1
|
Dong X, Chen G, Zhu Y, Ma B, Ban X, Wu N, Ming Y. Artificial intelligence in skeletal metastasis imaging. Comput Struct Biotechnol J 2024; 23:157-164. [PMID: 38144945 PMCID: PMC10749216 DOI: 10.1016/j.csbj.2023.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/26/2023] Open
Abstract
In the field of metastatic skeletal oncology imaging, the role of artificial intelligence (AI) is becoming more prominent. Bone metastasis typically indicates the terminal stage of various malignant neoplasms. Once identified, it necessitates a comprehensive revision of the initial treatment regime, and palliative care is often the only resort. Given the gravity of the condition, the diagnosis of bone metastasis should be approached with utmost caution. AI techniques are being evaluated for their efficacy in a range of tasks within medical imaging, including object detection, disease classification, region segmentation, and prognosis prediction in medical imaging. These methods offer a standardized solution to the frequently subjective challenge of image interpretation.This subjectivity is most desirable in bone metastasis imaging. This review describes the basic imaging modalities of bone metastasis imaging, along with the recent developments and current applications of AI in the respective imaging studies. These concrete examples emphasize the importance of using computer-aided systems in the clinical setting. The review culminates with an examination of the current limitations and prospects of AI in the realm of bone metastasis imaging. To establish the credibility of AI in this domain, further research efforts are required to enhance the reproducibility and attain robust level of empirical support.
Collapse
Affiliation(s)
- Xiying Dong
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Guilin Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Yuanpeng Zhu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Boyuan Ma
- School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
| | - Xiaojuan Ban
- School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yue Ming
- Department of Nuclear Medicine (PET-CT Center), National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
2
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
3
|
Park J, Jung M, Kim SK, Lee YH. Prediction of Bone Marrow Metastases Using Computed Tomography (CT) Radiomics in Patients with Gastric Cancer: Uncovering Invisible Metastases. Diagnostics (Basel) 2024; 14:1689. [PMID: 39125564 PMCID: PMC11312158 DOI: 10.3390/diagnostics14151689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
We investigated whether radiomics of computed tomography (CT) image data enables the differentiation of bone metastases not visible on CT from unaffected bone, using pathologically confirmed bone metastasis as the reference standard, in patients with gastric cancer. In this retrospective study, 96 patients (mean age, 58.4 ± 13.3 years; range, 28-85 years) with pathologically confirmed bone metastasis in iliac bones were included. The dataset was categorized into three feature sets: (1) mean and standard deviation values of attenuation in the region of interest (ROI), (2) radiomic features extracted from the same ROI, and (3) combined features of (1) and (2). Five machine learning models were developed and evaluated using these feature sets, and their predictive performance was assessed. The predictive performance of the best-performing model in the test set (based on the area under the curve [AUC] value) was validated in the external validation group. A Random Forest classifier applied to the combined radiomics and attenuation dataset achieved the highest performance in predicting bone marrow metastasis in patients with gastric cancer (AUC, 0.96), outperforming models using only radiomics or attenuation datasets. Even in the pathology-positive CT-negative group, the model demonstrated the best performance (AUC, 0.93). The model's performance was validated both internally and with an external validation cohort, consistently demonstrating excellent predictive accuracy. Radiomic features derived from CT images can serve as effective imaging biomarkers for predicting bone marrow metastasis in patients with gastric cancer. These findings indicate promising potential for their clinical utility in diagnosing and predicting bone marrow metastasis through routine evaluation of abdominopelvic CT images during follow-up.
Collapse
Affiliation(s)
- Jiwoo Park
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| |
Collapse
|
4
|
Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R, Denaro V. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers (Basel) 2024; 16:2700. [PMID: 39123427 PMCID: PMC11311270 DOI: 10.3390/cancers16152700] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Metastasis commonly occur in the bone tissue. Artificial intelligence (AI) has become increasingly prevalent in the medical sector as support in decision-making, diagnosis, and treatment processes. The objective of this systematic review was to assess the reliability of AI systems in clinical, radiological, and pathological aspects of bone metastases. METHODS We included studies that evaluated the use of AI applications in patients affected by bone metastases. Two reviewers performed a digital search on 31 December 2023 on PubMed, Scopus, and Cochrane library and extracted authors, AI method, interest area, main modalities used, and main objectives from the included studies. RESULTS We included 59 studies that analyzed the contribution of computational intelligence in diagnosing or forecasting outcomes in patients with bone metastasis. Six studies were specific for spine metastasis. The study involved nuclear medicine (44.1%), clinical research (28.8%), radiology (20.4%), or molecular biology (6.8%). When a primary tumor was reported, prostate cancer was the most common, followed by lung, breast, and kidney. CONCLUSIONS Appropriately trained AI models may be very useful in merging information to achieve an overall improved diagnostic accuracy and treatment for metastasis in the bone. Nevertheless, there are still concerns with the use of AI systems in medical settings. Ethical considerations and legal issues must be addressed to facilitate the safe and regulated adoption of AI technologies. The limitations of the study comprise a stronger emphasis on early detection rather than tumor management and prognosis as well as a high heterogeneity for type of tumor, AI technology and radiological techniques, pathology, or laboratory samples involved.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Paolo Brigato
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Luisana Sisca
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Girolamo Maltese
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Department of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (G.F.P.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
5
|
Cattabriga A, Renzetti B, Galuppi F, Bartalena L, Gaudiano C, Brocchi S, Rossi A, Schiavina R, Bianchi L, Brunocilla E, Spinozzi L, Catanzaro C, Castellucci P, Farolfi A, Fanti S, Tunariu N, Mosconi C. Multiparametric Whole-Body MRI: A Game Changer in Metastatic Prostate Cancer. Cancers (Basel) 2024; 16:2531. [PMID: 39061171 PMCID: PMC11274871 DOI: 10.3390/cancers16142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Prostate cancer ranks among the most prevalent tumours globally. While early detection reduces the likelihood of metastasis, managing advanced cases poses challenges in diagnosis and treatment. Current international guidelines support the concurrent use of 99Tc-Bone Scintigraphy and Contrast-Enhanced Chest and Abdomen CT for the staging of metastatic disease and response assessment. However, emerging evidence underscores the superiority of next-generation imaging techniques including PSMA-PET/CT and whole-body MRI (WB-MRI). This review explores the relevant scientific literature on the role of WB-MRI in metastatic prostate cancer. This multiparametric imaging technique, combining the high anatomical resolution of standard MRI sequences with functional sequences such as diffusion-weighted imaging (DWI) and bone marrow relative fat fraction (rFF%) has proved effective in comprehensive patient assessment, evaluating local disease, most of the nodal involvement, bone metastases and their complications, and detecting the increasing visceral metastases in prostate cancer. It does have the advantage of avoiding the injection of contrast medium/radionuclide administration, spares the patient the exposure to ionizing radiation, and lacks the confounder of FLARE described with nuclear medicine techniques. Up-to-date literature regarding the diagnostic capabilities of WB-MRI, though still limited compared to PSMA-PET/CT, strongly supports its widespread incorporation into standard clinical practice, alongside the latest nuclear medicine techniques.
Collapse
Affiliation(s)
- Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Benedetta Renzetti
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Francesco Galuppi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Laura Bartalena
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Riccardo Schiavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Lorenzo Bianchi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Eugenio Brunocilla
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Luca Spinozzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Calogero Catanzaro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Stefano Fanti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Nina Tunariu
- Clinical Radiology, Royal Marsden Hospital & Institute of Cancer Research, London SW3 6JJ, UK;
| | - Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| |
Collapse
|
6
|
Huynh LM, Swanson S, Cima S, Haddadin E, Baine M. Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication. Cancers (Basel) 2024; 16:1897. [PMID: 38791977 PMCID: PMC11120365 DOI: 10.3390/cancers16101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The clinical integration of prostate membrane specific antigen (PSMA) positron emission tomography and computed tomography (PET/CT) scans represents potential for advanced data analysis techniques in prostate cancer (PC) prognostication. Among these tools is the use of radiomics, a computer-based method of extracting and quantitatively analyzing subvisual features in medical imaging. Within this context, the present review seeks to summarize the current literature on the use of PSMA PET/CT-derived radiomics in PC risk stratification. A stepwise literature search of publications from 2017 to 2023 was performed. Of 23 articles on PSMA PET/CT-derived prostate radiomics, PC diagnosis, prediction of biopsy Gleason score (GS), prediction of adverse pathology, and treatment outcomes were the primary endpoints of 4 (17.4%), 5 (21.7%), 7 (30.4%), and 7 (30.4%) studies, respectively. In predicting PC diagnosis, PSMA PET/CT-derived models performed well, with receiver operator characteristic curve area under the curve (ROC-AUC) values of 0.85-0.925. Similarly, in the prediction of biopsy and surgical pathology results, ROC-AUC values had ranges of 0.719-0.84 and 0.84-0.95, respectively. Finally, prediction of recurrence, progression, or survival following treatment was explored in nine studies, with ROC-AUC ranging 0.698-0.90. Of the 23 studies included in this review, 2 (8.7%) included external validation. While explorations of PSMA PET/CT-derived radiomic models are immature in follow-up and experience, these results represent great potential for future investigation and exploration. Prior to consideration for clinical use, however, rigorous validation in feature reproducibility and biologic validation of radiomic signatures must be prioritized.
Collapse
Affiliation(s)
- Linda My Huynh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
- Department of Urology, University of California, Irvine, CA 92868, USA;
| | - Shea Swanson
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
| | - Sophia Cima
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
| | - Eliana Haddadin
- Department of Urology, University of California, Irvine, CA 92868, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
| |
Collapse
|
7
|
Tapper W, Carneiro G, Mikropoulos C, Thomas SA, Evans PM, Boussios S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J Pers Med 2024; 14:287. [PMID: 38541029 PMCID: PMC10971024 DOI: 10.3390/jpm14030287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Molecular imaging is a key tool in the diagnosis and treatment of prostate cancer (PCa). Magnetic Resonance (MR) plays a major role in this respect with nuclear medicine imaging, particularly, Prostate-Specific Membrane Antigen-based, (PSMA-based) positron emission tomography with computed tomography (PET/CT) also playing a major role of rapidly increasing importance. Another key technology finding growing application across medicine and specifically in molecular imaging is the use of machine learning (ML) and artificial intelligence (AI). Several authoritative reviews are available of the role of MR-based molecular imaging with a sparsity of reviews of the role of PET/CT. This review will focus on the use of AI for molecular imaging for PCa. It will aim to achieve two goals: firstly, to give the reader an introduction to the AI technologies available, and secondly, to provide an overview of AI applied to PET/CT in PCa. The clinical applications include diagnosis, staging, target volume definition for treatment planning, outcome prediction and outcome monitoring. ML and AL techniques discussed include radiomics, convolutional neural networks (CNN), generative adversarial networks (GAN) and training methods: supervised, unsupervised and semi-supervised learning.
Collapse
Affiliation(s)
- William Tapper
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK;
| | - Gustavo Carneiro
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
| | - Christos Mikropoulos
- Clinical Oncology, Royal Surrey NHS Foundation Trust, Egerton Road, Surrey, Guildford GU2 7XX, UK;
| | - Spencer A. Thomas
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK;
| | - Philip M. Evans
- Centre for Vision Speech and Signal Processing, The University of Surrey, 388 Stag Hill, Surrey, Guildford GU2 7XH, UK; (W.T.); (G.C.); (P.M.E.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- AELIA Organisation, 9th km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
8
|
Liu J, Cundy TP, Woon DTS, Lawrentschuk N. A Systematic Review on Artificial Intelligence Evaluating Metastatic Prostatic Cancer and Lymph Nodes on PSMA PET Scans. Cancers (Basel) 2024; 16:486. [PMID: 38339239 PMCID: PMC10854940 DOI: 10.3390/cancers16030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Early detection of metastatic prostate cancer (mPCa) is crucial. Whilst the prostate-specific membrane antigen (PSMA) PET scan has high diagnostic accuracy, it suffers from inter-reader variability, and the time-consuming reporting process. This systematic review was registered on PROSPERO (ID CRD42023456044) and aims to evaluate AI's ability to enhance reporting, diagnostics, and predictive capabilities for mPCa on PSMA PET scans. Inclusion criteria covered studies using AI to evaluate mPCa on PSMA PET, excluding non-PSMA tracers. A search was conducted on Medline, Embase, and Scopus from inception to July 2023. After screening 249 studies, 11 remained eligible for inclusion. Due to the heterogeneity of studies, meta-analysis was precluded. The prediction model risk of bias assessment tool (PROBAST) indicated a low overall risk of bias in ten studies, though only one incorporated clinical parameters (such as age, and Gleason score). AI demonstrated a high accuracy (98%) in identifying lymph node involvement and metastatic disease, albeit with sensitivity variation (62-97%). Advantages included distinguishing bone lesions, estimating tumour burden, predicting treatment response, and automating tasks accurately. In conclusion, AI showcases promising capabilities in enhancing the diagnostic potential of PSMA PET scans for mPCa, addressing current limitations in efficiency and variability.
Collapse
Affiliation(s)
- Jianliang Liu
- E.J. Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, VIC 3005, Australia; (J.L.)
- Department of Urology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3052, Australia
- Department of Surgery, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thomas P. Cundy
- Discipline of Surgery, University of Adelaide, Adelaide, SA 5005, Australia
| | - Dixon T. S. Woon
- E.J. Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, VIC 3005, Australia; (J.L.)
- Department of Surgery, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nathan Lawrentschuk
- E.J. Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, VIC 3005, Australia; (J.L.)
- Department of Urology, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3052, Australia
- Department of Surgery, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
9
|
Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: A Review of Applications for Radioligands Targeting Somatostatin Receptors and Prostate-Specific Membrane Antigens. Diagnostics (Basel) 2024; 14:181. [PMID: 38248059 PMCID: PMC10814892 DOI: 10.3390/diagnostics14020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs) and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic and theranostic fields, from data and image processing to clinical decision support, improving patient selection, personalized treatment strategies, response prediction, and prognostication. Furthermore, AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex and time-consuming tasks in the RPT workflow. The present work provides a comprehensive overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-targeting radioligands, describing the fundamental concepts and specific imaging/treatment features. Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically, contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as ongoing developments and future directions are discussed.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Najme Karamzade-Ziarati
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Payam Amini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
10
|
Mohseninia N, Zamani-Siahkali N, Harsini S, Divband G, Pirich C, Beheshti M. Bone Metastasis in Prostate Cancer: Bone Scan Versus PET Imaging. Semin Nucl Med 2024; 54:97-118. [PMID: 37596138 DOI: 10.1053/j.semnuclmed.2023.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Research center for Nuclear Medicine and Molecular Imaging, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Harsini
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
11
|
Pasini G, Russo G, Mantarro C, Bini F, Richiusa S, Morgante L, Comelli A, Russo GI, Sabini MG, Cosentino S, Marinozzi F, Ippolito M, Stefano A. A Critical Analysis of the Robustness of Radiomics to Variations in Segmentation Methods in 18F-PSMA-1007 PET Images of Patients Affected by Prostate Cancer. Diagnostics (Basel) 2023; 13:3640. [PMID: 38132224 PMCID: PMC10743045 DOI: 10.3390/diagnostics13243640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Radiomics shows promising results in supporting the clinical decision process, and much effort has been put into its standardization, thus leading to the Imaging Biomarker Standardization Initiative (IBSI), that established how radiomics features should be computed. However, radiomics still lacks standardization and many factors, such as segmentation methods, limit study reproducibility and robustness. AIM We investigated the impact that three different segmentation methods (manual, thresholding and region growing) have on radiomics features extracted from 18F-PSMA-1007 Positron Emission Tomography (PET) images of 78 patients (43 Low Risk, 35 High Risk). Segmentation was repeated for each patient, thus leading to three datasets of segmentations. Then, feature extraction was performed for each dataset, and 1781 features (107 original, 930 Laplacian of Gaussian (LoG) features, 744 wavelet features) were extracted. Feature robustness and reproducibility were assessed through the intra class correlation coefficient (ICC) to measure agreement between the three segmentation methods. To assess the impact that the three methods had on machine learning models, feature selection was performed through a hybrid descriptive-inferential method, and selected features were given as input to three classifiers, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost and Neural Networks (NN), whose performance in discriminating between low-risk and high-risk patients have been validated through 30 times repeated five-fold cross validation. CONCLUSIONS Our study showed that segmentation methods influence radiomics features and that Shape features were the least reproducible (average ICC: 0.27), while GLCM features the most reproducible. Moreover, feature reproducibility changed depending on segmentation type, resulting in 51.18% of LoG features exhibiting excellent reproducibility (range average ICC: 0.68-0.87) and 47.85% of wavelet features exhibiting poor reproducibility that varied between wavelet sub-bands (range average ICC: 0.34-0.80) and resulted in the LLL band showing the highest average ICC (0.80). Finally, model performance showed that region growing led to the highest accuracy (74.49%), improved sensitivity (84.38%) and AUC (79.20%) in contrast with manual segmentation.
Collapse
Affiliation(s)
- Giovanni Pasini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95125 Catania, Italy
| | - Cristina Mantarro
- Nuclear Medicine Department, Cannizzaro Hospital, 95125 Catania, Italy; (C.M.); (S.C.); (M.I.)
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
| | - Lucrezia Morgante
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
| | - Albert Comelli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Giorgio Ivan Russo
- Department of Surgery, Urology Section, University of Catania, 95125 Catania, Italy;
| | | | - Sebastiano Cosentino
- Nuclear Medicine Department, Cannizzaro Hospital, 95125 Catania, Italy; (C.M.); (S.C.); (M.I.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, 95125 Catania, Italy; (C.M.); (S.C.); (M.I.)
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95125 Catania, Italy
| |
Collapse
|
12
|
Leung VWS, Ng CKC, Lam SK, Wong PT, Ng KY, Tam CH, Lee TC, Chow KC, Chow YK, Tam VCW, Lee SWY, Lim FMY, Wu JQ, Cai J. Computed Tomography-Based Radiomics for Long-Term Prognostication of High-Risk Localized Prostate Cancer Patients Received Whole Pelvic Radiotherapy. J Pers Med 2023; 13:1643. [PMID: 38138870 PMCID: PMC10744672 DOI: 10.3390/jpm13121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.
Collapse
Affiliation(s)
- Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Sai-Kit Lam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Po-Tsz Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Ka-Yan Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Cheuk-Hong Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Tsz-Ching Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Kin-Chun Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Yan-Kate Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Fiona M. Y. Lim
- Department of Oncology, Princess Margaret Hospital, Hong Kong SAR, China;
| | - Jackie Q. Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA;
| | - Jing Cai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| |
Collapse
|
13
|
Zhang X, Peng J, Ji G, Li T, Li B, Xiong H. Research status and progress of radiomics in bone and soft tissue tumors: A review. Medicine (Baltimore) 2023; 102:e36196. [PMID: 38013345 PMCID: PMC10681559 DOI: 10.1097/md.0000000000036198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Bone and soft tissue tumors are diverse, accompanying by complex histological components and significantly divergent biological behaviors. It is a challenge to address the demand for qualitative imaging as traditional imaging is restricted to the detection of anatomical structures and aberrant signals. With the improvement of digitalization in hospitals and medical centers, the introduction of electronic medical records and easier access to large amounts of information coupled with the improved computational power, traditional medicine has evolved into the combination of human brain, minimal data, and artificial intelligence. Scholars are committed to mining deeper levels of imaging data, and radiomics is worthy of promotion. Radiomics extracts subvisual quantitative features, analyzes them based on medical images, and quantifies tumor heterogeneity by outlining the region of interest and modeling. Two observers separately examined PubMed, Web of Science and CNKI to find existing studies, case reports, and clinical guidelines about research status and progress of radiomics in bone and soft tissue tumors from January 2010 to February 2023. When evaluating the literature, factors such as patient age, medical history, and severity of the condition will be considered. This narrative review summarizes the application and progress of radiomics in bone and soft tissue tumors.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jie Peng
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Guanghai Ji
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Tian Li
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Bo Li
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Xiong
- Department of Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
14
|
Wang YD, Huang CP, Yang YR, Wu HC, Hsu YJ, Yeh YC, Yeh PC, Wu KC, Kao CH. Machine Learning and Radiomics of Bone Scintigraphy: Their Role in Predicting Recurrence of Localized or Locally Advanced Prostate Cancer. Diagnostics (Basel) 2023; 13:3380. [PMID: 37958276 PMCID: PMC10648785 DOI: 10.3390/diagnostics13213380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Machine-learning (ML) and radiomics features have been utilized for survival outcome analysis in various cancers. This study aims to investigate the application of ML based on patients' clinical features and radiomics features derived from bone scintigraphy (BS) and to evaluate recurrence-free survival in local or locally advanced prostate cancer (PCa) patients after the initial treatment. METHODS A total of 354 patients who met the eligibility criteria were analyzed and used to train the model. Clinical information and radiomics features of BS were obtained. Survival-related clinical features and radiomics features were included in the ML model training. Using the pyradiomics software, 128 radiomics features from each BS image's region of interest, validated by experts, were extracted. Four textural matrices were also calculated: GLCM, NGLDM, GLRLM, and GLSZM. Five training models (Logistic Regression, Naive Bayes, Random Forest, Support Vector Classification, and XGBoost) were applied using K-fold cross-validation. Recurrence was defined as either a rise in PSA levels, radiographic progression, or death. To assess the classifier's effectiveness, the ROC curve area and confusion matrix were employed. RESULTS Of the 354 patients, 101 patients were categorized into the recurrence group with more advanced disease status compared to the non-recurrence group. Key clinical features including tumor stage, radical prostatectomy, initial PSA, Gleason Score primary pattern, and radiotherapy were used for model training. Random Forest (RF) was the best-performing model, with a sensitivity of 0.81, specificity of 0.87, and accuracy of 0.85. The ROC curve analysis showed that predictions from RF outperformed predictions from other ML models with a final AUC of 0.94 and a p-value of <0.001. The other models had accuracy ranges from 0.52 to 0.78 and AUC ranges from 0.67 to 0.84. CONCLUSIONS The study showed that ML based on clinical features and radiomics features of BS improves the prediction of PCa recurrence after initial treatment. These findings highlight the added value of ML techniques for risk classification in PCa based on clinical features and radiomics features of BS.
Collapse
Affiliation(s)
- Yu-De Wang
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
- School of Medicine, China Medical University, Taichung 406040, Taiwan;
| | - You-Rong Yang
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung 406040, Taiwan;
- Department of Urology, China Medical University Beigang Hospital, Yunlin 651012, Taiwan
| | - Yu-Ju Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Yi-Chun Yeh
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Pei-Chun Yeh
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Kuo-Chen Wu
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
15
|
Debs P, Fayad LM. The promise and limitations of artificial intelligence in musculoskeletal imaging. FRONTIERS IN RADIOLOGY 2023; 3:1242902. [PMID: 37609456 PMCID: PMC10440743 DOI: 10.3389/fradi.2023.1242902] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
With the recent developments in deep learning and the rapid growth of convolutional neural networks, artificial intelligence has shown promise as a tool that can transform several aspects of the musculoskeletal imaging cycle. Its applications can involve both interpretive and non-interpretive tasks such as the ordering of imaging, scheduling, protocoling, image acquisition, report generation and communication of findings. However, artificial intelligence tools still face a number of challenges that can hinder effective implementation into clinical practice. The purpose of this review is to explore both the successes and limitations of artificial intelligence applications throughout the muscuskeletal imaging cycle and to highlight how these applications can help enhance the service radiologists deliver to their patients, resulting in increased efficiency as well as improved patient and provider satisfaction.
Collapse
Affiliation(s)
- Patrick Debs
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Laura M. Fayad
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Wang W, Fan Z, Zhen J. MRI radiomics-based evaluation of tuberculous and brucella spondylitis. J Int Med Res 2023; 51:3000605231195156. [PMID: 37656968 PMCID: PMC10478567 DOI: 10.1177/03000605231195156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES We analyzed magnetic resonance imaging (MRI) and radiomics labels from tuberculous spondylitis (TBS) and brucella spondylitis (BS) to build machine learning models that differentiate TBS from BS and culture-positive TBS (TBS(+)) from culture-negative TBS (TBS(-). METHODS This retrospective study included 56 patients with BS, 63 patients with TBS(+) and 71 patients with TBS(-). Radiomics labels were extracted from T2-weighted fat-suppression images. MRI labels were analyzed via logistic regression (LR); radiomics labels were analyzed by t-tests, SelectKBest, and least absolute shrinkage and selection operator (LASSO). Random forest (RF) and support vector machine (SVM) models were established using radiomics or joint (radiomics+MRI) labels. Models were evaluated by receiver operating characteristic curves, areas under the curve (AUCs), decision curve analysis (DCA), and Hosmer-Lemeshow tests. RESULTS When joint-label models were used to compare BS vs TBS(+) and BS vs TBS(-) groups, SVM AUCs were 0.904 and 0.944, respectively, whereas RF AUCs were 0.950 and 0.947, respectively; these were higher than the AUCs of the MRI label-based LR model. DCA showed that radiomics-based machine learning models had a greater net benefit; Hosmer-Lemeshow tests demonstrated good prediction consistency for all models. CONCLUSIONS Radiomics can help distinguish TBS from BS and TBS(+) from TBS(-).
Collapse
Affiliation(s)
- Wenhui Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
- Department of MR, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhichang Fan
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
- Department of MR, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Junping Zhen
- Department of MR, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Spohn SKB, Schmidt-Hegemann NS, Ruf J, Mix M, Benndorf M, Bamberg F, Makowski MR, Kirste S, Rühle A, Nouvel J, Sprave T, Vogel MME, Galitsnaya P, Gschwend JE, Gratzke C, Stief C, Löck S, Zwanenburg A, Trapp C, Bernhardt D, Nekolla SG, Li M, Belka C, Combs SE, Eiber M, Unterrainer L, Unterrainer M, Bartenstein P, Grosu AL, Zamboglou C, Peeken JC. Development of PSMA-PET-guided CT-based radiomic signature to predict biochemical recurrence after salvage radiotherapy. Eur J Nucl Med Mol Imaging 2023; 50:2537-2547. [PMID: 36929180 PMCID: PMC10250433 DOI: 10.1007/s00259-023-06195-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To develop a CT-based radiomic signature to predict biochemical recurrence (BCR) in prostate cancer patients after sRT guided by positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET). MATERIAL AND METHODS Consecutive patients, who underwent 68Ga-PSMA11-PET/CT-guided sRT from three high-volume centers in Germany, were included in this retrospective multicenter study. Patients had PET-positive local recurrences and were treated with intensity-modulated sRT. Radiomic features were extracted from volumes of interests on CT guided by focal PSMA-PET uptakes. After preprocessing, clinical, radiomics, and combined clinical-radiomic models were developed combining different feature reduction techniques and Cox proportional hazard models within a nested cross validation approach. RESULTS Among 99 patients, median interval until BCR was the radiomic models outperformed clinical models and combined clinical-radiomic models for prediction of BCR with a C-index of 0.71 compared to 0.53 and 0.63 in the test sets, respectively. In contrast to the other models, the radiomic model achieved significantly improved patient stratification in Kaplan-Meier analysis. The radiomic and clinical-radiomic model achieved a significantly better time-dependent net reclassification improvement index (0.392 and 0.762, respectively) compared to the clinical model. Decision curve analysis demonstrated a clinical net benefit for both models. Mean intensity was the most predictive radiomic feature. CONCLUSION This is the first study to develop a PSMA-PET-guided CT-based radiomic model to predict BCR after sRT. The radiomic models outperformed clinical models and might contribute to guide personalized treatment decisions.
Collapse
Affiliation(s)
- Simon K B Spohn
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany.
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Juri Ruf
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Michael Mix
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus R Makowski
- Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Simon Kirste
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
| | - Jerome Nouvel
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
| | - Marco M E Vogel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Polina Galitsnaya
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jürgen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Gratzke
- Department of Urology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Christian Trapp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Radiation Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lena Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol, Cyprus
| | - Jan C Peeken
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Radiation Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
18
|
Ong W, Zhu L, Tan YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061837. [PMID: 36980722 PMCID: PMC10047175 DOI: 10.3390/cancers15061837] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
An accurate diagnosis of bone tumours on imaging is crucial for appropriate and successful treatment. The advent of Artificial intelligence (AI) and machine learning methods to characterize and assess bone tumours on various imaging modalities may assist in the diagnostic workflow. The purpose of this review article is to summarise the most recent evidence for AI techniques using imaging for differentiating benign from malignant lesions, the characterization of various malignant bone lesions, and their potential clinical application. A systematic search through electronic databases (PubMed, MEDLINE, Web of Science, and clinicaltrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 34 articles were retrieved from the databases and the key findings were compiled and summarised. A total of 34 articles reported the use of AI techniques to distinguish between benign vs. malignant bone lesions, of which 12 (35.3%) focused on radiographs, 12 (35.3%) on MRI, 5 (14.7%) on CT and 5 (14.7%) on PET/CT. The overall reported accuracy, sensitivity, and specificity of AI in distinguishing between benign vs. malignant bone lesions ranges from 0.44–0.99, 0.63–1.00, and 0.73–0.96, respectively, with AUCs of 0.73–0.96. In conclusion, the use of AI to discriminate bone lesions on imaging has achieved a relatively good performance in various imaging modalities, with high sensitivity, specificity, and accuracy for distinguishing between benign vs. malignant lesions in several cohort studies. However, further research is necessary to test the clinical performance of these algorithms before they can be facilitated and integrated into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-67725207
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
19
|
Fowler GE, Blencowe NS, Hardacre C, Callaway MP, Smart NJ, Macefield R. Artificial intelligence as a diagnostic aid in cross-sectional radiological imaging of surgical pathology in the abdominopelvic cavity: a systematic review. BMJ Open 2023; 13:e064739. [PMID: 36878659 PMCID: PMC9990659 DOI: 10.1136/bmjopen-2022-064739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES There is emerging use of artificial intelligence (AI) models to aid diagnostic imaging. This review examined and critically appraised the application of AI models to identify surgical pathology from radiological images of the abdominopelvic cavity, to identify current limitations and inform future research. DESIGN Systematic review. DATA SOURCES Systematic database searches (Medline, EMBASE, Cochrane Central Register of Controlled Trials) were performed. Date limitations (January 2012 to July 2021) were applied. ELIGIBILITY CRITERIA Primary research studies were considered for eligibility using the PIRT (participants, index test(s), reference standard and target condition) framework. Only publications in the English language were eligible for inclusion in the review. DATA EXTRACTION AND SYNTHESIS Study characteristics, descriptions of AI models and outcomes assessing diagnostic performance were extracted by independent reviewers. A narrative synthesis was performed in accordance with the Synthesis Without Meta-analysis guidelines. Risk of bias was assessed (Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)). RESULTS Fifteen retrospective studies were included. Studies were diverse in surgical specialty, the intention of the AI applications and the models used. AI training and test sets comprised a median of 130 (range: 5-2440) and 37 (range: 10-1045) patients, respectively. Diagnostic performance of models varied (range: 70%-95% sensitivity, 53%-98% specificity). Only four studies compared the AI model with human performance. Reporting of studies was unstandardised and often lacking in detail. Most studies (n=14) were judged as having overall high risk of bias with concerns regarding applicability. CONCLUSIONS AI application in this field is diverse. Adherence to reporting guidelines is warranted. With finite healthcare resources, future endeavours may benefit from targeting areas where radiological expertise is in high demand to provide greater efficiency in clinical care. Translation to clinical practice and adoption of a multidisciplinary approach should be of high priority. PROSPERO REGISTRATION NUMBER CRD42021237249.
Collapse
Affiliation(s)
- George E Fowler
- NIHR Bristol Biomedical Research Centre, Population Health Sciences, Bristol Medical School. University of Bristol, Bristol, UK
| | - Natalie S Blencowe
- NIHR Bristol Biomedical Research Centre, Population Health Sciences, Bristol Medical School. University of Bristol, Bristol, UK
| | - Conor Hardacre
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Mark P Callaway
- Department of Clinical Radiology, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Neil J Smart
- Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Rhiannon Macefield
- NIHR Bristol Biomedical Research Centre, Population Health Sciences, Bristol Medical School. University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Huo T, Xie Y, Fang Y, Wang Z, Liu P, Duan Y, Zhang J, Wang H, Xue M, Liu S, Ye Z. Deep learning-based algorithm improves radiologists' performance in lung cancer bone metastases detection on computed tomography. Front Oncol 2023; 13:1125637. [PMID: 36845701 PMCID: PMC9946454 DOI: 10.3389/fonc.2023.1125637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Purpose To develop and assess a deep convolutional neural network (DCNN) model for the automatic detection of bone metastases from lung cancer on computed tomography (CT). Methods In this retrospective study, CT scans acquired from a single institution from June 2012 to May 2022 were included. In total, 126 patients were assigned to a training cohort (n = 76), a validation cohort (n = 12), and a testing cohort (n = 38). We trained and developed a DCNN model based on positive scans with bone metastases and negative scans without bone metastases to detect and segment the bone metastases of lung cancer on CT. We evaluated the clinical efficacy of the DCNN model in an observer study with five board-certified radiologists and three junior radiologists. The receiver operator characteristic curve was used to assess the sensitivity and false positives of the detection performance; the intersection-over-union and dice coefficient were used to evaluate the segmentation performance of predicted lung cancer bone metastases. Results The DCNN model achieved a detection sensitivity of 0.894, with 5.24 average false positives per case, and a segmentation dice coefficient of 0.856 in the testing cohort. Through the radiologists-DCNN model collaboration, the detection accuracy of the three junior radiologists improved from 0.617 to 0.879 and the sensitivity from 0.680 to 0.902. Furthermore, the mean interpretation time per case of the junior radiologists was reduced by 228 s (p = 0.045). Conclusions The proposed DCNN model for automatic lung cancer bone metastases detection can improve diagnostic efficiency and reduce the diagnosis time and workload of junior radiologists.
Collapse
Affiliation(s)
- Tongtong Huo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Research Institute of Imaging, National Key Laboratory of Multi-Spectral Information Processing Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Fang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Wang
- Research Institute of Imaging, National Key Laboratory of Multi-Spectral Information Processing Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyu Duan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglin Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingdi Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Songxiang Liu, ; Zhewei Ye,
| | - Zhewei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Songxiang Liu, ; Zhewei Ye,
| |
Collapse
|
21
|
Liberini V, Laudicella R, Balma M, Nicolotti DG, Buschiazzo A, Grimaldi S, Lorenzon L, Bianchi A, Peano S, Bartolotta TV, Farsad M, Baldari S, Burger IA, Huellner MW, Papaleo A, Deandreis D. Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics. Eur Radiol Exp 2022; 6:27. [PMID: 35701671 PMCID: PMC9198151 DOI: 10.1186/s41747-022-00282-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
In prostate cancer (PCa), the use of new radiopharmaceuticals has improved the accuracy of diagnosis and staging, refined surveillance strategies, and introduced specific and personalized radioreceptor therapies. Nuclear medicine, therefore, holds great promise for improving the quality of life of PCa patients, through managing and processing a vast amount of molecular imaging data and beyond, using a multi-omics approach and improving patients’ risk-stratification for tailored medicine. Artificial intelligence (AI) and radiomics may allow clinicians to improve the overall efficiency and accuracy of using these “big data” in both the diagnostic and theragnostic field: from technical aspects (such as semi-automatization of tumor segmentation, image reconstruction, and interpretation) to clinical outcomes, improving a deeper understanding of the molecular environment of PCa, refining personalized treatment strategies, and increasing the ability to predict the outcome. This systematic review aims to describe the current literature on AI and radiomics applied to molecular imaging of prostate cancer.
Collapse
Affiliation(s)
- Virginia Liberini
- Medical Physiopathology - A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science, University of Torino, 10126, Torino, Italy. .,Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy.
| | - Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland.,Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, University of Messina, 98125, Messina, Italy.,Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Ct.da Pietrapollastra Pisciotto, Cefalù, Palermo, Italy
| | - Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | - Serena Grimaldi
- Medical Physiopathology - A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science, University of Torino, 10126, Torino, Italy
| | - Leda Lorenzon
- Medical Physics Department, Central Bolzano Hospital, 39100, Bolzano, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | | | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100, Bolzano, Italy
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, University of Messina, 98125, Messina, Italy
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland.,Department of Nuclear Medicine, Kantonsspital Baden, 5004, Baden, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100, Cuneo, Italy
| | - Désirée Deandreis
- Medical Physiopathology - A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science, University of Torino, 10126, Torino, Italy
| |
Collapse
|
22
|
Naseri H, Skamene S, Tolba M, Faye MD, Ramia P, Khriguian J, Patrick H, Andrade Hernandez AX, David M, Kildea J. Radiomics-based machine learning models to distinguish between metastatic and healthy bone using lesion-center-based geometric regions of interest. Sci Rep 2022; 12:9866. [PMID: 35701461 PMCID: PMC9198102 DOI: 10.1038/s41598-022-13379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
Radiomics-based machine learning classifiers have shown potential for detecting bone metastases (BM) and for evaluating BM response to radiotherapy (RT). However, current radiomics models require large datasets of images with expert-segmented 3D regions of interest (ROIs). Full ROI segmentation is time consuming and oncologists often outline just RT treatment fields in clinical practice. This presents a challenge for real-world radiomics research. As such, a method that simplifies BM identification but does not compromise the power of radiomics is needed. The objective of this study was to investigate the feasibility of radiomics models for BM detection using lesion-center-based geometric ROIs. The planning-CT images of 170 patients with non-metastatic lung cancer and 189 patients with spinal BM were used. The point locations of 631 BM and 674 healthy bone (HB) regions were identified by experts. ROIs with various geometric shapes were centered and automatically delineated on the identified locations, and 107 radiomics features were extracted. Various feature selection methods and machine learning classifiers were evaluated. Our point-based radiomics pipeline was successful in differentiating BM from HB. Lesion-center-based segmentation approach greatly simplifies the process of preparing images for use in radiomics studies and avoids the bottleneck of full ROI segmentation.
Collapse
Affiliation(s)
- Hossein Naseri
- Medical Physics Unit, McGill University, Montreal, QC, Canada.
| | - Sonia Skamene
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Marwan Tolba
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Mame Daro Faye
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Paul Ramia
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Julia Khriguian
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Haley Patrick
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| | | | - Marc David
- Department of Radiation Oncology, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Effectiveness of Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7842566. [PMID: 35434134 PMCID: PMC9010213 DOI: 10.1155/2022/7842566] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/29/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023]
Abstract
Purpose Artificial intelligence (AI) techniques are used in precision medicine to explore novel genotypes and phenotypes data. The main aims of precision medicine include early diagnosis, screening, and personalized treatment regime for a patient based on genetic-oriented features and characteristics. The main objective of this study was to review AI techniques and their effectiveness in neoplasm precision medicine. Materials and Methods A comprehensive search was performed in Medline (through PubMed), Scopus, ISI Web of Science, IEEE Xplore, Embase, and Cochrane databases from inception to December 29, 2021, in order to identify the studies that used AI methods for cancer precision medicine and evaluate outcomes of the models. Results Sixty-three studies were included in this systematic review. The main AI approaches in 17 papers (26.9%) were linear and nonlinear categories (random forest or decision trees), and in 21 citations, rule-based systems and deep learning models were used. Notably, 62% of the articles were done in the United States and China. R package was the most frequent software, and breast and lung cancer were the most selected neoplasms in the papers. Out of 63 papers, in 34 articles, genomic data like gene expression, somatic mutation data, phenotype data, and proteomics with drug-response which is functional data was used as input in AI methods; in 16 papers' (25.3%) drug response, functional data was utilized in personalization of treatment. The maximum values of the assessment indicators such as accuracy, sensitivity, specificity, precision, recall, and area under the curve (AUC) in included studies were 0.99, 1.00, 0.96, 0.98, 0.99, and 0.9929, respectively. Conclusion The findings showed that in many cases, the use of artificial intelligence methods had effective application in personalized medicine.
Collapse
|
24
|
Hinzpeter R, Baumann L, Guggenberger R, Huellner M, Alkadhi H, Baessler B. Radiomics for detecting prostate cancer bone metastases invisible in CT: a proof-of-concept study. Eur Radiol 2022; 32:1823-1832. [PMID: 34559264 PMCID: PMC8831270 DOI: 10.1007/s00330-021-08245-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To investigate, in patients with metastatic prostate cancer, whether radiomics of computed tomography (CT) image data enables the differentiation of bone metastases not visible on CT from unaffected bone using 68 Ga-PSMA PET imaging as reference standard. METHODS In this IRB-approved retrospective study, 67 patients (mean age 71 ± 7 years; range: 55-84 years) showing a total of 205 68 Ga-PSMA-positive prostate cancer bone metastases in the thoraco-lumbar spine and pelvic bone being invisible in CT were included. Metastases and 86 68 Ga-PSMA-negative bone volumes in the same body region were segmented and further post-processed. Intra- and inter-reader reproducibility was assessed, with ICCs < 0.90 being considered non-reproducible. To account for imbalances in the dataset, data augmentation was performed to achieve improved class balance and to avoid model overfitting. The dataset was split into training, test, and validation set. After a multi-step dimension reduction process and feature selection process, the 11 most important and independent features were selected for statistical analyses. RESULTS A gradient-boosted tree was trained on the selected 11 radiomic features in order to classify patients' bones into bone metastasis and normal bone using the training dataset. This trained model achieved a classification accuracy of 0.85 (95% confidence interval [CI]: 0.76-0.92, p < .001) with 78% sensitivity and 93% specificity. The tuned model was applied on the original, non-augmented dataset resulting in a classification accuracy of 0.90 (95% CI: 0.82-0.98) with 91% sensitivity and 88% specificity. CONCLUSION Our proof-of-concept study indicates that radiomics may accurately differentiate unaffected bone from metastatic bone, being invisible by the human eye on CT. KEY POINTS • This proof-of-concept study showed that radiomics applied on CT images may accurately differentiate between bone metastases and metastatic-free bone in patients with prostate cancer. • Future promising applications include automatic bone segmentation, followed by a radiomics classifier, allowing for a screening-like approach in the detection of bone metastases.
Collapse
Affiliation(s)
- Ricarda Hinzpeter
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland.
| | - Livia Baumann
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland
| | - Roman Guggenberger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland
| | - Martin Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091, Zurich, Switzerland
| |
Collapse
|
25
|
Ferro M, de Cobelli O, Musi G, del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022; 14:17562872221109020. [PMID: 35814914 PMCID: PMC9260602 DOI: 10.1177/17562872221109020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy, via Ripamonti 435 Milano, Italy
| | - Ottavio de Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Vincenzo Francesco Caputo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy; Urology Unit, ‘SS. Annunziata’ Hospital, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Urology Unit, Bonomo Teaching Hospital, Foggia, Italy
| | | | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral Studies, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
26
|
Sharma A, Kumar S, Pandey AK, Arora G, Sharma A, Seth A, Kumar R. Haralick texture features extracted from Ga-68 PSMA PET/CT to differentiate normal prostate from prostate cancer: a feasibility study. Nucl Med Commun 2021; 42:1347-1354. [PMID: 34392297 DOI: 10.1097/mnm.0000000000001469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Role of texture parameters on the basis of Ga-68 PSMA PET/CT in prostate cancer (Pca) is largely unexplored. Present work done is a preliminary study that aims to evaluate the role of Haralick texture features on the basis of Ga-68 PSMA PET/CT in Pca in which texture features were used to differentiate between normal prostate and Pca tissue. METHODS The study retrospectively enrolled patients in two groups: group 1 included 30 patients with biopsy-proven adenocarcinoma prostate and median age 64 years (range: 50-82 years) who underwent baseline Ga-68 PSMA PET/CT prior to therapy; group 2 included 24 patients with pathologies other than Pca and median age 53.5 years (range: 18-80 years) who underwent Ga-68 PSMA PET/CT as part of another study in our department. Patients in group 2 did not have any prostate pathology and served as controls for the study. The segmented images of prostate (3-D image) were used to calculate 11 Haralick texture features in MATLAB. SUVmax was also evaluated. All parameters were compared among the two groups using appropriate statistical analysis and P value <0.05 was considered significant. RESULTS All 11 Haralick texture features, as well as SUVmax, were significantly different among Pca and controls (P < 0.05). Among the texture features, contrast was most significant (P value of Mann-Whitney U <0.001) in differentiating Pca from normal prostate with AUROC curve of 82.9% with sensitivity and specificity 83.30% and 73.30%, respectively at cut-off 0.640. SUVmax was also significant with AUROC curve 94.0% and sensitivity and specificity 62.5% and 90%, respectively at cut-off 5.7. A significant negative correlation of SUVmax was observed with contrast. CONCLUSION Haralick texture features have a significant role in differentiating Pca and normal prostate.
Collapse
Affiliation(s)
| | | | - Anil Kumar Pandey
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| | - Geetanjali Arora
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| | | | - Amlesh Seth
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences
| |
Collapse
|
27
|
Yousefirizi F, Pierre Decazes, Amyar A, Ruan S, Saboury B, Rahmim A. AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging:: Towards Radiophenomics. PET Clin 2021; 17:183-212. [PMID: 34809866 DOI: 10.1016/j.cpet.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) techniques have significant potential to enable effective, robust, and automated image phenotyping including the identification of subtle patterns. AI-based detection searches the image space to find the regions of interest based on patterns and features. There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches using image features. The extraction of minable information from images gives way to the field of "radiomics" and can be explored via explicit (handcrafted/engineered) and deep radiomics frameworks. Radiomics analysis has the potential to be used as a noninvasive technique for the accurate characterization of tumors to improve diagnosis and treatment monitoring. This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks. We also discuss needed efforts to enable the translation of AI techniques to routine clinical workflows, and potential improvements and complementary techniques such as the use of natural language processing on electronic health records and neuro-symbolic AI techniques.
Collapse
Affiliation(s)
- Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | - Pierre Decazes
- Department of Nuclear Medicine, Henri Becquerel Centre, Rue d'Amiens - CS 11516 - 76038 Rouen Cedex 1, France; QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Amine Amyar
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France; General Electric Healthcare, Buc, France
| | - Su Ruan
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Ghezzo S, Bezzi C, Presotto L, Mapelli P, Bettinardi V, Savi A, Neri I, Preza E, Samanes Gajate AM, De Cobelli F, Scifo P, Picchio M. State of the art of radiomic analysis in the clinical management of prostate cancer: A systematic review. Crit Rev Oncol Hematol 2021; 169:103544. [PMID: 34801699 DOI: 10.1016/j.critrevonc.2021.103544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
We present the current clinical applications of radiomics in the context of prostate cancer (PCa) management. Several online databases for original articles using a combination of the following keywords: "(radiomic or radiomics) AND (prostate cancer or prostate tumour or prostate tumor or prostate neoplasia)" have been searched. The selected papers have been pooled as focus on (i) PCa detection, (ii) assessing the clinical significance of PCa, (iii) biochemical recurrence prediction, (iv) radiation-therapy outcome prediction and treatment efficacy monitoring, (v) metastases detection, (vi) metastases prediction, (vii) prediction of extra-prostatic extension. Seventy-six studies were included for qualitative analyses. Classifiers powered with radiomic features were able to discriminate between healthy tissue and PCa and between low- and high-risk PCa. However, before radiomics can be proposed for clinical use its methods have to be standardized, and these first encouraging results need to be robustly replicated in large and independent cohorts.
Collapse
Affiliation(s)
| | | | - Luca Presotto
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentino Bettinardi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annarita Savi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Neri
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erik Preza
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy; Radiology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Scifo
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
29
|
Kendrick J, Francis R, Hassan GM, Rowshanfarzad P, Jeraj R, Kasisi C, Rusanov B, Ebert M. Radiomics for Identification and Prediction in Metastatic Prostate Cancer: A Review of Studies. Front Oncol 2021; 11:771787. [PMID: 34790581 PMCID: PMC8591174 DOI: 10.3389/fonc.2021.771787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic Prostate Cancer (mPCa) is associated with a poor patient prognosis. mPCa spreads throughout the body, often to bones, with spatial and temporal variations that make the clinical management of the disease difficult. The evolution of the disease leads to spatial heterogeneity that is extremely difficult to characterise with solid biopsies. Imaging provides the opportunity to quantify disease spread. Advanced image analytics methods, including radiomics, offer the opportunity to characterise heterogeneity beyond what can be achieved with simple assessment. Radiomics analysis has the potential to yield useful quantitative imaging biomarkers that can improve the early detection of mPCa, predict disease progression, assess response, and potentially inform the choice of treatment procedures. Traditional radiomics analysis involves modelling with hand-crafted features designed using significant domain knowledge. On the other hand, artificial intelligence techniques such as deep learning can facilitate end-to-end automated feature extraction and model generation with minimal human intervention. Radiomics models have the potential to become vital pieces in the oncology workflow, however, the current limitations of the field, such as limited reproducibility, are impeding their translation into clinical practice. This review provides an overview of the radiomics methodology, detailing critical aspects affecting the reproducibility of features, and providing examples of how artificial intelligence techniques can be incorporated into the workflow. The current landscape of publications utilising radiomics methods in the assessment and treatment of mPCa are surveyed and reviewed. Associated studies have incorporated information from multiple imaging modalities, including bone scintigraphy, CT, PET with varying tracers, multiparametric MRI together with clinical covariates, spanning the prediction of progression through to overall survival in varying cohorts. The methodological quality of each study is quantified using the radiomics quality score. Multiple deficits were identified, with the lack of prospective design and external validation highlighted as major impediments to clinical translation. These results inform some recommendations for future directions of the field.
Collapse
Affiliation(s)
- Jake Kendrick
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Roslyn Francis
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Collin Kasisi
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Branimir Rusanov
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| |
Collapse
|
30
|
Liu J, Dong Y, Xu D, Zhang C, Lan T, Chang D. Progress in diagnosis of bone metastasis of prostate cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1147-1152. [PMID: 34911846 PMCID: PMC10930230 DOI: 10.11817/j.issn.1672-7347.2021.200999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/03/2022]
Abstract
The diagnosis of bone metastasis of prostate cancer (PC) is of great significance to the treatment and prognosis of patients with PC.Bone scan is the most commonly used in the early diagnosis of bone metastasis, but its specificity is low and there is a high false positive.In recent years, with the in-depth study of the application of CT, MRI, emission computed tomography (ECT), positron emission computed tomography/computed tomography (PET/CT) and deep learning algorithm-convolutional neural networks (CNN) in the diagnosis of bone metastasis, the combined application of various auxiliary parameters in the diagnosis of bone metastasis has significantly been improved. The therapeutic effect of PC patients with bone metastasis can also be evaluated, which is expected to achieve the treatment of bone metastasis as well as diagnosis. By systematically expounding the research progress of the above-mentioned techniques in the diagnosis of bone metastasis, it can provide clinicians with new methods for the diagnosis of bone metastasis and improve the diagnostic efficiency for bone metastasis.
Collapse
Affiliation(s)
- Jun Liu
- First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000.
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050.
| | - Yongchao Dong
- Department of Urology, Sichuan Gem Flower Hospital, Chengdu 610095
| | - Dongbo Xu
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050
| | - Chunlei Zhang
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050
| | - Tian Lan
- Department of Urology, Pinghu Hospital, Shenzhen University, Guangdong Shenzhen 518060, China
| | - Dehui Chang
- Department of Urology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050.
| |
Collapse
|
31
|
Manafi-Farid R, Ranjbar S, Jamshidi Araghi Z, Pilz J, Schweighofer-Zwink G, Pirich C, Beheshti M. Molecular Imaging in Primary Staging of Prostate Cancer Patients: Current Aspects and Future Trends. Cancers (Basel) 2021; 13:5360. [PMID: 34771523 PMCID: PMC8582501 DOI: 10.3390/cancers13215360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate primary staging is the cornerstone in all malignancies. Different morphological imaging modalities are employed in the evaluation of prostate cancer (PCa). Regardless of all developments in imaging, invasive histopathologic evaluation is still the standard method for the detection and staging of the primary PCa. Magnetic resonance imaging (MRI) and computed tomography (CT) play crucial roles; however, functional imaging provides additional valuable information, and it is gaining ever-growing acceptance in the management of PCa. Targeted imaging with different radiotracers has remarkably evolved in the past two decades. [111In]In-capromab pendetide scintigraphy was a new approach in the management of PCa. Afterwards, positron emission tomography (PET) tracers such as [11C/18F]choline and [11C]acetate were developed. Nevertheless, none found a role in the primary staging. By introduction of the highly sensitive small molecule prostate-specific membrane antigen (PSMA) PET/CT, as well as recent developments in MRI and hybrid PET/MRI systems, non-invasive staging of PCa is being contemplated. Several studies investigated the role of these sophisticated modalities in the primary staging of PCa, showing promising results. Here, we recapitulate the role of targeted functional imaging. We briefly mention the most popular radiotracers, their diagnostic accuracy in the primary staging of PCa, and impact on patient management.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Shaghayegh Ranjbar
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Zahra Jamshidi Araghi
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Julia Pilz
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| |
Collapse
|
32
|
Spohn SK, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH, Fechter T, Hölscher T, Grosu R, Chiti A, Grosu AL, Zamboglou C. Radiomics in prostate cancer imaging for a personalized treatment approach - current aspects of methodology and a systematic review on validated studies. Theranostics 2021; 11:8027-8042. [PMID: 34335978 PMCID: PMC8315055 DOI: 10.7150/thno.61207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies of men in the world. Due to a variety of treatment options in different risk groups, proper diagnostic and risk stratification is pivotal in treatment of PCa. The development of precise medical imaging procedures simultaneously to improvements in big data analysis has led to the establishment of radiomics - a computer-based method of extracting and analyzing image features quantitatively. This approach bears the potential to assess and improve PCa detection, tissue characterization and clinical outcome prediction. This article gives an overview on the current aspects of methodology and systematically reviews available literature on radiomics in PCa patients, showing its potential for personalized therapy approaches. The qualitative synthesis includes all imaging modalities and focuses on validated studies, putting forward future directions.
Collapse
Affiliation(s)
- Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Alisa S. Bettermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Tobias Fechter
- Department of Radiation Oncology - Division of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Tobias Hölscher
- Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Radu Grosu
- Institute of Computer Engineering, Vienne University of Technology, Vienna, Austria
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol, Cyprus
| |
Collapse
|
33
|
A predictive model for pain response following radiotherapy for treatment of spinal metastases. Sci Rep 2021; 11:12908. [PMID: 34145367 PMCID: PMC8213735 DOI: 10.1038/s41598-021-92363-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
To establish a predictive model for pain response following radiotherapy using a combination of radiomic and clinical features of spinal metastasis. This retrospective study enrolled patients with painful spine metastases who received palliative radiation therapy from 2018 to 2019. Pain response was defined using the International Consensus Criteria. The clinical and radiomic features were extracted from medical records and pre-treatment CT images. Feature selection was performed and a random forests ensemble learning method was used to build a predictive model. Area under the curve (AUC) was used as a predictive performance metric. 69 patients were enrolled with 48 patients showing a response. Random forest models built on the radiomic, clinical, and ‘combined’ features achieved an AUC of 0.824, 0.702, 0.848, respectively. The sensitivity and specificity of the combined features model were 85.4% and 76.2%, at the best diagnostic decision point. We built a pain response model in patients with spinal metastases using a combination of clinical and radiomic features. To the best of our knowledge, we are the first to examine pain response using pre-treatment CT radiomic features. Our model showed the potential to predict patients who respond to radiation therapy.
Collapse
|
34
|
Hong JH, Jung JY, Jo A, Nam Y, Pak S, Lee SY, Park H, Lee SE, Kim S. Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT. Radiology 2021; 299:626-632. [PMID: 33787335 DOI: 10.1148/radiol.2021203783] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background It is important to diagnose sclerotic bone lesions in order to determine treatment strategy. Purpose To evaluate the diagnostic performance of a CT radiomics-based machine learning model for differentiating bone islands and osteoblastic bone metastases. Materials and Methods In this retrospective study, patients who underwent contrast-enhanced abdominal CT and were diagnosed with a bone island or osteoblastic metastasis between 2015 to 2019 at either of two different institutions were included: institution 1 for the training set and institution 2 for the external test set. Radiomics features were extracted. The random forest (RF) model was built using 10 selected features, and subsequent 10-fold cross-validation was performed. In the test phase, the RF model was tested with an external test set. Three radiologists reviewed the CT images for the test set. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were calculated for the models and each of the three radiologists. The AUCs of the radiomics model and radiologists were compared. Results A total of 177 patients (89 with a bone island and 88 with metastasis; mean age, 66 years ± 12 [standard deviation]; 111 men) were in the training set, and 64 (23 with a bone island and 41 with metastasis; mean age, 69 years ± 14; 59 men) were in the test set. Radiomics features (n = 1218) were extracted. The average AUC of the RF model from 10-fold cross-validation was 0.89 (sensitivity, 85% [75 of 88 patients]; specificity, 82% [73 of 89 patients]; and accuracy, 84% [148 of 177 patients]). In the test set, the AUC of the trained RF model was 0.96 (sensitivity, 80% [33 of 41 patients]; specificity, 96% [22 of 23 patients]; and accuracy, 86% [55 of 64 patients]). The AUCs for the three readers were 0.95 (95% CI: 0.90, 1.00), 0.96 (95% CI: 0.90, 1.00), and 0.88 (95% CI: 0.80, 0.96). The AUC of radiomics model was higher than that of only reader 3 (0.96 vs 0.88, respectively; P = .03). Conclusion A CT radiomics-based random forest model was proven useful for differentiating bone islands from osteoblastic metastases and showed better diagnostic performance compared with an inexperienced radiologist. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Vannier in this issue.
Collapse
Affiliation(s)
- Ji Hyun Hong
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Joon-Yong Jung
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Aram Jo
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Yoonho Nam
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Seongyong Pak
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - So-Yeon Lee
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Hyerim Park
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Seung Eun Lee
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| | - Sanghee Kim
- From the Department of Radiology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea (J.H.H.); Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (J.Y.J., A.J., S.Y.L., H.P., S.E.L., S.K.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea (Y.N.); and Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea (S.P.)
| |
Collapse
|
35
|
Cerit M, Kılıç K, Fetullayeva T, Zengin HY, Erdoğan N, Şendur HN, Cindil E, Aslan AA, Erbaş G. Added Value of CT Pelvic Bone Unfolding Software to Radiologist Performance in Detecting Osteoblastic Pelvic Bone Lesions in Patients With Prostate Cancer. Can Assoc Radiol J 2021; 72:775-782. [PMID: 33472406 DOI: 10.1177/0846537120983241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To evaluate the contribution of CT Bone Unfolding software to the diagnostic accuracy and efficiency for the detection of osteoblastic pelvic bone lesions in patients with prostate cancer. METHODS A total of 102 consecutive (January 2016-September 2019) patients who underwent abdominopelvic CT with prostate cancer were retrospectively evaluated for osteoblastic pelvic bone lesions, using commercially available the post-processing-pelvic bone flattening-image software package "CT Bone Unfolding." Two radiologists with 3 and 15 years of experience in abdominal radiology evaluated CT image data sets independently in 2 separate reading sessions. At the first session, only MPR images and at the second session MPR images and additionally unfolded reconstructions were assessed. Reading time for each patient was noted. A radiologist with 25 years of experience, established the standard of reference. RESULTS In the evaluations performed with the MPR-Unfold method, the diagnostic accuracy were found to be 2.067 times higher compared to the MPRs method (P < 0.001). The location of the lesions or the reader variabilities did not show any influence on accuracy (P > 0.05) For all readers the reading time for MPR was significantly longer than for MPR-Unfold (P < 0.05). For both methods substantial to almost-perfect inter-reader agreement was found (0.686-0.936). CONCLUSIONS The use of unfolded pelvic bone reconstructions increases diagnostic accuracy while decreasing the reading times in the evaluation of pelvic bone lesions. Therefore, our findings suggest that utilizing unfolded reconstructions in addition to MPR images may be preferable in patients with prostate cancer for the screening of osteoblastic pelvic bone lesions.
Collapse
Affiliation(s)
- Mahinur Cerit
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Koray Kılıç
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Turkane Fetullayeva
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Hatice Yağmur Zengin
- Department of Biostatistics, 37515Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nesrin Erdoğan
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Halit Nahit Şendur
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Emetullah Cindil
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aydan Avdan Aslan
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gonca Erbaş
- Department of Radiology, 37511Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
36
|
Alongi P, Stefano A, Comelli A, Laudicella R, Scalisi S, Arnone G, Barone S, Spada M, Purpura P, Bartolotta TV, Midiri M, Lagalla R, Russo G. Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients. Eur Radiol 2021; 31:4595-4605. [PMID: 33443602 DOI: 10.1007/s00330-020-07617-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was (1) to investigate the application of texture analysis of choline PET/CT images in prostate cancer (PCa) patients and (2) to propose a machine-learning radiomics model able to select PET features predictive of disease progression in PCa patients with a same high-risk class at restaging. MATERIAL AND METHODS Ninety-four high-risk PCa patients who underwent restaging Cho-PET/CT were analyzed. Follow-up data were recorded for a minimum of 13 months after the PET/CT scan. PET images were imported in LIFEx toolbox to extract 51 features from each lesion. A statistical system based on correlation matrix and point-biserial-correlation coefficient has been implemented for features reduction and selection, while Discriminant analysis (DA) was used as a method for features classification in a whole sample and sub-groups for primary tumor or local relapse (T), nodal disease (N), and metastatic disease (M). RESULTS In the whole group, 2 feature (HISTO_Entropy_log10; HISTO_Energy_Uniformity) results were able to discriminate the occurrence of disease progression at follow-up, obtaining the best performance in DA classification (sensitivity 47.1%, specificity 76.5%, positive predictive value (PPV) 46.7%, and accuracy 67.6%). In the sub-group analysis, the best performance in DA classification for T was obtained by selecting 3 features (SUVmin; SHAPE_Sphericity; GLCM_Correlation) with a sensitivity of 91.6%, specificity 84.1%, PPV 79.1%, and accuracy 87%; for N by selecting 2 features (HISTO = _Energy Uniformity; GLZLM_SZLGE) with a sensitivity of 68.1%, specificity 91.4%, PPV 83%, and accuracy 82.6%; and for M by selecting 2 features (HISTO_Entropy_log10 - HISTO_Entropy_log2) with a sensitivity 64.4%, specificity 74.6%, PPV 40.6%, and accuracy 72.5%. CONCLUSION This machine learning model demonstrated to be feasible and useful to select Cho-PET features for T, N, and M with valuable association with high-risk PCa patients' outcomes. KEY POINTS • Artificial intelligence applications are feasible and useful to select Cho-PET features. • Our model demonstrated the presence of specific features for T, N, and M with valuable association with high-risk PCa patients' outcomes. • Further prospective studies are necessary to confirm our results and to develop the application of artificial intelligence in PET imaging of PCa.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Contrada Pietrapollastra Pisciotto, 90015, Cefalù, PA, Italy.
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Cefalù, PA, Italy
| | | | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
| | - Salvatore Scalisi
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Contrada Pietrapollastra Pisciotto, 90015, Cefalù, PA, Italy
| | - Giuseppe Arnone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Stefano Barone
- Dipartimento di Scienze Agronomiche, Alimentari e Forestali (SAAF), University of Palermo, Palermo, Italy
| | | | - Pierpaolo Purpura
- Department of Radiology, Fondazione Istituto Giuseppe Giglio Ct.da Pietrapollastra, Via Pisciotto, 90015, Cefalù (Palermo), Italy
| | - Tommaso Vincenzo Bartolotta
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Department of Radiology, Fondazione Istituto Giuseppe Giglio Ct.da Pietrapollastra, Via Pisciotto, 90015, Cefalù (Palermo), Italy
| | - Massimo Midiri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Roberto Lagalla
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Cefalù, PA, Italy
| |
Collapse
|
37
|
Zheng Q, Yang L, Zeng B, Li J, Guo K, Liang Y, Liao G. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinicalMedicine 2021; 31:100669. [PMID: 33392486 PMCID: PMC7773591 DOI: 10.1016/j.eclinm.2020.100669] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early diagnosis of tumor metastasis is crucial for clinical treatment. Artificial intelligence (AI) has shown great promise in the field of medicine. We therefore aimed to evaluate the diagnostic accuracy of AI algorithms in detecting tumor metastasis using medical radiology imaging. METHODS We searched PubMed and Web of Science for studies published from January 1, 1997, to January 30, 2020. Studies evaluating an AI model for the diagnosis of tumor metastasis from medical images were included. We excluded studies that used histopathology images or medical wave-form data and those focused on the region segmentation of interest. Studies providing enough information to construct contingency tables were included in a meta-analysis. FINDINGS We identified 2620 studies, of which 69 were included. Among them, 34 studies were included in a meta-analysis with a pooled sensitivity of 82% (95% CI 79-84%), specificity of 84% (82-87%) and AUC of 0·90 (0·87-0·92). Analysis for different AI algorithms showed a pooled sensitivity of 87% (83-90%) for machine learning and 86% (82-89%) for deep learning, and a pooled specificity of 89% (82-93%) for machine learning, and 87% (82-91%) for deep learning. INTERPRETATION AI algorithms may be used for the diagnosis of tumor metastasis using medical radiology imaging with equivalent or even better performance to health-care professionals, in terms of sensitivity and specificity. At the same time, rigorous reporting standards with external validation and comparison to health-care professionals are urgently needed for AI application in the medical field. FUNDING College students' innovative entrepreneurial training plan program .
Collapse
Affiliation(s)
- Qiuhan Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Zeng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiahao Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kaixin Guo
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
38
|
Where to next prostate-specific membrane antigen PET imaging frontiers? Curr Opin Urol 2020; 30:672-678. [PMID: 32701718 DOI: 10.1097/mou.0000000000000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Technical improvements in imaging equipment and availability of radiotracers, such as PSMA-ligands have increased the synergy between Urology and Nuclear Medicine. Meanwhile artificial intelligence is introduced in Nuclear Imaging. This review will give an overview of recent technical and clinical developments and an outlook on application of these in the near future. RECENT FINDINGS Digital PET/CT has shown gradual improvement in lesion detection and demarcation over conventional PET/CT, but total-body PET/CT holds promise for a magnitude of improvement in scan duration and quality, quantification, and dose optimization. PET-guided decision-making with the application of PSMA-ligands has been shown useful in demonstrating and biopting primary prostate cancer (PCa) lesions, guiding radiotherapy, guiding surgical resection of recurrent PCa, and assessing therapy response in PCa. Artificial intelligence made its way into Nuclear Imaging just recently, but encouraging progress promises clinical application with unprecedented possibilities. SUMMARY Evidence is growing on clinical usefulness of PET-guided decision-making with the still relatively new PSMA ligands as a prime example. Rapid evolution of PET instrumentation and clinical introduction of artificial intelligence will be the gamechangers of nuclear imaging in the near future, though its powers should still be mastered and incorporated in clinical practice.
Collapse
|
39
|
The Application of Artificial Intelligence in Prostate Cancer Management—What Improvements Can Be Expected? A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial Intelligence (AI) is progressively remodeling our daily life. A large amount of information from “big data” now enables machines to perform predictions and improve our healthcare system. AI has the potential to reshape prostate cancer (PCa) management thanks to growing applications in the field. The purpose of this review is to provide a global overview of AI in PCa for urologists, pathologists, radiotherapists, and oncologists to consider future changes in their daily practice. A systematic review was performed, based on PubMed MEDLINE, Google Scholar, and DBLP databases for original studies published in English from January 2009 to January 2019 relevant to PCa, AI, Machine Learning, Artificial Neural Networks, Convolutional Neural Networks, and Natural-Language Processing. Only articles with full text accessible were considered. A total of 1008 articles were reviewed, and 48 articles were included. AI has potential applications in all fields of PCa management: analysis of genetic predispositions, diagnosis in imaging, and pathology to detect PCa or to differentiate between significant and non-significant PCa. AI also applies to PCa treatment, whether surgical intervention or radiotherapy, skills training, or assessment, to improve treatment modalities and outcome prediction. AI in PCa management has the potential to provide a useful role by predicting PCa more accurately, using a multiomic approach and risk-stratifying patients to provide personalized medicine.
Collapse
|
40
|
Zhong X, Li L, Jiang H, Yin J, Lu B, Han W, Li J, Zhang J. Cervical spine osteoradionecrosis or bone metastasis after radiotherapy for nasopharyngeal carcinoma? The MRI-based radiomics for characterization. BMC Med Imaging 2020; 20:104. [PMID: 32873238 PMCID: PMC7466527 DOI: 10.1186/s12880-020-00502-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background To develop and validate an MRI-based radiomics nomogram for differentiation of cervical spine ORN from metastasis after radiotherapy (RT) in nasopharyngeal carcinoma (NPC). Methods A radiomics nomogram was developed in a training set that comprised 46 NPC patients after RT with 95 cervical spine lesions (ORN, n = 51; metastasis, n = 44), and data were gathered from January 2008 to December 2012. 279 radiomics features were extracted from the axial contrast-enhanced T1-weighted image (CE-T1WI). A radiomics signature was created by using the least absolute shrinkage and selection operator (LASSO) algorithm. A nomogram model was developed based on the radiomics scores. The performance of the nomogram was determined in terms of its discrimination, calibration, and clinical utility. An independent validation set contained 25 consecutive patients with 47 lesions (ORN, n = 25; metastasis, n = 22) from January 2013 to December 2015. Results The radiomics signature that comprised eight selected features was significantly associated with the differentiation of cervical spine ORN and metastasis. The nomogram model demonstrated good calibration and discrimination in the training set [AUC, 0.725; 95% confidence interval (CI), 0.622–0.828] and the validation set (AUC, 0.720; 95% CI, 0.573–0.867). The decision curve analysis indicated that the radiomics nomogram was clinically useful. Conclusions MRI-based radiomics nomogram shows potential value to differentiate cervical spine ORN from metastasis after RT in NPC.
Collapse
Affiliation(s)
- Xi Zhong
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Li Li
- Department of Otolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-Sen University, Dong cheng East Road, Dong guan, 523110, Guangdong, China
| | - Jinxue Yin
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Bingui Lu
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Wen Han
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Jiansheng Li
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
41
|
Gorelik N, Gyftopoulos S. Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report. Can Assoc Radiol J 2020; 72:45-59. [PMID: 32809857 DOI: 10.1177/0846537120947148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Artificial intelligence (AI) will transform every step in the imaging value chain, including interpretive and noninterpretive components. Radiologists should familiarize themselves with AI developments to become leaders in their clinical implementation. This article explores the impact of AI through the entire imaging cycle of musculoskeletal radiology, from the placement of the requisition to the generation of the report, with an added Canadian perspective. Noninterpretive tasks which may be assisted by AI include the ordering of appropriate imaging tests, automatic exam protocoling, optimized scheduling, shorter magnetic resonance imaging acquisition time, computed tomography imaging with reduced artifact and radiation dose, and new methods of generation and utilization of radiology reports. Applications of AI for image interpretation consist of the determination of bone age, body composition measurements, screening for osteoporosis, identification of fractures, evaluation of segmental spine pathology, detection and temporal monitoring of osseous metastases, diagnosis of primary bone and soft tissue tumors, and grading of osteoarthritis.
Collapse
Affiliation(s)
- Natalia Gorelik
- Department of Diagnostic Radiology, 54473McGill University Health Center, Montreal, Quebec, Canada
| | - Soterios Gyftopoulos
- Department of Radiology, 12297NYU Langone Medical Center/NYU Langone Orthopedic Center, New York, NY, USA.,Department of Orthopedic Surgery, 12297NYU Langone Medical Center/NYU Langone Orthopedic Center, New York, NY, USA
| |
Collapse
|
42
|
Basran PS, Gao J, Palmer S, Reesink HL. A radiomics platform for computing imaging features from µCT images of Thoroughbred racehorse proximal sesamoid bones: Benchmark performance and evaluation. Equine Vet J 2020; 53:277-286. [PMID: 32654167 DOI: 10.1111/evj.13321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Proximal sesamoid bone (PSB) fractures are the most common fatal musculoskeletal injury in North American racehorses. Computed tomography has the potential to detect morphological changes in bone structure but can be challenging to analyse reliably and quantitatively. OBJECTIVES To develop a radiomics platform that allows the comparison of features from micro-CTs (µCT) of PSBs in horses that sustained catastrophic fractures with horses that did not. To compare features calculated with a radiomics approach with features calculated from a previously published study that used quantitative µCT in the same specimens. STUDY DESIGN Retrospective study of cadaver specimens of µCT images of PSBs using prospectively applied radiomics. METHODS Radiomics features were computed on standardised CT datasets to benchmark the software. Features from µCT images of PSBs from eight horses that sustained PSB fracture and eight controls were computed using the contralateral, intact forelimb from horses sustaining PSB fracture (cases, n = 19) and all available forelimbs for controls (n = 30). Two-hundred and fifteen radiomic features were calculated, and similar or comparable features were compared with those reported in a previous study that used the same specimens. RESULTS Morphologic features computed with the radiomics approach, such as volume, minor axis dimensions and anisotropy were highly correlated with previously published data. A high number of imperceptible radiomic features, such as entropy, coarseness and histogram features were also found to be significantly different (P < .01). The extent of the differences in image features for the cases and controls PSBs depends on radiomic calculation settings. MAIN LIMITATIONS Only datasets obtained from cadaver specimens were included in the study. CONCLUSIONS A radiomics approach for analysing µCT images of PSBs was able to identify and reproduce differences in image features in cases and controls. Furthermore, radiomics revealed many more imperceptible image features between cases and control PSBs.
Collapse
Affiliation(s)
| | - Jonathan Gao
- Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Scott Palmer
- Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Heidi L Reesink
- Clinical Sciences, Cornell University, Ithaca, NY, USA.,Equine and Farm Animal Hospital, Cornell University, Ithaca, NY, USA
| |
Collapse
|
43
|
Rho MJ, Park J, Moon HW, Lee C, Nam S, Kim D, Kim CS, Jeon SS, Kang M, Lee JY. Dr. Answer AI for prostate cancer: Clinical outcome prediction model and service. PLoS One 2020; 15:e0236553. [PMID: 32756597 PMCID: PMC7406030 DOI: 10.1371/journal.pone.0236553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives The importance of clinical outcome prediction models using artificial intelligence (AI) is being emphasized owing to the increasing necessity of developing a clinical decision support system (CDSS) employing AI. Therefore, in this study, we proposed a “Dr. Answer” AI software based on the clinical outcome prediction model for prostate cancer treated with radical prostatectomy. Methods The Dr. Answer AI was developed based on a clinical outcome prediction model, with a user-friendly interface. We used 7,128 clinical data of prostate cancer treated with radical prostatectomy from three hospitals. An outcome prediction model was developed to calculate the probability of occurrence of 1) tumor, node, and metastasis (TNM) staging, 2) extracapsular extension, 3) seminal vesicle invasion, and 4) lymph node metastasis. Random forest and k-nearest neighbors algorithms were used, and the proposed system was compared with previous algorithms. Results Random forest exhibited good performance for TNM staging (recall value: 76.98%), while k-nearest neighbors exhibited good performance for extracapsular extension, seminal vesicle invasion, and lymph node metastasis (80.24%, 98.67%, and 95.45%, respectively). The Dr. Answer AI software consisted of three primary service structures: 1) patient information, 2) clinical outcome prediction, and outcomes according to the National Comprehensive Cancer Network guideline. Conclusion The proposed clinical outcome prediction model could function as an effective CDSS, supporting the decisions of the physicians, while enabling the patients to understand their treatment outcomes. The Dr. Answer AI software for prostate cancer helps the doctors to explain the treatment outcomes to the patients, allowing the patients to be more confident about their treatment plans.
Collapse
Affiliation(s)
- Mi Jung Rho
- Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihwan Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyong Woo Moon
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Sejin Nam
- LifeSemantics, Seoul, Republic of Korea
| | | | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
44
|
A downsampling strategy to assess the predictive value of radiomic features. Sci Rep 2019; 9:17869. [PMID: 31780708 PMCID: PMC6883070 DOI: 10.1038/s41598-019-54190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 11/08/2022] Open
Abstract
Many studies are devoted to the design of radiomic models for a prediction task. When no effective model is found, it is often difficult to know whether the radiomic features do not include information relevant to the task or because of insufficient data. We propose a downsampling method to answer that question when considering a classification task into two groups. Using two large patient cohorts, several experimental configurations involving different numbers of patients were created. Univariate or multivariate radiomic models were designed from each configuration. Their performance as reflected by the Youden index (YI) and Area Under the receiver operating characteristic Curve (AUC) was compared to the stable performance obtained with the highest number of patients. A downsampling method is described to predict the YI and AUC achievable with a large number of patients. Using the multivariate models involving machine learning, YI and AUC increased with the number of patients while they decreased for univariate models. The downsampling method better estimated YI and AUC obtained with the largest number of patients than the YI and AUC obtained using the number of available patients and identifies the lack of information relevant to the classification task when no such information exists.
Collapse
|