS, Prokai L, Shulaev V, Pophristic M, McEwen CN. Direct sub-atmospheric pressure ionization mass spectrometry: Evaporation/sublimation-driven ionization is amazing, fundamentally, and practically. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5018. [PMID: 38736378 DOI: 10.1002/jms.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/14/2024]
Abstract
This paper covers direct sub-atmospheric pressure ionization mass spectrometry (MS). The discovery, applications, and mechanistic aspects of novel ionization processes for use in MS that are not based on the high-energy input from voltage, laser, and/or high temperature but on sublimation/evaporation within a region linking a higher to lower pressure and modulated by heat and collisions, are discussed, including how this new reality has guided a series of discoveries, instrument developments, and commercialization. A research focus, inter alia, is on how best to understand, improve, and use these novel ionization processes, which convert volatile and nonvolatile compounds from solids (sublimation) or liquids (evaporation) into gas-phase ions for analysis by MS providing reproducible, accurate, sensitive, and prompt results. Our perception on how these unprecedented versus traditional ionization processes/methods relate to each other, how they can be made to coexist on the same mass spectrometer, and an outlook on new and expanded applications (e.g., clinical, portable, fast, safe, and autonomous) is presented, and is based on ST's Opening lecture presentation at the Nordic Mass spectrometry Conference, Geilo, Norway, January 2023. Focus will be on matrix-assisted ionization (MAI) and solvent-assisted ionization (SAI) MS covering the period from 2010 to 2023; a potential paradigm shift in the making.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Vincent S Pagnotti
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Madeleine Fenner
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Sara Madarshahian
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Sarah Saylor
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Nicolas D Chubatyi
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Teresa Zimmerman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | - Tongwen Wang
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Adetoun Adeniji-Adele
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Hasini Madagedara
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Zachary Owczarzak
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Ahmed Musavi
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | | | - John W Tomsho
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, The University of North Texas Health Science Center at Forth Worth, Fort Worth, Texas, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, The University of North Texas, Denton, Texas, USA
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Trimpin S, Inutan E, Coffinberger H, Hoang K, Yenchick F, Wager-Miller J, Pophristic M, Mackie K, McEwen CN. Instrumentation development, improvement, simplification, and miniaturization: The multifunctional plate source for use in mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:276-291. [PMID: 37999746 DOI: 10.1177/14690667231211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In remembrance of Prof. Dr Przybylski, we are presenting a vision towards his beloved mass spectrometry (MS) and its far-reaching promises outside of the academic laboratory. Sub-atmospheric pressure (AP) ionization MS is well positioned to make a step-change in direct ionization, a concept that allows sublimation/evaporation ionization and mass analyses of volatile and nonvolatile molecules from clean or dirty samples, directly, accurately, sensitively, and in a straightforward manner that has the potential to expand the field of MS into unchartered application areas. Contrary to ambient ionization MS, ionization commences in the sub-AP region of the mass spectrometer, important for practical and safety reasons, and offers inter alia, simplicity, speed, sensitivity, and robustness directly from real-world samples without cleanup. The plate source concept, presented here, provides an easy to use, rapid, and direct sample introduction from AP into the sub-AP of a mass spectrometer. Utilizing sub-AP ionization MS based on the plate source concept, small to large molecules from various environments that would be deemed too dirty for some direct MS methods are demonstrated. The new source concept can be expanded to include multiple ionization methods using the same plate source "front end" without the need to vent the mass spectrometer between the different methods, thus allowing ionization of more compounds on the same mass spectrometer for which any one ionization method may be insufficient. Examples such as fentanyl, gamma-hydroxybutyric acid, clozapine, 1-propionyllysergic acid, hydrocodone angiotensin I and II, myoglobin, and carbonic anhydrase are included.
Collapse
Affiliation(s)
- Sarah Trimpin
- Wayne State University, Detroit, MI, USA
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
| | - Ellen Inutan
- Department of Chemistry, Mindanao State University-Illigan Institute of Technology, Illigan City, Philippines
| | - Hope Coffinberger
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | - Khoa Hoang
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | | | - James Wager-Miller
- Psychological and Brain Sciences Campus, Indiana University, Bloomington, IN, USA
| | - Milan Pophristic
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | - Ken Mackie
- Psychological and Brain Sciences Campus, Indiana University, Bloomington, IN, USA
| | - Charles N McEwen
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Trimpin S. A tutorial: Laserspray ionization and related laser-based ionization methods for use in mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2234-2267. [PMID: 37462443 DOI: 10.1002/mas.21762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 08/09/2023]
Abstract
This Tutorial is to provide a summary of parameters useful for successful outcomes of laserspray ionization (LSI) and related methods that employ a laser to ablate a matrix:analyte sample to produce highly charged ions. In these methods the purpose of the laser is to transfer matrix-analyte clusters into the gas phase. Ions are hypothesized to be produced by a thermal process where emitted matrix:analyte gas-phase particles/clusters are charged and loss of matrix from the charged particles leads to release of the analyte ions into the gas phase. The thermal energy responsible for the charge-separation process is relatively low and not necessarily supplied by the laser; a heated inlet tube linking atmospheric pressure with the first vacuum stage of a mass spectrometer is sufficient. The inlet becomes the "ion source", and inter alia, pressure, temperature, and the matrix, which can be a solid, liquid, or combinations, become critical parameters. Injecting matrix:analyte into a heated inlet tube using laser ablation, a shockwave, or simply tapping, all produce the similar mass spectra. Applications are provided that showcase new opportunities in the field of mass spectrometry.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| |
Collapse
|
5
|
Mannion DR, Mannion JM, Kuhne WW, Wellons MS. Matrix-Assisted Ionization of Molecular Uranium Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:8-13. [PMID: 33253565 DOI: 10.1021/jasms.0c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Matrix-assisted ionization (MAI) demonstrates high sensitivity for a variety of organic compounds; however, few studies have reported the application of MAI for the detection and characterization of inorganic analytes. Trace-level uranium analysis is important in the realms of nuclear forensics, nuclear safeguards, and environmental monitoring. Traditional mass spectrometry methods employed in these fields require combinations of extensive laboratory chemistry sample preparation and destructive ionization methods. There has been recent interest in exploring ambient mass spectrometry methods that enable timely sample analysis and higher sensitivity than what is attainable by field-portable radiation detectors. Rapid characterization of uranium at nanogram levels is demonstrated in this study using MAI techniques. Mass spectra were collected on an atmospheric pressure mass spectrometer for solutions of uranyl nitrate, uranyl chloride, uranyl acetate, and uranyl oxalate utilizing 3-nibrobenzonitrile as the ionization matrix. The uranyl complexes investigated were detectable, and the chemical speciation was preserved. Sample analysis was accomplished in a matter of seconds, and limits of detection of 5 ng of uranyl nitrate, 10 ng of uranyl oxalate, 100 ng of uranyl chloride, and 200 ng of uranyl acetate were achieved. The observed gas-phase speciation was similar to negative-ion electrospray ionization of uranyl compounds with notable differences. Six matrix-derived ions were detected in all negative-ion mass spectra, and some of these ions formed adducts with the uranyl analyte. Subsequent analysis of the matrix suggests that these molecules are not matrix contaminants and are instead created during the ionization process.
Collapse
Affiliation(s)
- Danielle R Mannion
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Joseph M Mannion
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Wendy W Kuhne
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| | - Matthew S Wellons
- Savannah River National Laboratory, Aiken, South Carolina 29803, United States
| |
Collapse
|
6
|
Trimpin S, Marshall DD, Karki S, Madarshahian S, Hoang K, Meher AK, Pophristic M, Richards AL, Lietz CB, Fischer JL, Elia EA, Wang B, Pagnotti VS, Lutomski CA, El-Baba TJ, Lu IC, Wager-Miller J, Mackie K, McEwen CN, Inutan ED. An overview of biological applications and fundamentals of new inlet and vacuum ionization technologies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8829. [PMID: 32402102 DOI: 10.1002/rcm.8829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. METHODS The inlet and vacuum ionization methods of solvent-assisted ionization (SAI), matrix-assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. RESULTS Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization. We demonstrate the utility of multi-ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub-atmospheric pressure (vacuum MAI). Simplicity and use of a wide array of matrices are attained using a conduit (inlet ionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on-probe reactions are analyzed directly and, especially in the case of vacuum ionization, without concern of carryover or instrument contamination. CONCLUSIONS Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | | | - Khoa Hoang
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
| | - Milan Pophristic
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Efstathios A Elia
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - James Wager-Miller
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Charles N McEwen
- MS™, LLC, Newark, DE, 19711, USA
- University of the Sciences, Philadelphia, PA, 19104, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MS™, LLC, Newark, DE, 19711, USA
- Mindanao State University Iligan Institute of Technology, Iligan City, 9200, Philippines
| |
Collapse
|
7
|
Inutan ED, Jarois DR, Lietz CB, El-Baba TJ, Elia EA, Karki S, Sampat AAS, Foley CD, Clemmer DE, Trimpin S. Comparison of gaseous ubiquitin ion structures obtained from a solid and solution matrix using ion mobility spectrometry/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8793. [PMID: 32220130 DOI: 10.1002/rcm.8793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Examining surface protein conformations, and especially achieving this with spatial resolution, is an important goal. The recently discovered ionization processes offer spatial-resolution measurements similar to matrix-assisted laser desorption/ionization (MALDI) and produce charge states similar to electrospray ionization (ESI) extending higher-mass protein applications directly from surfaces on high-performance mass spectrometers. Studying a well-interrogated protein by ion mobility spectrometry-mass spectrometry (IMS-MS) to access effects on structures using a solid vs. solvent matrix may provide insights. METHODS Ubiquitin was studied by IMS-MS using new ionization processes with commercial and homebuilt ion sources and instruments (Waters SYNAPT G2(S)) and homebuilt 2 m drift-tube instrument; MS™ sources). Mass-to-charge and drift-time (td )-measurements are compared for ubiquitin ions obtained by inlet and vacuum ionization using laserspray ionization (LSI), matrix- (MAI) and solvent-assisted ionization (SAI), respectively, and compared with those from ESI under conditions that are most comparable. RESULTS Using the same solution conditions with SYNAPT G2(S) instruments, td -distributions of various ubiquitin charge states from MAI, LSI, and SAI are similar to those from ESI using a variety of solvents, matrices, extraction voltages, a laser, and temperature only, showing subtle differences in more compact features within the elongated distribution of structures. However, on a homebuilt drift-tube instrument, within the elongated distribution of structures, both similar and different td -distributions are observed for ubiquitin ions obtained by MAI and ESI. MAI-generated ions are frequently narrower in their td -distributions. CONCLUSIONS Direct comparisons between ESI and the new ionization methods operational directly from surfaces suggest that the protein in its solution structure prior to exposure to the ionization event is either captured (frozen out) at the time of crystallization, or that the protein in the solid matrix is associated with sufficient solvent to maintain the solution structure, or, alternatively, that the observed structures are those related to what occurs in the gas phase with ESI- or MAI-generated ions and not with the solution structures.
Collapse
Affiliation(s)
- Ellen D Inutan
- MSTM, LLC, Newark, DE, USA
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Sarah Trimpin
- MSTM, LLC, Newark, DE, USA
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| |
Collapse
|
8
|
Chen YH, Lu IC. Novel ion source for a portable mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8503. [PMID: 31197905 DOI: 10.1002/rcm.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Yi-Hsin Chen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Inutan ED, Meher AK, Karki S, Fischer JL, Imperial LF, Foley CD, Jarois DR, El-Baba TJ, Lutomski CA, Trimpin S. New mass spectrometry concepts for characterization of synthetic polymers and additives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8768. [PMID: 32107802 DOI: 10.1002/rcm.8768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE New ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives. METHODS Different mass spectrometers (Thermo Orbitrap (Q-)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub-atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum). RESULTS Astonishingly, using nothing more than a small molecule matrix compound (e.g., 2-methyl-2-nitropropane-1,3-diol or 3-nitrobenzonitrile) and a salt (e.g., mono- or divalent cation(s)), such samples upon exposure to sub-atmospheric pressure transfer nonvolatile polymers and nonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototype vacuum matrix-assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum. CONCLUSIONS Direct ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high-resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high-performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial- and temporal-resolution measurements are within reach if sensitivity is addressed for decreasing sample-size measurements.
Collapse
Affiliation(s)
- Ellen D Inutan
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| |
Collapse
|
10
|
Breivik H, Løkken TN, Slørdal L, Frost J. A Validated Method for the Simultaneous Determination of Quetiapine, Clozapine and Mirtazapine in Postmortem Blood and Tissue Samples. J Anal Toxicol 2020; 44:440-448. [DOI: 10.1093/jat/bkaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/02/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
AbstractPsychotropic drugs are regularly present in cases of sudden, unexpected death. Such drugs also tend to express significant postmortem redistribution. To facilitate further investigation of this phenomenon, reliable quantitative methods applicable to multiple biological matrices are needed. We present a validated ultra-performance liquid chromatography–tandem mass spectrometry method for the simultaneous quantification of quetiapine, clozapine and mirtazapine in postmortem whole blood, skeletal muscle, brain tissue and liver tissue using high-performance liquid chromatography–tandem mass spectrometry. Sample preparation was performed using liquid–liquid extraction. The validated ranges were 3.8–1534, 16–1960 and 13–1060 μg/L for quetiapine, clozapine and mirtazapine, respectively. Within-run and between-run accuracy (87.4–122%) and precision (CV 1.5–8.9%), matrix effects (95–101%) and recovery (35.7–92%) were validated at two concentration levels; 5.8 and 1227 μg/L for quetiapine, 25 and 1568 μg/L for clozapine and 20 and 849 μg/L for mirtazapine. Stability in a 10°C environment was assessed for treated samples of brain, liver and muscle tissue, showing deviations in analyte concentrations ranging from −8% to 9% after 3 days. The analyte concentrations in treated samples of whole blood stored at 4°C deviated by <5% after 5 days. The method was applied in three forensic autopsy cases implicating quetiapine, clozapine and mirtazapine, respectively, in supratherapeutic concentrations.
Collapse
Affiliation(s)
- Håvard Breivik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Trine N Løkken
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Lars Slørdal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Clinical Pharmacology, St. Olav University Hospital, NO-7006 Trondheim, Norway
| | - Joachim Frost
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Clinical Pharmacology, St. Olav University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
11
|
Trimpin S. Novel ionization processes for use in mass spectrometry: 'Squeezing' nonvolatile analyte ions from crystals and droplets. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:96-120. [PMID: 30138957 DOI: 10.1002/rcm.8269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 05/25/2023]
Abstract
Together with my group and collaborators, I have been fortunate to have had a key role in the discovery of new ionization processes that we developed into new flexible, sensitive, rapid, reliable, and robust ionization technologies and methods for use in mass spectrometry (MS). Our current research is focused on how best to understand, improve, and use these novel ionization processes which convert volatile and nonvolatile compounds from solids or liquids into gas-phase ions for analysis by MS using e.g. mass-selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and improved mass and drift time resolution. In my view, the apex was the discovery of vacuum matrix-assisted ionization (vMAI) in 2012 on an intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source without the use of a laser, high voltages, or any other added energy. Only exposure of the matrix:analyte to the sub-atmospheric pressure of the mass spectrometer was necessary to initiate ionization. These findings were initially rejected by three different scientific journals, with comments related to 'how can this work?', 'where do the charges come from?', and 'it is not analytically useful'. Meanwhile, we and others have demonstrated analytical utility without a complete understanding of the mechanism. In reality, MALDI and electrospray ionization are widely used in science and their mechanisms are still controversially discussed despite use and optimization of now 30 years. This Perspective covers the applications and mechanistic aspects of the novel ionization processes for use in MS that guided us in instrument developments, and provides our perspective on how they relate to traditional ionization processes.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- MSTM, LLC, Newark, DE, 19711, USA
| |
Collapse
|
12
|
Trimpin S, Inutan ED, Karki S, Elia EA, Zhang WJ, Weidner SM, Marshall DD, Hoang K, Lee C, Davis ETJ, Smith V, Meher AK, Cornejo MA, Auner GW, McEwen CN. Fundamental Studies of New Ionization Technologies and Insights from IMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1133-1147. [PMID: 31062287 DOI: 10.1007/s13361-019-02194-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
- Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, MI, USA.
- MSTM, LLC, Newark, DE, USA.
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | | | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Steffen M Weidner
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Khoa Hoang
- University of the Sciences, Philadelphia, PA, USA
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MSTM, LLC, Newark, DE, USA
| | - Eric T J Davis
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Gregory W Auner
- Department of Surgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, DE, USA
- University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
13
|
Cody RB. Ambient Profiling of Phenolic Content in Tea Infusions by Matrix-Assisted Ionization in Vacuum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1594-1600. [PMID: 29845560 DOI: 10.1007/s13361-018-1990-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Matrix-assisted ionization in vacuum (MAIV) was used to analyze the polyphenol content of ten different tea infusions. Nine different Camellia sinensis infusions were analyzed including three green teas, two black teas, two oolong teas, jasmine tea, and white tea. An infusion of rooibos (Aspalathus linearis) tea was also analyzed. Each freshly brewed tea was diluted 1:1 with methanol, and 100 ppm of phenolphthalein was added as an internal standard. An excess of 3-nitrobenzonitrile (NBN) was added to each vial, and the solution containing NBN crystals was analyzed by aspiration directly into the mass spectrometer sampling orifice. A working curve constructed for dilutions of catechin with phenolphthalein internal standard showed good linearity for five replicates of each concentration. The measured relative abundances of flavonoid polyphenols in each tea were in good agreement with previously reported values. Polyphenol content in tea infusions varied from 19.2 to 108.6 mg 100 mL-1. In addition to the expected catechin flavonoids, abundant quinic acid and gallic acid was detected in the C. sinensis infusions. Characteristic A. linearis flavonoids were detected in the rooibos tea. Graphical Abstract.
Collapse
Affiliation(s)
- Robert B Cody
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA, 01960, USA.
| |
Collapse
|
14
|
Lu IC, Pophristic M, Inutan ED, McKay RG, McEwen CN, Trimpin S. Simplifying the ion source for mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2568-2572. [PMID: 27520740 DOI: 10.1002/rcm.7718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Affiliation(s)
- I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Milan Pophristic
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
- MSTM LLC, Newark, DE, 19711, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MSTM LLC, Newark, DE, 19711, USA
| | | | - Charles N McEwen
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
- MSTM LLC, Newark, DE, 19711, USA
- M&M Mass Spec Consulting, LLC, Harbeson, DE, 19951, USA
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
- MSTM LLC, Newark, DE, 19711, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| |
Collapse
|
15
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
16
|
Devereaux ZJ, Reynolds CA, Fischer JL, Foley CD, DeLeeuw JL, Wager-Miller J, Narayan SB, Mackie K, Trimpin S. Matrix-Assisted Ionization on a Portable Mass Spectrometer: Analysis Directly from Biological and Synthetic Materials. Anal Chem 2016; 88:10831-10836. [PMID: 26938428 PMCID: PMC10614167 DOI: 10.1021/acs.analchem.6b00304] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix-assisted ionization (MAI)-mass spectrometry (MS) eliminates the need for high voltage, a heat source, lasers, and compressed gases in the ionization process and uses minimal solvents in sample preparation, thus making MAI ideal for field-portable mass spectrometers. The broad applicability of MAI is demonstrated by simple, rapid, and robust positive and negative detection mode analyses of low and high mass compounds including some pesticides, dyes, drugs, lipids, and proteins (186 Da to 8.5 kDa) from various materials including urine, biological tissue sections, paper, and plant material on a low pumping capacity, single-quadrupole mass spectrometer. Different sample introduction methods are applicable, including the use of a pipet tip or glass melting point tube, allowing integration of sample preparation with sample introduction for increased analytical utility and ease of operation, even when sampling directly from surfaces.
Collapse
Affiliation(s)
- Zachary J. Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christian A. Reynolds
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Joshua L. Fischer
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Casey D. Foley
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica L. DeLeeuw
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - James Wager-Miller
- Gill Center for Biomolecular Science, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, Indiana 47405, United States
| | - Srinivas B. Narayan
- Detroit Medical Center: Detroit Hospital, 4201 St. Antoine Street, Detroit, Michigan 48201, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, Indiana 47405, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Cardiovascular Research Institute, Wayne State University School of Medicine, 421 E. Canfield Street, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Marshall DD, Inutan ED, Wang B, Liu CW, Thawoos S, Wager-Miller J, Mackie K, Trimpin S. A broad-based study on hyphenating new ionization technologies with MS/MS for PTMs and tissue characterization. Proteomics 2016; 16:1695-706. [DOI: 10.1002/pmic.201500530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/27/2016] [Accepted: 04/11/2016] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ellen D. Inutan
- Department of Chemistry; Wayne State University; Detroit MI USA
| | - Beixi Wang
- Department of Chemistry; Wayne State University; Detroit MI USA
| | - Chih-Wei Liu
- Department of Chemistry; Wayne State University; Detroit MI USA
| | | | - James Wager-Miller
- Department of Psychological & Brain Sciences; Indiana University; Bloomington IN USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences; Indiana University; Bloomington IN USA
| | - Sarah Trimpin
- Department of Chemistry; Wayne State University; Detroit MI USA
- Cardiovascular Research Institute; Wayne State University School of Medicine; Detroit MI USA
| |
Collapse
|
18
|
Trimpin S. "Magic" Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:4-21. [PMID: 26486514 PMCID: PMC4686549 DOI: 10.1007/s13361-015-1253-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 05/11/2023]
Abstract
The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.
Collapse
Affiliation(s)
- Sarah Trimpin
- />Department of Chemistry, Wayne State University, Detroit, MI 48202 USA
- />Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />MSTM, LLC, Newark, DE 19711 USA
| |
Collapse
|
19
|
Kukaev EN, Kononikhin AS, Starodubtseva NL, Kostyukevich YI, Popova IA, Chagovets V, Nagornov KO, Nikolaev EN. Atmospheric pressure thermal ionization ion source for peptide analysis. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:307-311. [PMID: 27900860 DOI: 10.1255/ejms.1443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel atmospheric pressure thermal ionization (APTI) ion source was developed for the analysis of liquid samples. The feasibility of the ion source was demonstrated on peptides using two configurations-assisted by hot wire or hot surface. Microalloyed molybdenum, used as a thermal ion- emitter, notably facilitated the formation of multiply-charged ions, but fragmentation products were still observed. Peptide fragmentation accompanying thermal ionization can be used for peptide identification. The described method is promising for studies of biological samples with minimal pre-treatment.
Collapse
Affiliation(s)
- Eugenii N Kukaev
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation and Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Alexey S Kononikhin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation and V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Natalia L Starodubtseva
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russian Federation and V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Yury I Kostyukevich
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation and Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russian Federation and Skolkovo Institute of Science and Technology, 143025 Skolkovo, Moscow region, Russian Federation
| | - Igor A Popova
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation and Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russian Federation and V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vitaliy Chagovets
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Konstantin O Nagornov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| | - Eugene N Nikolaev
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation and Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russian Federation and Skolkovo Institute of Science and Technology, 143025 Skolkovo, Moscow region, Russian Federation
| |
Collapse
|
20
|
Chakrabarty S, DeLeeuw JL, Woodall DW, Jooss K, Narayan SB, Trimpin S. Reproducibility and Quantification of Illicit Drugs Using Matrix-Assisted Ionization (MAI) Mass Spectrometry. Anal Chem 2015; 87:8301-6. [DOI: 10.1021/acs.analchem.5b01436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shubhashis Chakrabarty
- MS,
LLC., 28 Tenby Chase Drive, Newark, Delaware 19711, United States
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica L. DeLeeuw
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Daniel W. Woodall
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Kevin Jooss
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Srinivas B. Narayan
- Detroit Medical
Center: Detroit Hospital, 4201 St.
Antoine Street, Detroit, Michigan 48201, United States
| | - Sarah Trimpin
- MS,
LLC., 28 Tenby Chase Drive, Newark, Delaware 19711, United States
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Cardiovascular
Research Institute, Wayne State University School of Medicine, 421
East Canfield, Detroit, Michigan 48201, United States
| |
Collapse
|