1
|
Kawakubo M, Nagao M, Yamamoto A, Kaimoto Y, Nakao R, Kawasaki H, Iwaguchi T, Inoue A, Kaneko K, Sakai A, Sakai S. Gated SPECT-Derived Myocardial Strain Estimated From Deep-Learning Image Translation Validated From N-13 Ammonia PET. Acad Radiol 2024; 31:4790-4800. [PMID: 39095261 DOI: 10.1016/j.acra.2024.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
RATIONALE AND OBJECTIVES This study investigated the use of deep learning-generated virtual positron emission tomography (PET)-like gated single-photon emission tomography (SPECTVP) for assessing myocardial strain, overcoming limitations of conventional SPECT. MATERIALS AND METHODS SPECT-to-PET translation models for short-axis, horizontal, and vertical long-axis planes were trained using image pairs from the same patients in stress (720 image pairs from 18 patients) and resting states (920 image pairs from 23 patients). Patients without ejection-fraction changes during SPECT and PET were selected for training. We independently analyzed circumferential strains from short-axis-gated SPECT, PET, and model-generated SPECTVP images using a feature-tracking algorithm. Longitudinal strains were similarly measured from horizontal and vertical long-axis images. Intraclass correlation coefficients (ICCs) were calculated with two-way random single-measure SPECT and SPECTVP (PET). ICCs (95% confidence intervals) were defined as excellent (≥0.75), good (0.60-0.74), moderate (0.40-0.59), or poor (≤0.39). RESULTS Moderate ICCs were observed for SPECT-derived stressed circumferential strains (0.56 [0.41-0.69]). Excellent ICCs were observed for SPECTVP-derived stressed circumferential strains (0.78 [0.68-0.85]). Excellent ICCs of stressed longitudinal strains from horizontal and vertical long axes, derived from SPECT and SPECTVP, were observed (0.83 [0.73-0.90], 0.91 [0.85-0.94]). CONCLUSION Deep-learning SPECT-to-PET transformation improves circumferential strain measurement accuracy using standard-gated SPECT. Furthermore, the possibility of applying longitudinal strain measurements via both PET and SPECTVP was demonstrated. This study provides preliminary evidence that SPECTVP obtained from standard-gated SPECT with postprocessing potentially adds clinical value through PET-equivalent myocardial strain analysis without increasing the patient burden.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoko Kaimoto
- Department of Radiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Kawasaki
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Takafumi Iwaguchi
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Akihiro Inoue
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Koichiro Kaneko
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Wang F, Pu C, Ma S, Zhou J, Jiang Y, Yu F, Zhang S, Wu Y, Zhang L, He C, Hu H. The effects of flip angle and gadolinium contrast agent on single breath-hold compressed sensing cardiac magnetic resonance cine for biventricular global strain assessment. Front Cardiovasc Med 2024; 11:1286271. [PMID: 38347952 PMCID: PMC10859435 DOI: 10.3389/fcvm.2024.1286271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Background Due to its potential to significantly reduce scanning time while delivering accurate results for cardiac volume function, compressed sensing (CS) has gained traction in cardiovascular magnetic resonance (CMR) cine. However, further investigation is necessary to explore its feasibility and impact on myocardial strain results. Materials and methods A total of 102 participants [75 men, 46.5 ± 17.1 (SD) years] were included in this study. Each patient underwent four consecutive cine sequences with the same slice localization, including the reference multi-breath-hold balanced steady-state free precession (bSSFPref) cine, the CS cine with the same flip angle as bSSFPref before (CS45) and after (eCS45) contrast enhancement, and the CS cine (eCS70) with a 70-degree flip angle after contrast enhancement. Biventricular strain parameters were derived from cine images. Two-tailed paired t-tests were used for data analysis. Results Global radial strain (GRS), global circumferential strain (GCS), and global longitudinal strain (GLS) were observed to be significantly lower in comparison to those obtained from bSSFPref sequences for both the right and left ventricles (all p < 0.001). No significant difference was observed on biventricular GRS-LAX (long-axis) and GLS values derived from enhanced and unenhanced CS cine sequences with the same flip angle, but remarkable reductions were noted in GRS-SAX (short-axis) and GCS values (p < 0.001). After contrast injection, a larger flip angle caused a significant elevation in left ventricular strain results (p < 0.001) but did not affect the right ventricle. The increase in flip angle appeared to compensate for contrast agent affection on left ventricular GRS-SAX, GCS values, and right ventricular GRS-LAX, GLS values. Conclusion Despite incorporating gadolinium contrast agents and applying larger flip angles, single breath-hold CS cine sequences consistently yielded diminished strain values for both ventricles when compared with conventional cine sequences. Prior to employing this single breath-hold CS cine sequence to refine the clinical CMR examination procedure, it is crucial to consider its impact on myocardial strain results.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cailing Pu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siying Ma
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feidan Yu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Yan Wu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingjie Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|