1
|
Ranard LS, Bonow RO, Nishimura R, Mack MJ, Thourani VH, Bavaria J, O'Gara PT, Bax JJ, Blanke P, Delgado V, Leipsic J, Lang RM, Michelena HI, Cavalcante JL, Vahl TP, Leon MB, Rigolin VH. Imaging Methods for Evaluation of Chronic Aortic Regurgitation in Adults: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1953-1966. [PMID: 37940233 DOI: 10.1016/j.jacc.2023.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023]
Abstract
A global multidisciplinary workshop was convened to discuss the multimodality diagnostic evaluation of aortic regurgitation (AR). Specifically, the focus was on assessment tools for AR severity and analyzing evolving data on the optimal timing of aortic valve intervention. The key concepts from this expert panel are summarized as: 1) echocardiography is the primary imaging modality for assessment of AR severity; however, when data is incongruent or incomplete, cardiac magnetic resonance may be helpful; 2) assessment of left ventricular size and function is crucial in determining the timing of intervention; 3) recent evidence suggests current cutpoints for intervention in asymptomatic severe AR patients requires further scrutiny; 4) left ventricular end-systolic volume index has emerged as an additional parameter that has promise in guiding timing of intervention; and 5) the role of additional factors (including global longitudinal strain, regurgitant fraction, and myocardial extracellular volume) is worthy of future investigation.
Collapse
Affiliation(s)
- Lauren S Ranard
- Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert O Bonow
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Rick Nishimura
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J Mack
- Division of Cardiothoracic Surgery, Heart Hospital Baylor Plano, Baylor Healthcare System, Plano, Texas, USA
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Georgia, USA
| | - Joseph Bavaria
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick T O'Gara
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Philipp Blanke
- Department of Radiology, St Paul's Hospital & University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Delgado
- Department of Cardiology, Hospital University Germans Trias i Pujol, Badalona, Spain
| | - Jonathon Leipsic
- Department of Radiology, St Paul's Hospital & University of British Columbia, Vancouver, British Columbia, Canada
| | - Roberto M Lang
- Section of Cardiology, Heart and Vascular Center, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Hector I Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - João L Cavalcante
- Division of Cardiology, Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota, USA
| | - Torsten P Vahl
- Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vera H Rigolin
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Kumar P, Bhatia M. Role of CT in the Pre- and Postoperative Assessment of Conotruncal Anomalies. Radiol Cardiothorac Imaging 2022; 4:e210089. [PMID: 35923747 PMCID: PMC9308465 DOI: 10.1148/ryct.210089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Conotruncal anomalies, also referred to as outflow tract anomalies, are congenital heart defects that result from abnormal septation of the great vessels' outflow tracts. The major conotruncal anomalies include tetralogy of Fallot, double-outlet right ventricle, transposition of the great arteries, truncus arteriosus, and interrupted aortic arch. Other defects, which are often components of the major anomalies, include pulmonary atresia with ventricular septal defect, pulmonary valve agenesis, aortopulmonary window, and double-outlet left ventricle. CT has emerged as a robust diagnostic tool in preoperative and postoperative assessment of various congenital heart diseases, including conotruncal anomalies. The data provided with multidetector CT imaging are useful for treatment planning and follow-up monitoring after surgery or intervention. Unlike echocardiography and MRI, CT is not limited by a small acoustic window, metallic devices, and need for sedation or anesthesia. Major advances in CT equipment, including dual-source scanners, wide-detector scanners, high-efficiency detectors, higher x-ray tube power, automatic tube current modulation, and advanced three-dimensional postprocessing, provide a low-risk, high-quality alternative to diagnostic cardiac catheterization and MRI. This review explores the various conotruncal anomalies and elucidates the role of CT imaging in their pre- and postoperative assessment. Keywords: CT, CT Angiography, Stents, Pediatrics © RSNA, 2022.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Radiodiagnosis and Imaging, Fortis Escort Heart Institute, Okhla Road, New Delhi 110025, India
| | - Mona Bhatia
- Department of Radiodiagnosis and Imaging, Fortis Escort Heart Institute, Okhla Road, New Delhi 110025, India
| |
Collapse
|
3
|
Lee JW, Nam KJ, Kim JY, Jeong YJ, Lee G, Park SM, Lim SJ, Choo KS. Simultaneous Assessment of Left Ventricular Function and Coronary Artery Anatomy by Third-generation Dual-source Computed Tomography Using a Low Radiation Dose. J Cardiovasc Imaging 2019; 28:21-32. [PMID: 31805621 PMCID: PMC6992922 DOI: 10.4250/jcvi.2019.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND To assess left ventricular function and coronary artery simultaneously by third-generation dual-source computed tomography (CT) using a low radiation dose. METHODS A total of 48 patients (36 men, 12 women; mean age 57.0 ± 9.5 years) who underwent both electrocardiography-gated cardiac CT angiography (CCTA) using 70–90 kVp and echocardiography were included in this retrospective study. The correlation between left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and left ventricular ejection fraction (LVEF) measured using CCTA and echocardiography was determined. The quality of coronary artery images was analyzed using a 4-point scale (1, excellent; 4, poor). The effective radiation dose of CCTA was calculated. RESULTS Mean heart rate during the CT examination was 59.9 ± 9.9 bpm (range 38–79) and the body mass index of 48 patients was 24.5 ± 2.6 kg/m2 (range 17.0–29.4). LVEDV, LVESV, and LVEF measured using CCTA and echocardiography demonstrated a fair to moderate correlation (Pearson correlation coefficient: r = 0.395, p = 0.005 for LVEDV; r = 0.509. p < 0.001 for LVESV; r = 0.551, p < 0.001 for LVEF). Average image quality score of coronary arteries was 1.0 ± 0.1 (range 1–2). A total of 99.0% (783 of 791) of segments had an excellent image quality score, and 1.0% (8 of 791) of segments had a good score. Mean effective radiation dose was 2.2 ± 0.7 mSv. CONCLUSIONS Third-generation dual-source CT using a low tube voltage simultaneously provides information regarding LV function and coronary artery disease at a low radiation dose. It can serve as an alternative option for functional assessment, particularly when other imaging modalities are inadequate.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Kyung Jin Nam
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jin You Kim
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Yeon Joo Jeong
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Geewon Lee
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - So Min Park
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soo Jin Lim
- Department of Cardiology, Kim Hae Kangil Hospital, Gimhae, Korea
| | - Ki Seok Choo
- Department of Radiology, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
4
|
Saffarzadeh M, Gaewsky JP, Tan J, Lahm R, Upadhya B, Jao GT, Weaver AA. Cardiothoracic Morphology Measures in Heart Failure Patients to Inform Device Designs. Cardiovasc Eng Technol 2019; 10:543-552. [PMID: 31637595 DOI: 10.1007/s13239-019-00436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Approximately 5.7 million people in the US are affected by congestive heart failure. This study aimed to quantitatively evaluate cardiothoracic morphology and variability within a cohort of heart failure patients for the purpose of optimally engineering cardiac devices for a variety of heart failure patients. METHODS Co-registered cardiac-gated and non-gated chest computed tomography (CT) scans were analyzed from 20 heart failure patients (12 males; 8 females) who were primarily older adults (79.5 ± 8.8 years). Twelve cardiothoracic measurements were collected and compared to study sex and left ventricular (LV) ejection fraction (EF) type differences in cardiothoracic morphology. RESULTS Four measures were significantly greater in males compared to females: LV long-axis length, LV end diastolic diameter (LVEDD) at 50% length of the LV long-axis, the minimal distance between the sternum and heart, and the angle between the LV long-axis and coronal plane. Four measures were significantly greater in patients with reduced EF compared to preserved LV: LV long-axis length, LVEDD at 50% length of the LV long-axis, left ventricular volume normalized by body surface area, and the angle between the mitral valve plane and LV long-axis. CONCLUSIONS These cardiothoracic morphology measurements are important to consider in the design of cardiac devices for heart failure management (e.g. cardiac pacemakers, ventricular assist devices, and implantable defibrillators), since morphology differs by sex and ejection fraction.
Collapse
Affiliation(s)
- Mona Saffarzadeh
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC, 27101, USA.,Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - James P Gaewsky
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC, 27101, USA.,Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Joshua Tan
- Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ryan Lahm
- Medtronic, Minneapolis, MN, 55432-5604, USA
| | - Bharathi Upadhya
- Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Geoffrey T Jao
- Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Ashley A Weaver
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC, 27101, USA. .,Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Ko SM, Hwang SH, Lee HJ. Role of Cardiac Computed Tomography in the Diagnosis of Left Ventricular Myocardial Diseases. J Cardiovasc Imaging 2019; 27:73-92. [PMID: 30993942 PMCID: PMC6470070 DOI: 10.4250/jcvi.2019.27.e17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
Multimodality imaging is indicated for the evaluation of left ventricular (LV) myocardial diseases. Cardiac magnetic resonance (CMR) allows morphological and functional assessment of the LV along with soft tissue characterization. Technological advances in cardiac computed tomography (CT) have led to the development of techniques for diagnostic acquisition in LV myocardial disease. Cardiac CT facilitates the characterization of LV myocardial disease based on anatomy, function, and enhancement pattern. LV regional and global functional parameters are evaluated using multi-phasic cine CT images. CT myocardial perfusion facilitates the identification of hemodynamically significant coronary artery stenosis. Cardiac CT with delayed enhancement is used to detect myocardial scarring or fibrosis in myocardial infarction and non-ischemic cardiomyopathy, and for the measurement of extracellular volume fraction in non-ischemic cardiomyopathy. In this review, we review imaging techniques and key imaging features of cardiac CT used for the evaluation of myocardial diseases, along with CMR findings.
Collapse
Affiliation(s)
- Sung Min Ko
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| | - Sung Ho Hwang
- Department of Radiology, Korea University Anam Hospital, Seoul, Korea
| | - Hye Jeong Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Cai K, Yang R, Yue H, Li L, Ou S, Liu F. Dynamic updating atlas for heart segmentation with a nonlinear field-based model. Int J Med Robot 2017; 13. [PMID: 27862910 DOI: 10.1002/rcs.1785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. METHODS This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. RESULTS The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). CONCLUSION Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences.
Collapse
Affiliation(s)
- Ken Cai
- School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Rongqian Yang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hongwei Yue
- School of Information Engineering, Wuyi University, Jiangmen, 529020, China
| | - Lihua Li
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shanxing Ou
- Department of Radiology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, 510010, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Feng AF, Liu ZH, Zhou SL, Zhao SY, Zhu YX, Wang HX. Effects of AMPD1 gene C34T polymorphism on cardiac index, blood pressure and prognosis in patients with cardiovascular diseases: a meta-analysis. BMC Cardiovasc Disord 2017; 17:174. [PMID: 28673246 PMCID: PMC5496365 DOI: 10.1186/s12872-017-0608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/22/2017] [Indexed: 04/21/2023] Open
Abstract
Background The meta-analysis was aimed to evaluate the effects of AMPD1 gene C34T polymorphism on cardiac function indexes, blood pressure and prognosis in patients with cardiovascular diseases (CVD). Methods Eligible studies were retrieved through a comprehensive search of electronic databases and manual search. Then the high-quality studies met the rigorous inclusion and exclusion criteria, as well as related to the subject was selected for the study. Comprehensive data analyses were conducted using STATA software 12.0. Results The study results revealed that CVD patients with CT + TT genotype of AMPD1 C34T polymorphism presented elevated left ventricular ejection fraction (LVEF) (%) and reduced left ventricular end diastolic dimension (LVEDD) (mm) as compared with CC genotype, moreover, the subgroup analysis found that the LVEF (%) was markedly higher in heart failure (HF) patients carrying CT + TT genotype than CC genotype. Besides, the systolic blood pressure (SBP) (mmHg) in CVD patients with CT + TT genotype was obviously decreased in contrast with the CC genotype. Patients suffered from HF with different genotypes (CT + TT and CC) of AMPD1 C34T polymorphism exhibited no significant differences in total survival rate and cardiac survival rate. Conclusions Our current meta-analysis indicated that the T allele of AMPD1 gene C34T polymorphism may be correlated with LVEF, LVEDD and SBP, which plays a protective role in the cardiac functions and blood pressure in CVD patients, but had no effects on total survival rate and cardiac survival rate for HF.
Collapse
Affiliation(s)
- Ai-Fang Feng
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Zhong-Hui Liu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shu-Long Zhou
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Shi-Yuan Zhao
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Yan-Xin Zhu
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China
| | - Huai-Xin Wang
- Department of Emergency, Weifang Yidu Central Hospital, No. 4138, Linglongshan Southern Road, Weifang, 262500, People's Republic of China.
| |
Collapse
|
8
|
Kaniewska M, Schuetz GM, Willun S, Schlattmann P, Dewey M. Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis. Eur Radiol 2016; 27:1640-1659. [DOI: 10.1007/s00330-016-4513-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/02/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
|
9
|
Ko SM, Park JH, Shin JK, Kim JS. Assessment of the regurgitant orifice area in aortic regurgitation with dual-source CT: Comparison with cardiovascular magnetic resonance. J Cardiovasc Comput Tomogr 2015; 9:345-53. [DOI: 10.1016/j.jcct.2015.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
|
10
|
Kim YJ, Yong HS, Kim SM, Kim JA, Yang DH, Hong YJ. Korean guidelines for the appropriate use of cardiac CT. Korean J Radiol 2015; 16:251-85. [PMID: 25741189 PMCID: PMC4347263 DOI: 10.3348/kjr.2015.16.2.251] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/03/2015] [Indexed: 01/07/2023] Open
Abstract
The development of cardiac CT has provided a non-invasive alternative to echocardiography, exercise electrocardiogram, and invasive angiography and cardiac CT continues to develop at an exponential speed even now. The appropriate use of cardiac CT may lead to improvements in the medical performances of physicians and can reduce medical costs which eventually contribute to better public health. However, until now, there has been no guideline regarding the appropriate use of cardiac CT in Korea. We intend to provide guidelines for the appropriate use of cardiac CT in heart diseases based on scientific data. The purpose of this guideline is to assist clinicians and other health professionals in the use of cardiac CT for diagnosis and treatment of heart diseases, especially in patients at high risk or suspected of heart disease.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
| | - Sung Mok Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Jeong A Kim
- Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 411-706, Korea
| | - Dong Hyun Yang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Yoo Jin Hong
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
11
|
Rizvi A, Deaño RC, Bachman DP, Xiong G, Min JK, Truong QA. Analysis of ventricular function by CT. J Cardiovasc Comput Tomogr 2015; 9:1-12. [PMID: 25576407 PMCID: PMC4329068 DOI: 10.1016/j.jcct.2014.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/22/2022]
Abstract
The assessment of ventricular function, cardiac chamber dimensions, and ventricular mass is fundamental for clinical diagnosis, risk assessment, therapeutic decisions, and prognosis in patients with cardiac disease. Although cardiac CT is a noninvasive imaging technique often used for the assessment of coronary artery disease, it can also be used to obtain important data about left and right ventricular function and morphology. In this review, we will discuss the clinical indications for the use of cardiac CT for ventricular analysis, review the evidence on the assessment of ventricular function compared with existing imaging modalities such cardiac magnetic resonance imaging and echocardiography, provide a typical cardiac CT protocol for image acquisition and postprocessing for ventricular analysis, and provide step-by-step instructions to acquire multiplanar cardiac views for ventricular assessment from the standard axial, coronal, and sagittal planes. Furthermore, both qualitative and quantitative assessments of ventricular function as well as sample reporting are detailed.
Collapse
Affiliation(s)
- Asim Rizvi
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, Suite 108, 413 East 69th Street, New York, NY 10021, USA
| | - Roderick C Deaño
- Division of Cardiovascular Disease, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY, USA
| | - Daniel P Bachman
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, Suite 108, 413 East 69th Street, New York, NY 10021, USA
| | - Guanglei Xiong
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, Suite 108, 413 East 69th Street, New York, NY 10021, USA
| | - James K Min
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, Suite 108, 413 East 69th Street, New York, NY 10021, USA; Division of Cardiovascular Disease, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY, USA
| | - Quynh A Truong
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, Suite 108, 413 East 69th Street, New York, NY 10021, USA; Division of Cardiovascular Disease, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
12
|
HU CHUNFENG, WANG JIE, XU KAI, YUAN YINGYING, WANG XIULING, XIE LIXIANG, LI SHAODONG. Dual-source computed tomography for evaluating coronary stenosis and left ventricular function. Exp Ther Med 2013; 6:961-966. [PMID: 24137298 PMCID: PMC3797288 DOI: 10.3892/etm.2013.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/18/2013] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the correlation between coronary stenosis and left ventricular function using dual-source computed tomography (DSCT). DSCT coronary angiography (CAG) was performed on 66 patients with coronary disease and 36 healthy volunteers. The degree of coronary stenosis, end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and myocardial mass (MM) were measured for the left ventricle. These values were compared with the results obtained by echocardiography (ECHO) and selective CAG, which were both adopted as controls. The diagnoses of coronary stenosis based on DSCT CAG and those based on selective CAG were not significantly different (P>0.05). Similarly, the values of EDV, ESV, SV or EV measured by DSCT CAG were not significantly different from thoses obtained by ECHO (P>0.05). However, significant differences were observed in the ESV, EF and SV of the severe stenosis group compared with the moderate and mild stenosis groups (both P<0.05). The values of EDV and MM significantly varied between the mild, moderate and severe stenosis groups (P<0.05). DSCT CAG is a highly accurate and highly reproducible method for evaluating the preliminary changes in cardiac function based on the variations of coronary stenosis. Significant changes were detected in the EDV and MM of the moderate stenosis group and in all parameters of the severe stenosis group.
Collapse
|
13
|
Current world literature. Curr Opin Cardiol 2013; 28:259-68. [PMID: 23381096 DOI: 10.1097/hco.0b013e32835ec472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Evaluation of the aortic and mitral valves with cardiac computed tomography and cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2012; 28 Suppl 2:109-27. [PMID: 23139149 DOI: 10.1007/s10554-012-0144-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
Cardiac computed tomography (CT) produces high-quality anatomical images of the cardiac valves and associated structures. Cardiac magnetic resonance imaging (MRI) provides images of valve morphology, and allows quantitative evaluation of valvular dysfunction and determination of the impact of valvular lesions on cardiovascular structures. Recent studies have demonstrated that cardiac CT and MRI are important adjuncts to echocardiography for the evaluation of aortic and mitral valvular heart diseases (VHDs). Radiologists should be aware of the technical aspects of cardiac CT and MRI that allow comprehensive assessment of aortic and mitral VHDs, as well as the typical imaging features of common and important aortic and mitral VHDs on cardiac CT and MRI.
Collapse
|