1
|
Pang Y, Kosmin M, Li Z, Deng X, Li Z, Li X, Zhang Y, Royle G, Manolopoulos S. Isotoxic dose escalated radiotherapy for glioblastoma based on diffusion-weighted MRI and tumor control probability-an in-silico study. Br J Radiol 2023; 96:20220384. [PMID: 37102792 PMCID: PMC10230387 DOI: 10.1259/bjr.20220384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES Glioblastoma (GBM) is the most common malignant primary brain tumor with local recurrence after radiotherapy (RT), the most common mode of failure. Standard RT practice applies the prescription dose uniformly across tumor volume disregarding radiological tumor heterogeneity. We present a novel strategy using diffusion-weighted (DW-) MRI to calculate the cellular density within the gross tumor volume (GTV) in order to facilitate dose escalation to a biological target volume (BTV) to improve tumor control probability (TCP). METHODS The pre-treatment apparent diffusion coefficient (ADC) maps derived from DW-MRI of ten GBM patients treated with radical chemoradiotherapy were used to calculate the local cellular density based on published data. Then, a TCP model was used to calculate TCP maps from the derived cell density values. The dose was escalated using a simultaneous integrated boost (SIB) to the BTV, defined as the voxels for which the expected pre-boost TCP was in the lowest quartile of the TCP range for each patient. The SIB dose was chosen so that the TCP in the BTV increased to match the average TCP of the whole tumor. RESULTS By applying a SIB of between 3.60 Gy and 16.80 Gy isotoxically to the BTV, the cohort's calculated TCP increased by a mean of 8.44% (ranging from 7.19 to 16.84%). The radiation dose to organ at risk is still under their tolerance. CONCLUSIONS Our findings indicate that TCPs of GBM patients could be increased by escalating radiation doses to intratumoral locations guided by the patient's biology (i.e., cellularity), moreover offering the possibility for personalized RT GBM treatments. ADVANCES IN KNOWLEDGE A personalized and voxel level SIB radiotherapy method for GBM is proposed using DW-MRI, which can increase the tumor control probability and maintain organ at risk dose constraints.
Collapse
Affiliation(s)
- Yaru Pang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | | | - Zhuangling Li
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaonian Deng
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | | |
Collapse
|
2
|
Sipos D, László Z, Tóth Z, Kovács P, Tollár J, Gulybán A, Lakosi F, Repa I, Kovács A. Additional Value of 18F-FDOPA Amino Acid Analog Radiotracer to Irradiation Planning Process of Patients With Glioblastoma Multiforme. Front Oncol 2021; 11:699360. [PMID: 34295825 PMCID: PMC8290215 DOI: 10.3389/fonc.2021.699360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To investigate the added value of 6-(18F]-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) PET to radiotherapy planning in glioblastoma multiforme (GBM). METHODS From September 2017 to December 2020, 17 patients with GBM received external beam radiotherapy up to 60 Gy with concurrent and adjuvant temozolamide. Target volume delineations followed the European guideline with a 2-cm safety margin clinical target volume (CTV) around the contrast-enhanced lesion+resection cavity on MRI gross tumor volume (GTV). All patients had FDOPA hybrid PET/MRI followed by PET/CT before radiotherapy planning. PET segmentation followed international recommendation: T/N 1.7 (BTV1.7) and T/N 2 (BTV2.0) SUV thresholds were used for biological target volume (BTV) delineation. For GTV-BTVs agreements, 95% of the Hausdorff distance (HD95%) from GTV to the BTVs were calculated, additionally, BTV portions outside of the GTV and coverage by the 95% isodose contours were also determined. In case of recurrence, the latest MR images were co-registered to planning CT to evaluate its location relative to BTVs and 95% isodose contours. RESULTS Average (range) GTV, BTV1.7, and BTV2.0 were 46.58 (6-182.5), 68.68 (9.6-204.1), 42.89 (3.8-147.6) cm3, respectively. HD95% from GTV were 15.5 mm (7.9-30.7 mm) and 10.5 mm (4.3-21.4 mm) for BTV1.7 and BTV2.0, respectively. Based on volumetric assessment, 58.8% (28-100%) of BTV1.7 and 45.7% of BTV2.0 (14-100%) were outside of the standard GTV, still all BTVs were encompassed by the 95% dose. All recurrences were confirmed by follow-up imaging, all occurred within PTV, with an additional outfield recurrence in a single case, which was not DOPA-positive at the beginning of treatment. Good correlation was found between the mean and median values of PET/CT and PET/MRI segmented volumes relative to corresponding brain-accumulated enhancement (r = 0.75; r = 0.72). CONCLUSION 18FFDOPA PET resulted in substantial larger tumor volumes compared to MRI; however, its added value is unclear as vast majority of recurrences occurred within the prescribed dose level. Use of PET/CT signals proved to be feasible in the absence of direct segmentation possibilities of PET/MR in TPS. The added value of 18FFDOPA may be better exploited in the context of integrated dose escalation.
Collapse
Affiliation(s)
- David Sipos
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Zoltan László
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
| | - Zoltan Tóth
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
- MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Peter Kovács
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Jozsef Tollár
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Neurology, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Akos Gulybán
- Medical Physics Department, Institut Jules Bordet, Bruxelles, Belgium
| | - Ferenc Lakosi
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Imre Repa
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - Arpad Kovács
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, Minniti G, Kim MM, Tsien C, Dhermain F, Soffietti R, Mehta MP, Weller M, Tonn JC. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 2021; 23:881-893. [PMID: 33538838 DOI: 10.1093/neuonc/noab013] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Copenhagen, Denmark
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina Tsien
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Frederic Dhermain
- Department of Radiation Therapy, Institut de Cancerologie Gustave Roussy, Villejuif, France
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:1063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
5
|
Somme F, Bender L, Namer IJ, Noël G, Bund C. Usefulness of 18F-FDOPA PET for the management of primary brain tumors: a systematic review of the literature. Cancer Imaging 2020; 20:70. [PMID: 33023662 PMCID: PMC7541204 DOI: 10.1186/s40644-020-00348-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
Contrast-enhanced magnetic resonance imaging is currently the standard of care in the management of primary brain tumors, although certain limitations remain. Metabolic imaging has proven useful for an increasing number of indications in oncology over the past few years, most particularly 18F-FDG PET/CT. In neuro-oncology, 18F-FDG was insufficient to clearly evaluate brain tumors. Amino-acid radiotracers such as 18F-FDOPA were then evaluated in the management of brain diseases, notably tumoral diseases. Even though European guidelines on the use of amino-acid PET in gliomas have been published, it is crucial that future studies standardize acquisition and interpretation parameters. The aim of this article was to systematically review the potential effect of this metabolic imaging technique in numerous steps of the disease: primary and recurrence diagnosis, grading, local and systemic treatment assessment, and prognosis. A total of 41 articles were included and analyzed in this review. It appears that 18F-FDOPA PET holds promise as an effective additional tool in the management of gliomas. More consistent prospective studies are still needed.
Collapse
Affiliation(s)
- François Somme
- Nuclear medicine Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France.
| | - Laura Bender
- Oncology Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France
| | - Izzie Jacques Namer
- Nuclear medicine Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France
- Strasbourg University, Unistra/CNRS UMR 7237, Strasbourg, France
| | - Georges Noël
- Radiotherapy Department, Paul Strauss Comprehensive Cancer Center, 3, rue de la porte de l'hôpital, F-67065, Strasbourg, France
- Strasbourg University, CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, F-67000, Strasbourg, France
| | - Caroline Bund
- Nuclear medicine Department, Hautepierre University Hospital, 1, rue Molière, F-67000, Strasbourg, France
| |
Collapse
|
6
|
Optimization of time frame binning for FDOPA uptake quantification in glioma. PLoS One 2020; 15:e0232141. [PMID: 32320440 PMCID: PMC7176128 DOI: 10.1371/journal.pone.0232141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine (FDOPA) uptake quantification in glioma assessment can be distorted using a non-optimal time frame binning of time-activity curves (TAC). Under-sampling or over-sampling dynamic PET images induces significant variations on kinetic parameters quantification. We aimed to optimize temporal time frame binning for dynamic FDOPA PET imaging. Methods Fourteen patients with 33 tumoral TAC with biopsy-proven gliomas were analysed. The mean SUVmax tumor-to-brain ratio (TBRmax) were compared at 20 min and 35 min post-injection (p.i). Five different time frame samplings within 20 min were compared: 11x10sec-6x15sec-5x20sec-3x300sec; 8x15sec– 2x30sec– 2x60sec– 3x300sec; 6x20sec– 8x60sec– 2x300sec; 10x30sec– 3x300sec and 4x45sec– 3x90sec– 5x150sec. The reversible single-tissue compartment model with blood volume parameter (VB) was selected using the Akaike information criterion. K1 values extracted from 1024 noisy simulated TAC using Monte Carlo method from the 5 different time samplings were compared to a target K1 value as the objective, which is the average of the K1 values extracted from the 33 lesions using an imaging-derived input function for each patient. Results The mean TBRmax was significantly higher at 20 min p.i. than at 35 min p.i (respectively 1.4 +/- 0.8 and 1.2 +/- 0.6; p <0.001). The target K1 value was 0.161 mL/ccm/min. The 8x15sec– 2x30sec– 2x60sec– 3x300sec time sampling was the optimal time frame binning. K1 values extracted using this optimal time frame binning were significantly different with K1 values extracted from the other time frame samplings, except with K1 values obtained using the 11x10sec– 6x15sec –5x20sec-3x300sec time frame binning. Conclusions This optimal sampling schedule design (8x15sec– 2x30sec– 2x60sec– 3x300sec) could be used to minimize bias in quantification of FDOPA uptake in glioma using kinetic analysis.
Collapse
|
7
|
Abdollahi H. Radiotherapy dose painting by circadian rhythm based radiomics. Med Hypotheses 2019; 133:109415. [PMID: 31586813 DOI: 10.1016/j.mehy.2019.109415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Radiotherapy dose painting is a new dose delivery technique to achieve higher treatment outcome. In this approach, does is escalated to high progressive regions which are heterogeneous and determined by advanced medical imaging. Radiomics is issued as a feasible image quantification method to reveal tumor heterogeneity by extraction of high throughput mineable texture features. On the other hand, circadian rhythm is a given biological process that studied as a critical factor to obtain more effective treatment outcome. In this study, we hypothesized that radiotherapy dose painting could be enhanced by using circadian rhythm that is determined on the radiomics maps obtained from medical images. This hypothesis is based on the idea which circadian rhythm could change the tumor heterogeneity and therefore image features.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Abstract
The progressive integration of positron emission tomography/computed tomography (PET/CT) imaging in radiation therapy has its rationale in the biological intertumoral and intratumoral heterogeneity of malignant lesions that require the individual adjustment of radiation dose to obtain an effective local tumor control in cancer patients. PET/CT provides information on the biological features of tumor lesions such as metabolism, hypoxia, and proliferation that can identify radioresistant regions and be exploited to optimize treatment plans. Here, we provide an overview of the basic principles of PET-based target volume selection and definition using 18F-fluorodeoxyglucose (18F-FDG) and then we focus on the emerging strategies of dose painting and adaptive radiotherapy using different tracers. Previous studies provided consistent evidence that integration of 18F-FDG PET/CT in radiotherapy planning improves delineation of target volumes and reduces the uncertainties and variabilities of anatomical delineation of tumor sites. PET-based dose painting and adaptive radiotherapy are feasible strategies although their clinical implementation is highly demanding and requires strong technical, computational, and logistic efforts. Further prospective clinical trials evaluating local tumor control, survival, and toxicity of these emerging strategies will promote the full integration of PET/CT in radiation oncology.
Collapse
Affiliation(s)
- Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|