1
|
Alberts I, More S, Knapp K, Mei R, Fanti S, Mingels C, Nardo L, Hammond NB, Nagaraj H, Rominger A, Cook GJR, Wilson D. Is Long-Axial-Field-of-View PET/CT Cost-Effective? An International Health-Economic Analysis. J Nucl Med 2025:jnumed.124.269203. [PMID: 40246541 DOI: 10.2967/jnumed.124.269203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Our aim is to assess the cost-effectiveness of long-axial-field-of-view (LAFOV) versus short-axial FOV (SAFOV) PET/CT systems using international data. Methods: Our model compares equipment and operational costs for a PET/CT center and investigates the effect of camera choice (SAFOV vs. LAFOV) and operational models. Variables include scanner, personnel, radiopharmaceuticals, and operational costs. Economic performance was measured as cost per scan per patient, the total maximum number of scans possible, and the incremental cost-effectiveness ratio. The willingness-to-pay threshold (WTPT) was taken as the cost of a PET/CT scan using the baseline scenario. Radiopharmaceutical requirements, radiation dose to staff and patients, and patient time were modeled. Results: An LAFOV system can examine as many patients per day (n = 36) as 2 SAFOV systems but requires fewer technologists (4.5 LAFOV vs. 6.8 SAFOV full-time equivalents) and lower activity (12.5 vs. 35.6 GBq/d), resulting in lower personnel doses (0.9 vs. 2.0 mSv/y). For all countries, LAFOV resulted in lowest per-patient scan costs. The most cost-ineffective method was the use of extended hours. Incremental cost-effectiveness ratio analysis strongly favored LAFOV for all countries, including low-income economies, with WTPT met for all jurisdictions. Net monetary benefit was highest for LAFOV. The minimum number of patients needed to meet WTPT for LAFOV was lowest in lower-income countries, suggesting that high throughput or high per-procedure income is not a prerequisite for cost-effective LAFOV usage. Conclusion: LAFOV was shown to facilitate higher patient throughput at lower per-patient and total lifetime operational costs and with lower radiopharmaceutical requirements. These data suggest that LAFOV systems are not just suited to well-resourced academic centers but also are an economically attractive solution for community and resource-limited settings.
Collapse
Affiliation(s)
- Ian Alberts
- Molecular Imaging and Therapy, BC Cancer, Vancouver, British Columbia, Canada;
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart More
- University of Cape Town, Cape Town, South Africa
| | - Karen Knapp
- University of Exeter Medical School, Exeter, United Kingdom
| | - Riccardo Mei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Switzerland
- Department of Radiology, University of California Davis, Sacramento, California
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, California
| | - Nii Boye Hammond
- National Centre for Radiotherapy, Oncology and Nuclear Medicine, Korlebu Teaching Hospital, Accra, Ghana
| | - Harish Nagaraj
- Integrated Molecular Imaging Centre, Kenyatta University Teaching, Referral and Research Hospital, Nairobi, Kenya; and
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Gary J R Cook
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Don Wilson
- Molecular Imaging and Therapy, BC Cancer, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Alberts I, Sari H, Mingels C, Afshar-Oromieh A, Pyka T, Shi K, Rominger A. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023; 23:28. [PMID: 36934273 PMCID: PMC10024603 DOI: 10.1186/s40644-023-00540-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
3
|
Min LA, Castagnoli F, Vogel WV, Vellenga JP, van Griethuysen JJM, Lahaye MJ, Maas M, Beets Tan RGH, Lambregts DMJ. A decade of multi-modality PET and MR imaging in abdominal oncology. Br J Radiol 2021; 94:20201351. [PMID: 34387508 PMCID: PMC9328040 DOI: 10.1259/bjr.20201351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To investigate trends observed in a decade of published research on multimodality PET(/CT)+MR imaging in abdominal oncology, and to explore how these trends are reflected by the use of multimodality imaging performed at our institution. METHODS First, we performed a literature search (2009-2018) including all papers published on the multimodality combination of PET(/CT) and MRI in abdominal oncology. Retrieved papers were categorized according to a structured labelling system, including study design and outcome, cancer and lesion type under investigation and PET-tracer type. Results were analysed using descriptive statistics and evolutions over time were plotted graphically. Second, we performed a descriptive analysis of the numbers of MRI, PET/CT and multimodality PET/CT+MRI combinations (performed within a ≤14 days interval) performed during a similar time span at our institution. RESULTS Published research papers involving multimodality PET(/CT)+MRI combinations showed an impressive increase in numbers, both for retrospective combinations of PET/CT and MRI, as well as hybrid PET/MRI. Main areas of research included new PET-tracers, visual PET(/CT)+MRI assessment for staging, and (semi-)quantitative analysis of PET-parameters compared to or combined with MRI-parameters as predictive biomarkers. In line with literature, we also observed a vast increase in numbers of multimodality PET/CT+MRI imaging in our institutional data. CONCLUSIONS The tremendous increase in published literature on multimodality imaging, reflected by our institutional data, shows the continuously growing interest in comprehensive multivariable imaging evaluations to guide oncological practice. ADVANCES IN KNOWLEDGE The role of multimodality imaging in oncology is rapidly evolving. This paper summarizes the main applications and recent developments in multimodality imaging, with a specific focus on the combination of PET+MRI in abdominal oncology.
Collapse
Affiliation(s)
- Lisa A Min
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | | | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jisk P Vellenga
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joost J M van Griethuysen
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Max J Lahaye
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Regina G H Beets Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands.,Faculty or Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
|
5
|
Brix G, Günther E, Rössler U, Endesfelder D, Kamp A, Beer A, Eiber M. Double-strand breaks in lymphocyte DNA of humans exposed to [ 18F]fluorodeoxyglucose and the static magnetic field in PET/MRI. EJNMMI Res 2020; 10:43. [PMID: 32346810 PMCID: PMC7188749 DOI: 10.1186/s13550-020-00625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Given the increasing clinical use of PET/MRI, potential risks to patients from simultaneous exposure to ionising radiation and (electro)magnetic fields should be thoroughly investigated as a precaution. With this aim, the genotoxic potential of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and a strong static magnetic field (SMF) were evaluated both in isolation and in combination using the γH2AX assay detecting double-strand breaks in lymphocyte DNA. METHODS Thirty-two healthy young volunteers allocated to three study arms were exposed to [18F]FDG alone, to a 3-T SMF alone or to both combined over 60 min at a PET/CT or a PET/MRI system. Blood samples taken after in vivo exposure were incubated up to 60 min to extend the irradiation of blood by residual [18F]FDG within the samples and the time to monitor the γH2AX response. Absorbed doses to lymphocytes delivered in vivo and in vitro were estimated individually for each volunteer exposed to [18F]FDG. γH2AX foci were scored automatically by immunofluorescence microscopy. RESULTS Absorbed doses to lymphocytes exposed over 60 to 120 min to [18F]FDG varied between 1.5 and 3.3 mGy. In this time interval, the radiotracer caused a significant median relative increase of 28% in the rate of lymphocytes with at least one γH2AX focus relative to the background rate (p = 0.01), but not the SMF alone (p = 0.47). Simultaneous application of both agents did not result in a significant synergistic or antagonistic outcome (p = 0.91). CONCLUSION There is no evidence of a synergism between [18F]FDG and the SMF that may be of relevance for risk assessment of PET/MRI.
Collapse
Affiliation(s)
- Gunnar Brix
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Neuherberg, Germany.
| | - Elisabeth Günther
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Ute Rössler
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Alexandra Kamp
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
- Department of Nuclear Medicine, University Ulm, Ulm, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Zucchetta P, Branchini M, Zorz A, Bodanza V, Cecchin D, Paiusco M, Bui F. Quantitative analysis of image metrics for reduced and standard dose pediatric 18F-FDG PET/MRI examinations. Br J Radiol 2019; 92:20180438. [PMID: 30673306 DOI: 10.1259/bjr.20180438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE: The study performs a comprehensive analysis of image metrics to objectively support the reduction of injected activity in pediatric oncology 18F-FDG PET/MR (18F-fludeoxyglucose PET/MR) examinations. Contrast-to-Noise Ratio (CNR), Normalized Noise (NN), tumor burden, and standardized uptake value (SUV) parameters stability were investigated to robustly define the acceptable reduced activity level that preserves the clinical utility of images, considering different PET applications. METHODS: 21 PET/MRI examinations performed on a 3-Tesla Biograph mMR scanner were analyzed. Tracer activity reduction was stimulated by decreasing the count statistics of the original list-mode data (3 MBq kg-1). In addition to the already studied SUV metrics and subjective scoring on lesion detectability, a thorough analysis of CNR, NN, Metabolic Tumor Volume (MTV), and Total Lesion Glycolysis (TLG) was performed. RESULTS: SUVmax and SUVmean increased more than 5% only in 0.6 MBq kg-1 reconstructed images (+10% and +9%, respectively), while SUVpeak was almost unaffected (average variations < 2%). The quantified CNR, NN, MTV, and TLG behavior with the decrease of the injected activity clearly defines 1.5 MBq kg-1 as a threshold of activity after which the quality of the image degrades. Subjective and objective analyses yielded consistent results. All 56 lesions were detected until activity of 1.2 MBq kg-1, whereas five lesions were missed on the 0.6 MBq kg-1 image. Perceived image quality (IQ) decreased in Lower Tracer Activity (LTA) images but remained acceptable until 1.5 MBq kg-1. CONCLUSION: Results about the stability of image metrics beyond the semi-quantitative SUV parameters and subjective analysis, rigorously proves the feasibility of the reduction of injected activity to 1.5 MBqkg-1 for pediatric patients aged between 7 and 17 years. ADVANCES IN KNOWLEDGE: This is the first report on the quantitative evaluation of the effect of activity reduction on image quality in pediatric PET/MR. The findings offer objective corroboration to the feasibility of a significant dose reduction without consequences on clinical image reading and tumor burden metrics.
Collapse
Affiliation(s)
- Pietro Zucchetta
- 1 Nuclear Medicine Unit, Department of Medicine DIMED, University-Hospital of Padova , Padova , Italy
| | - Marco Branchini
- 2 Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS , Padova , Italy
| | - Alessandra Zorz
- 2 Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS , Padova , Italy
| | - Valentina Bodanza
- 1 Nuclear Medicine Unit, Department of Medicine DIMED, University-Hospital of Padova , Padova , Italy
| | - Diego Cecchin
- 1 Nuclear Medicine Unit, Department of Medicine DIMED, University-Hospital of Padova , Padova , Italy
| | - Marta Paiusco
- 2 Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS , Padova , Italy
| | - Franco Bui
- 1 Nuclear Medicine Unit, Department of Medicine DIMED, University-Hospital of Padova , Padova , Italy
| |
Collapse
|
7
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|