1
|
Jespersen N, Prajapati JD, Singhal A, Sanbonmatsu KY. Cryo-EM reveals remodeling of a tandem riboswitch at 2.9 Å resolution. RESEARCH SQUARE 2025:rs.3.rs-6422592. [PMID: 40343338 PMCID: PMC12060979 DOI: 10.21203/rs.3.rs-6422592/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Riboswitches are non-coding RNA sequences that control cellular processes through ligand binding. Conformational heterogeneity is fundamental to riboswitch functionality, yet this same attribute makes structural characterization of these mRNA elements challenging. Here, we use a combination of molecular dynamics and cryo-electron microscopy to expound the flexible nature of the glycine riboswitch tandem aptamers and characterize diMerent structural populations. We find that Mg2+ partially stabilizes the fully folded state, resulting in one-third of the particles adopting a unique "walking man" conformation, consisting of a rigidified core and two dynamic helices, and two-thirds adopting distinct, partially folded states. Glycine interactions double the relative population of fully folded particles by stabilizing a conserved inter-aptamer Hoogsteen base pair, enabling our capture of a 2.9 Å structure for this RNA-only system. The population data show that glycine and Mg2+ operate synergistically: glycine enhances Mg2+ occupancy, while Mg2+ drives glycine specificity. Our findings indicate that cryo-electron microscopy oMers a promising avenue to characterize RNA folding ensembles.
Collapse
Affiliation(s)
- Nathan Jespersen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | | | - Ankush Singhal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- New Mexico Consortium, Los Alamos, NM 87544, United States
| |
Collapse
|
2
|
Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T, Lu C. Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch. Int J Mol Sci 2024; 25:11288. [PMID: 39457069 PMCID: PMC11508383 DOI: 10.3390/ijms252011288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tandem SAM-II/SAM-V riboswitch belongs to a class of riboswitches found in the marine bacterium 'Candidatus Pelagibacter ubique'. Previous studies have demonstrated that these riboswitches have the potential for digital modulation of gene expression at both the transcriptional and translational levels. In this study, we investigate the conformational changes in the tandem SAM-II/SAM-V riboswitch binding to S-adenosylmethionine (SAM) using selective 2'-hydroxyl acylation analyzed by the primer extension (SHAPE) assay, small-angle X-ray scattering (SAXS), and oligos depressing probing. Our findings reveal that the linker between SAM-II/SAM-V aptamers blocks the SAM response of the SAM-II domain. This result proposes a new mechanism for gene expression regulation, where the ligand-binding functions of tandem riboswitches can be selectively masked or released through a linker.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Yingying Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| |
Collapse
|
3
|
Pavlova N, Penchovsky R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. Antibiotics (Basel) 2022; 11:antibiotics11091177. [PMID: 36139956 PMCID: PMC9495176 DOI: 10.3390/antibiotics11091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance (AR) is an acute problem that results in prolonged and debilitating illnesses. AR mortality worldwide is growing and causes a pressing need to research novel mechanisms of action and untested target molecules. This article presents in silico analyses of eight bacterial riboswitches for their suitability for antibacterial drug targets. Most bacterial riboswitches are located in the 5′-untranslated region of messenger RNAs, act as allosteric cis-acting gene control elements, and have not been found in humans before. Sensing metabolites, the riboswitches regulate the synthesis of vital cellular metabolites in various pathogenic bacteria. The analyses performed in this article represent a complete and informative genome-wide bioinformatics analysis of the adequacy of eight riboswitches as antibacterial drug targets in different pathogenic bacteria based on four criteria. Due to the ability of the riboswitch to control biosynthetic pathways and transport proteins of essential metabolites and the presence/absence of alternative biosynthetic pathways, we classified them into four groups based on their suitability for use as antibacterial drug targets guided by our in silico analyses. We concluded that some of them are promising targets for antibacterial drug discovery, such as the PreQ1, MoCo RNA, cyclic-di-GMP I, and cyclic-di-GMP II riboswitches.
Collapse
|
4
|
Hong KQ, Zhang J, Jin B, Chen T, Wang ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microb Cell Fact 2022; 21:56. [PMID: 35392910 PMCID: PMC8991567 DOI: 10.1186/s12934-022-01779-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli. Results The results showed that a synthetic glycine-OFF riboswitch (glyOFF6) and an increased-detection-range synthetic glycine-ON riboswitch (glyON14) were successfully screened from a library based on the Bacillus subtilis glycine riboswitch using fluorescence-activated cell sorting (FACS) and tetA-based dual genetic selection. The two synthetic glycine riboswitches were successfully used in tunable regulation of lactate synthesis, dynamic regulation of serine synthesis and directed evolution of alanine-glyoxylate aminotransferase in Escherichia coli, respectively. Mutants AGXT22 and AGXT26 of alanine-glyoxylate aminotransferase with an increase of 58% and 73% enzyme activity were obtained by using a high-throughput screening platform based on the synthetic glycine-OFF riboswitch, and successfully used to increase the 5-aminolevulinic acid yield of engineered Escherichia coli. Conclusions A synthetic glycine-OFF riboswitch and an increased-detection-range synthetic glycine-ON riboswitch were successfully designed and screened. The developed riboswitches showed broad application in tunable regulation, dynamic regulation and directed evolution of enzyme in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01779-4.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhi-Wen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China. .,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Sherlock ME, Higgs G, Yu D, Widner DL, White NA, Sudarsan N, Sadeeshkumar H, Perkins KR, Mirihana Arachchilage G, Malkowski SN, King CG, Harris KA, Gaffield G, Atilho RM, Breaker RR. Architectures and complex functions of tandem riboswitches. RNA Biol 2022; 19:1059-1076. [PMID: 36093908 PMCID: PMC9481103 DOI: 10.1080/15476286.2022.2119017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
Collapse
Affiliation(s)
- Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Research-1S, Aurora, CO, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Danielle L. Widner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Neil A. White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- PTC Therapeutics, Inc, South Plainfield, NJ, USA
| | | | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Glenn Gaffield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Ariza-Mateos A, Nuthanakanti A, Serganov A. Riboswitch Mechanisms: New Tricks for an Old Dog. BIOCHEMISTRY (MOSCOW) 2021; 86:962-975. [PMID: 34488573 DOI: 10.1134/s0006297921080071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Discovered almost twenty years ago, riboswitches turned out to be one of the most common regulatory systems in bacteria, with representatives found in eukaryotes and archaea. Unlike many other regulatory elements, riboswitches are entirely composed of RNA and capable of modulating expression of genes by direct binding of small cellular molecules. While bacterial riboswitches had been initially thought to control production of enzymes and transporters associated with small organic molecules via feedback regulatory circuits, later findings identified riboswitches directing expression of a wide range of genes and responding to various classes of molecules, including ions, signaling molecules, and others. The 5'-untranslated mRNA regions host a vast majority of riboswitches, which modulate transcription or translation of downstream genes through conformational rearrangements in the ligand-sensing domains and adjacent expression-controlling platforms. Over years, the repertoire of regulatory mechanisms employed by riboswitches has greatly expanded; most recent studies have highlighted the importance of alternative mechanisms, such as RNA degradation, for the riboswitch-mediated genetic circuits. This review discusses the plethora of bacterial riboswitch mechanisms and illustrates how riboswitches utilize different features and approaches to elicit various regulatory responses.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Regulation of Glycine Cleavage and Detoxification by a Highly Conserved Glycine Riboswitch in Burkholderia spp. Curr Microbiol 2021; 78:2943-2955. [PMID: 34076709 DOI: 10.1007/s00284-021-02550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The glycine riboswitch is a known regulatory element that is unique in having two aptamers that are joined by a linker region. In this study, we investigated a glycine riboswitch located in the 5' untranslated region of a glycine cleavage system homolog (gcvTHP) in Burkholderia spp. Structure prediction using the sequence generated a model with a glycine binding pocket composed of base-triple interactions (G62-A64-A86 and G65-U84-C85) that are supported by A/G minor interactions (A17-C60-G88 and G16-C61-G87, respectively) and two ribose-zipper motifs (C11-G12 interacting with A248-A247 and C153-U154 interacting with A79-A78) which had not been previously reported. The capacity of the riboswitch to bind to glycine was experimentally validated by native gel assays and the crucial role of interactions that make up the glycine binding pocket were proven by mutations of A17U and G16C which resulted in conformational differences that may lead to dysfunction. Using glycine supplemented minimal media, we were able to prove that the expression of the gcvTHP genes found downstream of the riboswitch responded to the glycine concentrations introduced thus confirming the role of this highly conserved Burkholderia riboswitch and its associated genes as a putative glycine detoxification system in Burkholderia spp.
Collapse
|
8
|
Cooperativity and Allostery in RNA Systems. Methods Mol Biol 2020; 2253:255-271. [PMID: 33315228 DOI: 10.1007/978-1-0716-1154-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Allostery is among the most basic biological principles employed by biological macromolecules to achieve a biologically active state in response to chemical cues. Although initially used to describe the impact of small molecules on the conformation and activity of protein enzymes, the definition of this term has been significantly broadened to describe long-range conformational change of macromolecules in response to small or large effectors. Such a broad definition could be applied to RNA molecules, which do not typically serve as protein-free cellular enzymes but fold and form macromolecular assemblies with the help of various ligand molecules, including ions and proteins. Ligand-induced allosteric changes in RNA molecules are often accompanied by cooperative interactions between RNA and its ligand, thus streamlining the folding and assembly pathways. This chapter provides an overview of the interplay between cooperativity and allostery in RNA systems and outlines methods to study these two biological principles.
Collapse
|
9
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
10
|
Sherlock ME, Breaker RR. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA (NEW YORK, N.Y.) 2020; 26:675-693. [PMID: 32165489 PMCID: PMC7266159 DOI: 10.1261/rna.074997.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
11
|
Torgerson CD, Hiller DA, Strobel SA. The asymmetry and cooperativity of tandem glycine riboswitch aptamers. RNA (NEW YORK, N.Y.) 2020; 26:564-580. [PMID: 31992591 PMCID: PMC7161355 DOI: 10.1261/rna.073577.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Glycine riboswitches utilize both single- and tandem-aptamer architectures. In the tandem system, the relative contribution of each aptamer toward gene regulation is not well understood. To dissect these contributions, the effects of 684 single mutants of a tandem ON switch from Bacillus subtilis were characterized for the wild-type construct and binding site mutations that selectively restrict ligand binding to either the first or second aptamer. Despite the structural symmetry of tandem aptamers, the response to these mutations was frequently asymmetrical. Mutations in the first aptamer often significantly weakened the K1/2, while several mutations in the second aptamer improved the amplitude. These results demonstrate that this ON switch favors ligand binding to the first aptamer. This is in contrast to the tandem OFF switch variant from Vibrio cholerae, which was previously shown to have preferential binding to its second aptamer. A bioinformatic analysis of tandem glycine riboswitches revealed that the two binding pockets are differentially conserved between ON and OFF switches. Altogether, this indicates that tandem ON switch variants preferentially utilize binding to the first aptamer to promote helical switching, while OFF switch variants favor binding to the second aptamer. The data set also revealed a cooperative glycine response when both binding pockets were maximally stabilized with three GC base pairs. This indicates a cooperative response may sometimes be obfuscated by a difference in the affinities of the two aptamers. This conditional cooperativity provides an additional layer of tunability to tandem glycine riboswitches that adds to their versatility as genetic switches.
Collapse
Affiliation(s)
- Chad D Torgerson
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry
| | - David A Hiller
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
12
|
Golabi F, Shamsi M, Sedaaghi MH, Barzegar A, Hejazi MS. Classification of Riboswitch Families Using Block Location-Based Feature Extraction (BLBFE) Method. Adv Pharm Bull 2020; 10:97-105. [PMID: 32002367 PMCID: PMC6983983 DOI: 10.15171/apb.2020.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/04/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Riboswitches are special non-coding sequences usually located in mRNAs' un-translated regions and regulate gene expression and consequently cellular function. Furthermore, their interaction with antibiotics has been recently implicated. This raises more interest in development of bioinformatics tools for riboswitch studies. Herein, we describe the development and employment of novel block location-based feature extraction (BLBFE) method for classification of riboswitches. Methods: We have already developed and reported a sequential block finding (SBF) algorithm which, without operating alignment methods, identifies family specific sequential blocks for riboswitch families. Herein, we employed this algorithm for 7 riboswitch families including lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH. Then the study was extended toward implementation of BLBFE method for feature extraction. The outcome features were applied in various classifiers including linear discriminant analysis (LDA), probabilistic neural network (PNN), decision tree and k-nearest neighbors (KNN) classifiers for classification of the riboswitch families. The performance of the classifiers was investigated according to performance measures such as correct classification rate (CCR), accuracy, sensitivity, specificity and f-score. Results: As a result, average CCR for classification of riboswitches was 87.87%. Furthermore, application of BLBFE method in 4 classifiers displayed average accuracies of 93.98% to 96.1%, average sensitivities of 76.76% to 83.61%, average specificities of 96.53% to 97.69% and average f-scores of 74.9% to 81.91%. Conclusion: Our results approved that the proposed method of feature extraction; i.e. BLBFE method; can be successfully used for classification and discrimination of the riboswitch families with high CCR, accuracy, sensitivity, specificity and f-score values.
Collapse
Affiliation(s)
- Faegheh Golabi
- Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
- School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mousa Shamsi
- Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | | | - Abolfazl Barzegar
- School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Crum M, Ram-Mohan N, Meyer MM. Regulatory context drives conservation of glycine riboswitch aptamers. PLoS Comput Biol 2019; 15:e1007564. [PMID: 31860665 PMCID: PMC6944388 DOI: 10.1371/journal.pcbi.1007564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/06/2020] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
In comparison to protein coding sequences, the impact of mutation and natural selection on the sequence and function of non-coding (ncRNA) genes is not well understood. Many ncRNA genes are narrowly distributed to only a few organisms, and appear to be rapidly evolving. Compared to protein coding sequences, there are many challenges associated with assessment of ncRNAs that are not well addressed by conventional phylogenetic approaches, including: short sequence length, lack of primary sequence conservation, and the importance of secondary structure for biological function. Riboswitches are structured ncRNAs that directly interact with small molecules to regulate gene expression in bacteria. They typically consist of a ligand-binding domain (aptamer) whose folding changes drive changes in gene expression. The glycine riboswitch is among the most well-studied due to the widespread occurrence of a tandem aptamer arrangement (tandem), wherein two homologous aptamers interact with glycine and each other to regulate gene expression. However, a significant proportion of glycine riboswitches are comprised of single aptamers (singleton). Here we use graph clustering to circumvent the limitations of traditional phylogenetic analysis when studying the relationship between the tandem and singleton glycine aptamers. Graph clustering enables a broader range of pairwise comparison measures to be used to assess aptamer similarity. Using this approach, we show that one aptamer of the tandem glycine riboswitch pair is typically much more highly conserved, and that which aptamer is conserved depends on the regulated gene. Furthermore, our analysis also reveals that singleton aptamers are more similar to either the first or second tandem aptamer, again based on the regulated gene. Taken together, our findings suggest that tandem glycine riboswitches degrade into functional singletons, with the regulated gene(s) dictating which glycine-binding aptamer is conserved.
Collapse
Affiliation(s)
- Matt Crum
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Nikhil Ram-Mohan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michelle M. Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
14
|
Zhou L, Ren J, Li Z, Nie J, Wang C, Zeng AP. Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in Escherichia coli. ACS Synth Biol 2019; 8:2327-2335. [PMID: 31550137 DOI: 10.1021/acssynbio.9b00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A riboswitch, a regulatory RNA that controls gene expression by specifically binding a ligand, is an attractive genetic element for the control of conditional gene expression and metabolic pathways. In this study, we identified a glycine riboswitch located in the 5'-untranslated regions of a glycine:proton symporter gene in Clostridium pasteurianum. The glycine riboswitch is shown to contain two tandem aptamers and to function as an activator of expression of genes fused to its expression platform. Results of singlet aptamer experiments indicated that aptamer-2 has a much higher impact on regulating gene expression than aptamer-1. Further, we successfully obtained synthetic glycine-OFF riboswitches using a dual selection approach, and one of them repressed gene expression up to 10.2-fold with an improved dynamic range. The specific glycine-OFF riboswitch can function as an independent repressor in the presence of glycine, and its repression mechanism is inferred from predicted secondary structure. The selected glycine-OFF riboswitch was used to dynamically control the biosynthesis of 5-aminolevulinic acid (5-ALA) in Escherichia coli with an unnatural 5-ALA synthetic pathway, in which glycine plays a key role. It is demonstrated that the use of a synthetic Clostridium glycine-OFF riboswitch can lead to a significant increase (11%) of 5-ALA in E. coli harboring an unnatural biosynthetic pathway.
Collapse
Affiliation(s)
- Libang Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
- College of Food Science and Technology , Nanjing Agricultural University , Weigang 1 , Nanjing 210095 , PR China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - Zhidong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - Chuang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , North Third Ring Road 15 , Chaoyang District, Beijing 100029 , China
- Institute of Bioprocess and Biosystems Engineering , Hamburg University of Technology , Denickestrasse 15 , D-21073 Hamburg , Germany
| |
Collapse
|
15
|
Ehrenberger MA, Vieyra A, Esquiaqui JM, Fanucci GE. Ion-dependent mobility effects of the Fusobacterium nucleatum glycine riboswitch aptamer II via site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR). Biochem Biophys Res Commun 2019; 516:839-844. [PMID: 31262445 DOI: 10.1016/j.bbrc.2019.06.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023]
Abstract
Site-directed spin-labeling (SDSL) with continuous wave electron paramagnetic resonance (cw-EPR) spectroscopy was utilized to probe site-specific changes in backbone dynamics that accompany folding of the isolated 84 nucleotide aptamer II domain of the Fusobacterium nucleatum (FN) glycine riboswitch. Spin-labels were incorporated using splinted ligation strategies. Results show differential dynamics for spin-labels incorporated into the backbone at a base-paired and loop region. Additionally, the addition of a biologically relevant concentration of 5 mM Mg2+, to an RNA solution with 100 mM K+, folds and compacts the structure, inferred by a reduction in spin-label mobility. Furthermore, when controlling for ionic strength, Mg2+ added to the RNA induces more folding/less flexibility at the two sites than RNA with K+ alone. Addition of glycine does not alter the dynamics of this singlet aptamer II, indicating that the full length riboswitch construct may be needed for glycine binding and induced conformational changes. This work adds to our growing understanding of how splinted-ligation SDSL can be utilized to interrogate differential dynamics in large dynamic RNAs, providing insights into how RNA folding and structure is differentially stabilized by monovalent versus divalent cations.
Collapse
Affiliation(s)
- Michelle A Ehrenberger
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, United States
| | - Aleida Vieyra
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, United States
| | - Jackie M Esquiaqui
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611, United States.
| |
Collapse
|
16
|
Torgerson CD, Hiller DA, Stav S, Strobel SA. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching. RNA (NEW YORK, N.Y.) 2018; 24:1813-1827. [PMID: 30237163 PMCID: PMC6239177 DOI: 10.1261/rna.067884.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 05/09/2023]
Abstract
Riboswitches contain structured aptamer domains that, upon ligand binding, facilitate helical switching in their downstream expression platforms to alter gene expression. To fully dissect how riboswitches function requires a better understanding of the energetic landscape for helical switching. Here, we report a sequencing-based high-throughput assay for monitoring in vitro transcription termination and use it to simultaneously characterize the functional effects of all 522 single point mutants of a glycine riboswitch type-1 singlet. Mutations throughout the riboswitch cause ligand-dependent defects, but only mutations within the terminator hairpin alter readthrough efficiencies in the absence of ligand. A comprehensive analysis of the expression platform reveals that ligand binding stabilizes the antiterminator by just 2-3 kcal/mol, indicating that the competing expression platform helices must be extremely close in energy to elicit a significant ligand-dependent response. These results demonstrate that gene regulation by this riboswitch is highly constrained by the energetics of ligand binding and conformational switching. These findings exemplify the energetic parameters of RNA conformational rearrangements driven by binding events.
Collapse
Affiliation(s)
- Chad D Torgerson
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - David A Hiller
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shira Stav
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
17
|
Patel S, Panchasara H, Braddick D, Gohil N, Singh V. Synthetic small RNAs: Current status, challenges, and opportunities. J Cell Biochem 2018; 119:9619-9639. [DOI: 10.1002/jcb.27252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Shreya Patel
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Happy Panchasara
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | | | - Nisarg Gohil
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Vijai Singh
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| |
Collapse
|
18
|
Khani A, Popp N, Kreikemeyer B, Patenge N. A Glycine Riboswitch in Streptococcus pyogenes Controls Expression of a Sodium:Alanine Symporter Family Protein Gene. Front Microbiol 2018. [PMID: 29527194 PMCID: PMC5829553 DOI: 10.3389/fmicb.2018.00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulatory RNAs play important roles in the control of bacterial gene expression. In this study, we investigated gene expression regulation by a putative glycine riboswitch located in the 5'-untranslated region of a sodium:alanine symporter family (SAF) protein gene in the group A Streptococcus pyogenes serotype M49 strain 591. Glycine-dependent gene expression mediated by riboswitch activity was studied using a luciferase reporter gene system. Maximal reporter gene expression was observed in the absence of glycine and in the presence of low glycine concentrations. Differences in glycine-dependent gene expression were not based on differential promoter activity. Expression of the SAF protein gene and the downstream putative cation efflux protein gene was investigated in wild-type bacteria by RT-qPCR transcript analyses. During growth in the presence of glycine (≥1 mM), expression of the genes were downregulated. Northern blot analyses revealed premature transcription termination in the presence of high glycine concentrations. Growth in the presence of 0.1 mM glycine led to the production of a full-length transcript. Furthermore, stability of the SAF protein gene transcript was drastically reduced in the presence of glycine. We conclude that the putative glycine riboswitch in S. pyogenes serotype M49 strain 591 represses expression of the SAF protein gene and the downstream putative cation efflux protein gene in the presence of high glycine concentrations. Sequence and secondary structure comparisons indicated that the streptococcal riboswitch belongs to the class of tandem aptamer glycine riboswitches.
Collapse
Affiliation(s)
- Afsaneh Khani
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nicole Popp
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
19
|
Abstract
In many bacterial species, the glycine riboswitch is composed of two homologous ligand-binding domains (aptamers) that each bind glycine and act together to regulate the expression of glycine metabolic and transport genes. While the structure and molecular dynamics of the tandem glycine riboswitch have been the subject of numerous in vitro studies, the in vivo behavior of the riboswitch remains largely uncharacterized. To examine the proposed models of tandem glycine riboswitch function in a biologically relevant context, we characterized the regulatory activity of mutations to the riboswitch structure in Bacillus subtilis using β-galactosidase assays. To assess the impact disruptions to riboswitch function have on cell fitness, we introduced these mutations into the native locus of the tandem glycine riboswitch within the B. subtilis genome. Our results indicate that glycine does not need to bind both aptamers for regulation in vivo and mutations perturbing riboswitch tertiary structure have the most severe effect on riboswitch function and gene expression. We also find that in B. subtilis, the glycine riboswitch-regulated gcvT operon is important for glycine detoxification.IMPORTANCE The glycine riboswitch is a unique cis-acting mRNA element that contains two tandem homologous glycine-binding domains that act on a single expression platform to regulate gene expression in response to glycine. While many in vitro experiments have characterized the tandem architecture of the glycine riboswitch, little work has investigated the behavior of this riboswitch in vivo In this study, we analyzed the proposed models of tandem glycine riboswitch regulation in the context of its native locus within the Bacillus subtilis genome and examined how disruptions to glycine riboswitch function impact organismal fitness. Our work offers new insights into riboswitch function in vivo and reinforces the potential of riboswitches as novel antimicrobial targets.
Collapse
|
20
|
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. Proc Natl Acad Sci U S A 2017; 114:E2077-E2085. [PMID: 28265071 DOI: 10.1073/pnas.1619581114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Riboswitches are RNAs that form complex, folded structures that selectively bind small molecules or ions. As with certain groups of protein enzymes and receptors, some riboswitch classes have evolved to change their ligand specificity. We developed a procedure to systematically analyze known riboswitch classes to find additional variants that have altered their ligand specificity. This approach uses multiple-sequence alignments, atomic-resolution structural information, and riboswitch gene associations. Among the discoveries are unique variants of the guanine riboswitch class that most tightly bind the nucleoside 2'-deoxyguanosine. In addition, we identified variants of the glycine riboswitch class that no longer recognize this amino acid, additional members of a rare flavin mononucleotide (FMN) variant class, and also variants of c-di-GMP-I and -II riboswitches that might recognize different bacterial signaling molecules. These findings further reveal the diverse molecular sensing capabilities of RNA, which highlights the potential for discovering a large number of additional natural riboswitch classes.
Collapse
|
21
|
Etzel M, Mörl M. Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry 2017; 56:1181-1198. [PMID: 28206750 DOI: 10.1021/acs.biochem.6b01218] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In synthetic biology, metabolic engineering, and gene therapy, there is a strong demand for orthogonal or externally controlled regulation of gene expression. Here, RNA-based regulatory devices represent a promising emerging alternative to proteins, allowing a fast and direct control of gene expression, as no synthesis of regulatory proteins is required. Besides programmable ribozyme elements controlling mRNA stability, regulatory RNA structures in untranslated regions are highly interesting for engineering approaches. Riboswitches are especially well suited, as they show a modular composition of sensor and response elements, allowing a free combination of different modules in a plug-and-play-like mode. The sensor or aptamer domain specifically interacts with a trigger molecule as a ligand, modulating the activity of the adjacent response domain that controls the expression of the genes located downstream, in most cases at the level of transcription or translation. In this review, we discuss the recent advances and strategies for designing such synthetic riboswitches based on natural or artificial components and readout systems, from trial-and-error approaches to rational design strategies. As the past several years have shown dramatic development in this fascinating field of research, we can give only a limited overview of the basic riboswitch design principles that is far from complete, and we apologize for not being able to consider every successful and interesting approach described in the literature.
Collapse
Affiliation(s)
- Maja Etzel
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Ruff KM, Muhammad A, McCown PJ, Breaker RR, Strobel SA. Singlet glycine riboswitches bind ligand as well as tandem riboswitches. RNA (NEW YORK, N.Y.) 2016; 22:1728-1738. [PMID: 27659053 PMCID: PMC5066625 DOI: 10.1261/rna.057935.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 05/21/2023]
Abstract
The glycine riboswitch often occurs in a tandem architecture, with two ligand-binding domains (aptamers) followed by a single expression platform. Based on previous observations, we hypothesized that "singlet" versions of the glycine riboswitch, which contain only one aptamer domain, are able to bind glycine if appropriate structural contacts are maintained. An initial alignment of 17 putative singlet riboswitches indicated that the single consensus aptamer domain is flanked by a conserved peripheral stem-loop structure. These singlets were sorted into two subtypes based on whether the active aptamer domain precedes or follows the peripheral stem-loop, and an example of each subtype of singlet riboswitch was characterized biochemically. The singlets possess glycine-binding affinities comparable to those of previously published tandem examples, and the conserved peripheral domains form A-minor interactions with the single aptamer domain that are necessary for ligand-binding activity. Analysis of sequenced genomes identified a significant number of singlet glycine riboswitches. Based on these observations, we propose an expanded model for glycine riboswitch gene control that includes singlet and tandem architectures.
Collapse
Affiliation(s)
- Karen M Ruff
- Department of Molecular Biophysics and Biochemistry
| | | | - Phillip J McCown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
23
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
24
|
Esquiaqui JM, Sherman EM, Ye JD, Fanucci GE. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink–Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling. Biochemistry 2016; 55:4295-305. [DOI: 10.1021/acs.biochem.6b00287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jackie M. Esquiaqui
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Eileen M. Sherman
- Department
of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Jing-Dong Ye
- Department
of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Gail E. Fanucci
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
25
|
Ketterer S, Gladis L, Kozica A, Meier M. Engineering and characterization of fluorogenic glycine riboswitches. Nucleic Acids Res 2016; 44:5983-92. [PMID: 27220466 PMCID: PMC4937332 DOI: 10.1093/nar/gkw465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/15/2016] [Indexed: 11/20/2022] Open
Abstract
A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties.
Collapse
Affiliation(s)
- Simon Ketterer
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Lukas Gladis
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Adnan Kozica
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Centre for Biological Signalling Studies-BIOSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Song L, Liu Z, Kaur P, Esquiaqui JM, Hunter RI, Hill S, Smith GM, Fanucci GE. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:188-196. [PMID: 26923151 DOI: 10.1016/j.jmr.2016.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.
Collapse
Affiliation(s)
- Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Zhanglong Liu
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Pavanjeet Kaur
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Jackie M Esquiaqui
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Robert I Hunter
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, United Kingdom
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Graham M Smith
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, United Kingdom
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA.
| |
Collapse
|
27
|
Abstract
Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.
Collapse
|
28
|
Perez-Gonzalez C, Grondin JP, Lafontaine DA, Carlos Penedo J. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:157-91. [PMID: 27193543 DOI: 10.1007/978-3-319-32189-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The last decade has witnessed the discovery of a variety of non-coding RNA sequences that perform a broad range of crucial biological functions. Among these, the ability of certain RNA sequences, so-called riboswitches, has attracted considerable interest. Riboswitches control gene expression in response to the concentration of particular metabolites to which they bind without the need for any protein. These RNA switches not only need to adopt a very specific tridimensional structure to perform their function, but also their sequence has been evolutionary optimized to recognize a particular metabolite with high affinity and selectivity. Thus, riboswitches offer a unique opportunity to get fundamental insights into RNA plasticity and how folding dynamics and ligand recognition mechanisms have been efficiently merged to control gene regulation. Because riboswitch sequences have been mostly found in bacterial organisms controlling the expression of genes associated to the synthesis, degradation or transport of crucial metabolites for bacterial survival, they offer exciting new routes for antibiotic development in an era where bacterial resistance is more than ever challenging conventional drug discovery strategies. Here, we give an overview of the architecture, diversity and regulatory mechanisms employed by riboswitches with particular emphasis on the biophysical methods currently available to characterise their structure and functional dynamics.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
29
|
Hecker N, Christensen-Dalsgaard M, Seemann SE, Havgaard JH, Stadler PF, Hofacker IL, Nielsen H, Gorodkin J. Optimizing RNA structures by sequence extensions using RNAcop. Nucleic Acids Res 2015; 43:8135-45. [PMID: 26283181 PMCID: PMC4787817 DOI: 10.1093/nar/gkv813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022] Open
Abstract
A key aspect of RNA secondary structure prediction is the identification of novel functional elements. This is a challenging task because these elements typically are embedded in longer transcripts where the borders between the element and flanking regions have to be defined. The flanking sequences impact the folding of the functional elements both at the level of computational analyses and when the element is extracted as a transcript for experimental analysis. Here, we analyze how different flanking region lengths impact folding into a constrained structure by computing probabilities of folding for different sizes of flanking regions. Our method, RNAcop (RNA context optimization by probability), is tested on known and de novo predicted structures. In vitro experiments support the computational analysis and suggest that for a number of structures, choosing proper lengths of flanking regions is critical. RNAcop is available as web server and stand-alone software via http://rth.dk/resources/rnacop.
Collapse
Affiliation(s)
- Nikolai Hecker
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Department of Veterinary Clinical and Animal Science, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Mikkel Christensen-Dalsgaard
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Bledgamsvej 3, 2200 Copenhagen N, Denmark
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Department of Veterinary Clinical and Animal Science, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Jakob H Havgaard
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Department of Veterinary Clinical and Animal Science, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Peter F Stadler
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Bioinformatics Group, Department of Computer Science & IZBI-Interdisciplinary Center for Bioinformatics & LIFE-Leipzig Research Center for Civilization Diseases, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Wien, Austria Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Ivo L Hofacker
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Wien, Austria
| | - Henrik Nielsen
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Bledgamsvej 3, 2200 Copenhagen N, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark Department of Veterinary Clinical and Animal Science, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| |
Collapse
|
30
|
Peselis A, Gao A, Serganov A. Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie 2015; 117:100-9. [PMID: 26143008 DOI: 10.1016/j.biochi.2015.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2023]
Abstract
Recent progress in identification and characterization of novel types of non-coding RNAs has proven that RNAs carry out a variety of cellular functions ranging from scaffolding to gene expression control. In both prokaryotic and eukaryotic cells, several classes of non-coding RNAs control expression of dozens of genes in response to specific cues. One of the most interesting and outstanding questions in the RNA field is whether regulatory RNAs are capable of employing basic biological concepts, such as allostery and cooperativity, previously attributed to the function of proteins. Aside from regulatory RNAs that form complementary base pairing with their nucleic acid targets, several RNA classes modulate gene expression via molecular mechanisms which can be paralleled to protein-mediated regulation. Among these RNAs are riboswitches, metabolite-sensing non-coding regulatory elements that adopt intrinsic three-dimensional structures and specifically bind various small molecule ligands. These characteristics of riboswitches make them well-suited for complex regulatory responses observed in allosteric and cooperative protein systems. Here we present an overview of the biochemical, genetic, and structural studies of riboswitches with a major focus on complex regulatory mechanisms and biological principles utilized by riboswitches for such genetic modulation.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
31
|
Jones CP, Ferré-D'Amaré AR. RNA quaternary structure and global symmetry. Trends Biochem Sci 2015; 40:211-20. [PMID: 25778613 PMCID: PMC4380790 DOI: 10.1016/j.tibs.2015.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Many proteins associate into symmetric multisubunit complexes. Structural analyses suggested that, by contrast, virtually all RNAs with complex 3D structures function as asymmetric monomers. Recent crystal structures revealed that several biological RNAs exhibit global symmetry at the level of their tertiary and quaternary structures. Here we survey known examples of global RNA symmetry, including the true quaternary symmetry of the bacteriophage ϕ29 prohead RNA (pRNA) and the internal pseudosymmetry of the single-chain flavin mononucleotide (FMN), glycine, and cyclic di-AMP (c-di-AMP) riboswitches. For these RNAs, global symmetry stabilizes the RNA fold, coordinates ligand-RNA interactions, and facilitates association with symmetric binding partners.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
32
|
Ruff KM, Strobel SA. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA (NEW YORK, N.Y.) 2014; 20:1775-88. [PMID: 25246650 PMCID: PMC4201829 DOI: 10.1261/rna.047266.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/22/2014] [Indexed: 05/21/2023]
Abstract
The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.
Collapse
Affiliation(s)
- Karen M Ruff
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
33
|
Porter EB, Marcano-Velázquez JG, Batey RT. The purine riboswitch as a model system for exploring RNA biology and chemistry. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:919-930. [PMID: 24590258 PMCID: PMC4148472 DOI: 10.1016/j.bbagrm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/11/2022]
Abstract
Over the past decade the purine riboswitch, and in particular its nucleobase-binding aptamer domain, has emerged as an important model system for exploring various aspects of RNA structure and function. Its relatively small size, structural simplicity and readily observable activity enable application of a wide variety of experimental approaches towards the study of this RNA. These analyses have yielded important insights into small molecule recognition, co-transcriptional folding and secondary structural switching, and conformational dynamics that serve as a paradigm for other RNAs. In this article, the current state of understanding of the purine riboswitch family and how this growing knowledge base is starting to be exploited in the creation of novel RNA devices are examined. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Ely B Porter
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Joan G Marcano-Velázquez
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
34
|
Sherman EM, Elsayed G, Esquiaqui JM, Elsayed M, Brinda B, Ye JD. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch. J Biochem 2014; 156:323-31. [PMID: 25092436 DOI: 10.1093/jb/mvu048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glycine riboswitches contain two aptamers and turn on the expression of downstream genes in bacteria. Although full-length glycine riboswitches were shown to exhibit no glycine-binding cooperativity, the truncated glycine riboswitches were confirmed to bind two glycine molecules cooperatively. Thorough understanding of the ligand-binding cooperativity may shed light on the molecular basis of the cooperativity and help design novel intricate biosensing genetic circuits for application in synthetic biology. A previously proposed sequential model does not readily provide explanation for published data showing a deleterious mutation in the first aptamer inhibiting the glycine binding of the second one. Using the glycine riboswitch from Vibrio cholerae as a model system, we have identified a region in the first aptamer that modulates the second aptamer function especially in the shortened glycine riboswitch. Importantly, this modulation can be rescued by the addition of a complementary oligodeoxynucleotide, demonstrating the feasibility of developing this system into novel genetic circuits that sense both glycine and a DNA signal.
Collapse
Affiliation(s)
- Eileen M Sherman
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Galal Elsayed
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Jackie M Esquiaqui
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Mohammed Elsayed
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Bryan Brinda
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
35
|
Esquiaqui JM, Sherman EM, Ionescu SA, Ye JD, Fanucci GE. Characterizing the dynamics of the leader-linker interaction in the glycine riboswitch with site-directed spin labeling. Biochemistry 2014; 53:3526-8. [PMID: 24849816 PMCID: PMC4059530 DOI: 10.1021/bi500404b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Site-directed
spin labeling with continuous wave electron paramagnetic
resonance (EPR) spectroscopy was utilized to characterize dynamic
features of the kink–turn motif formed through a leader–linker
interaction in the Vibrio cholerae glycine riboswitch.
Efficient incorporation of spin-labels into select sites within the
phosphate backbone of the leader–linker region proceeded via
splinted ligation of chemically synthesized spin-labeled oligonucleotides
to in vitro transcribed larger RNA fragments. The
resultant nitroxide EPR line shapes have spectral characteristics
consistent with a kink–turn motif and reveal differential backbone
dynamics that are modulated by the presence of magnesium, potassium,
and glycine.
Collapse
Affiliation(s)
- Jackie M Esquiaqui
- Department of Chemistry, University of Florida , P.O. Box 117200, Gainesville, Florida 32611, United States
| | | | | | | | | |
Collapse
|
36
|
Sherman EM, Holmes S, Ye JD. Specific RNA-binding antibodies with a four-amino-acid code. J Mol Biol 2014; 426:2145-57. [PMID: 24631830 DOI: 10.1016/j.jmb.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/23/2023]
Abstract
Numerous large non-coding RNAs are rapidly being discovered, and many of them have been shown to play vital roles in gene expression, gene regulation, and human diseases. Given their often structured nature, specific recognition with an antibody fragment becomes feasible and may help define the structure and function of these non-coding RNAs. As demonstrated for protein antigens, specific antibodies may aid in RNA crystal structure elucidation or the development of diagnostic tools and therapeutic drugs targeting disease-causing RNAs. Recent success and limitation of RNA antibody development has made it imperative to generate an effective antibody library specifically targeting RNA molecules. Adopting the reduced chemical diversity design and further restricting the interface diversity to tyrosines, serines, glycines, and arginines only, we have constructed a RNA-targeting Fab library. Phage display selection and downstream characterization showed that this library yielded high-affinity Fabs for all three RNA targets tested. Using a quantitative specificity assay, we found that these Fabs are highly specific, possibly due to the alternate codon design we used to avoid consecutive arginines in the Fab interface. In addition, the effectiveness of the minimal Fab library may challenge our view of the protein-RNA binding interface and provide a unique solution for future design of RNA-binding proteins.
Collapse
Affiliation(s)
- Eileen M Sherman
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| | - Sean Holmes
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA.
| |
Collapse
|
37
|
Esquiaqui JM, Sherman EM, Ye JD, Fanucci GE. Site-directed spin-labeling strategies and electron paramagnetic resonance spectroscopy for large riboswitches. Methods Enzymol 2014; 549:287-311. [PMID: 25432754 DOI: 10.1016/b978-0-12-801122-5.00013-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic regulation effected by RNA riboswitches is governed by ligand-induced structural reorganization with modulation of RNA conformation and dynamics. Characterization of the conformational states of riboswitches in the presence or absence of salts and ligands is important for understanding how interconversion of riboswitch RNA folding states influences function. The methodology of site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is suitable for such studies, wherein site-specific incorporation of a nitroxide radical spin probe allows for local dynamics and conformational changes to be investigated. This chapter reviews a strategy for SDSL-EPR studies of large riboswitches and uses the full length 232 nucleotide (nt) kink-turn motif-containing Vibrio cholerae (VC) glycine riboswitch as an example. Spin-labeling strategies and the challenges of incorporating spin labels into large riboswitches are reviewed and the approach to overcome these challenges is described. Results are subsequently presented illustrating changes in dynamics within the labeled region of the VC glycine riboswitch as observed using SDSL-EPR.
Collapse
Affiliation(s)
- Jackie M Esquiaqui
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Eileen M Sherman
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA.
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
38
|
Moll I, Fabbretti A, Brandi L, Gualerzi CO. Inhibitors Targeting Riboswitches and Ribozymes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
39
|
Hamachi K, Hayashi H, Shimamura M, Yamaji Y, Kaneko A, Fujisawa A, Umehara T, Tamura K. Glycols modulate terminator stem stability and ligand-dependency of a glycine riboswitch. Biosystems 2013; 113:59-65. [PMID: 23721735 DOI: 10.1016/j.biosystems.2013.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The Bacillus subtilis glycine riboswitch comprises tandem glycine-binding aptamers and a putative terminator stem followed by the gcvT operon. Gene expression is regulated via the sensing of glycine. However, we found that the riboswitch behaves in a "glycine-independent" manner in the presence of polyethylene glycol (PEG) and ethylene glycol. The effect is related to the formation of a terminator stem within the expression platform under such conditions. The results revealed that increasing PEG stabilized the structure of the terminator stem. By contrast, the addition of ethylene glycol destabilized the terminator stem. PEG and ethylene glycol have opposite effects on transcription as well as on stable terminator stem formation. The glycine-independency of the riboswitch and the effects of such glycols might shed light on the evolution of riboswitches.
Collapse
Affiliation(s)
- Kokoro Hamachi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mujahid S, Orsi RH, Vangay P, Boor KJ, Wiedmann M. Refinement of the Listeria monocytogenes σB regulon through quantitative proteomic analysis. MICROBIOLOGY-SGM 2013; 159:1109-1119. [PMID: 23618998 DOI: 10.1099/mic.0.066001-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
σ(B) is an alternative σ factor that regulates stress response and virulence genes in the foodborne pathogen Listeria monocytogenes. To gain further insight into σ(B)-dependent regulatory mechanisms in L. monocytogenes, we (i) performed quantitative proteomic comparisons between the L. monocytogenes parent strain 10403S and an isogenic ΔsigB mutant and (ii) conducted a meta-analysis of published microarray studies on the 10403S σ(B) regulon. A total of 134 genes were found to be significantly positively regulated by σ(B) at the transcriptomic level with >75 % of these genes preceded by putative σ(B)-dependent promoters; 21 of these 134 genes were also found to be positively regulated by σ(B) through proteomics. In addition, 15 proteins were only found to be positively regulated by σ(B) through proteomics analyses, including Lmo1349, a putative glycine cleavage system protein. The lmo1349 gene is preceded by a 5' UTR that functions as a glycine riboswitch, which suggests regulation of glycine metabolism by σ(B) in L. monocytogenes. Herein, we propose a model where σ(B) upregulates pathways that facilitate biosynthesis and uptake of glycine, which may then activate this riboswitch. Our data also (i) identified a number of σ(B)-dependent proteins that appear to be encoded by genes that are co-regulated by multiple transcriptional regulators, in particular PrfA, and (ii) found σ(B)-dependent genes and proteins to be overrepresented in the 'energy metabolism' role category, highlighting contributions of the σ(B) regulon to L. monocytogenes energy metabolism as well as a role of PrfA and σ(B) interaction in regulating aspects of energy metabolism in L. monocytogenes.
Collapse
Affiliation(s)
- S Mujahid
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - R H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - P Vangay
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - K J Boor
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Abstract
Riboswitches were discovered in 2002 in bacteria as RNA-based intracellular sensors of vitamin derivatives. During the last decade, naturally occurring RNA sensor elements have been found to bind a range of small metabolites and ions and to exert regulatory control of transcription, translation, splicing, and RNA stability. Extensive biochemical, structural, and genetic studies have established the basic principles underpinning riboswitch function in all three kingdoms of life with implications for developing antibiotics, designing new molecular sensors, and integrating riboswitches into synthetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
42
|
Baird NJ, Ferré-D’Amaré AR. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. RNA (NEW YORK, N.Y.) 2013; 19:167-76. [PMID: 23249744 PMCID: PMC3543082 DOI: 10.1261/rna.036269.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/03/2012] [Indexed: 05/21/2023]
Abstract
Most known glycine riboswitches have two homologous aptamer domains arranged in tandem and separated by a short linker. The two aptamers associate through reciprocal "quaternary" interactions that have been proposed to result in cooperative glycine binding. Recently, the interaptamer linker was found to form helix P0 with a previously unrecognized segment 5' to the first aptamer domain. P0 was shown to increase glycine affinity, abolish cooperativity, and conform to the K-turn motif consensus. We examine the global thermodynamic and structural role of P0 using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS), respectively. To evaluate the generality of P0 function, we prepared glycine riboswitch constructs lacking and including P0 from Bacillus subtilis, Fusobacterium nucleatum, and Vibrio cholerae. We find that P0 indeed folds into a K-turn, supports partial pre-folding of all three glycine-free RNAs, and is required for ITC observation of glycine binding under physiologic Mg(2+) concentrations. Except for the unusually small riboswitch from F. nucleatum, the K-turn is needed for maximally compacting the glycine-bound states of the RNAs. Formation of a ribonucleoprotein complex between the B. subtilis or the F. nucleatum RNA constructs and the bacterial K-turn binding protein YbxF promotes additional folding of the free riboswitch, and enhances glycine binding. Consistent with the previously reported loss of cooperativity, P0-containing B. subtilis and V. cholerae tandem aptamers bound no more than one glycine molecule per riboswitch. Our results indicate that the P0 K-turn helps organize the quaternary structure of tandem glycine riboswitches, thereby facilitating ligand binding under physiologic conditions.
Collapse
|