1
|
Soni K, Horvath A, Dybkov O, Schwan M, Trakansuebkul S, Flemming D, Wild K, Urlaub H, Fischer T, Sinning I. Structures of aberrant spliceosome intermediates on their way to disassembly. Nat Struct Mol Biol 2025; 32:914-925. [PMID: 39833470 PMCID: PMC12086092 DOI: 10.1038/s41594-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-Bact spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly. We identify the DEAH-box helicase-G-patch protein pair (Gih35-Gpl1, homologous to human DHX35-GPATCH1) and show how it maintains catalytic dormancy. In both structures, Gpl1 recognizes a remodeled active site introduced by an overstabilization of the U5 loop I interaction with the 5' exon leading to a single-nucleotide insertion at the 5' splice site. Remodeling is communicated to the spliceosome surface and the Ntr1 complex that mediates disassembly is recruited. Our data pave the way for a targeted analysis of splicing quality control.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Merlin Schwan
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sasanan Trakansuebkul
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
2
|
Zhan X, Lu Y, Shi Y. Molecular basis for the activation of human spliceosome. Nat Commun 2024; 15:6348. [PMID: 39068178 PMCID: PMC11283556 DOI: 10.1038/s41467-024-50785-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Peyda P, Wohlschlegel J, Black DL. The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. Mol Cell 2024; 84:1496-1511.e7. [PMID: 38537639 PMCID: PMC11057915 DOI: 10.1016/j.molcel.2024.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Huang
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lin Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Parham Peyda
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Wohlschlegel J, Black DL. The apoptotic splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558883. [PMID: 37790489 PMCID: PMC10542197 DOI: 10.1101/2023.09.21.558883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding the mechanisms of pre-mRNA splicing and spliceosome assembly is limited by technical challenges to examining spliceosomes in vivo. Here we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of lysed nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA, bound with intronic branch sites prior to the first catalytic step of splicing. Sequencing these pre-mRNA fragments allowed the transcriptome-wide mapping of branch sites with high sensitivity. In addition to known U2 snRNP proteins, these complexes contained the proteins RBM5 and RBM10. RBM5 and RBM10 are alternative splicing regulators that control exons affecting apoptosis and cell proliferation in cancer, but were not previously shown to associate with the U2 snRNP or to play roles in branch site selection. We delineate a common segment of RBM5 and RBM10, separate from their known functional domains, that is required for their interaction with the U2 snRNP. We identify a large set of splicing events regulated by RBM5 and RBM10 and find that they predominantly act as splicing silencers. Disruption of their U2 interaction renders the proteins inactive for repression of many alternative exons. We further find that these proteins assemble on branch sites of nearly all exons across the transcriptome, including those whose splicing is not altered by them. We propose a model where RBM5 and RBM10 act as components of the U2 snRNP complex. From within this complex, they sense structural features of branchpoint recognition to either allow progression to functional spliceosome or rejection of the complex to inhibit splicing.
Collapse
|
5
|
Agrò SN, Rozza R, Movilla S, Aupič J, Magistrato A. Molecular Dynamics Simulations Elucidate the Molecular Basis of Pre-mRNA Translocation by the Prp2 Spliceosomal Helicase. J Chem Inf Model 2023. [PMID: 37379492 DOI: 10.1021/acs.jcim.3c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The spliceosome machinery catalyzes precursor-messenger RNA (pre-mRNA) splicing by undergoing at each splicing cycle assembly, activation, catalysis, and disassembly processes, thanks to the concerted action of specific RNA-dependent ATPases/helicases. Prp2, a member of the DExH-box ATPase/helicase family, harnesses the energy of ATP hydrolysis to translocate a single pre-mRNA strand in the 5' to 3' direction, thus promoting spliceosome remodeling to its catalytic-competent state. Here, we established the functional coupling between ATPase and helicase activities of Prp2. Namely, extensive multi-μs molecular dynamics simulations allowed us to unlock how, after pre-mRNA selection, ATP binding, hydrolysis, and dissociation induce a functional typewriter-like rotation of the Prp2 C-terminal domain. This movement, endorsed by an iterative swing of interactions established between specific Prp2 residues with the nucleobases at 5'- and 3'-ends of pre-mRNA, promotes pre-mRNA translocation. Notably, some of these Prp2 residues are conserved in the DExH-box family, suggesting that the translocation mechanism elucidated here may be applicable to all DExH-box helicases.
Collapse
Affiliation(s)
- Sefora Naomi Agrò
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Riccardo Rozza
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Jana Aupič
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)─Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
6
|
Schmitzová J, Cretu C, Dienemann C, Urlaub H, Pena V. Structural basis of catalytic activation in human splicing. Nature 2023; 617:842-850. [PMID: 37165190 PMCID: PMC10208982 DOI: 10.1038/s41586-023-06049-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Pre-mRNA splicing follows a pathway driven by ATP-dependent RNA helicases. A crucial event of the splicing pathway is the catalytic activation, which takes place at the transition between the activated Bact and the branching-competent B* spliceosomes. Catalytic activation occurs through an ATP-dependent remodelling mediated by the helicase PRP2 (also known as DHX16)1-3. However, because PRP2 is observed only at the periphery of spliceosomes3-5, its function has remained elusive. Here we show that catalytic activation occurs in two ATP-dependent stages driven by two helicases: PRP2 and Aquarius. The role of Aquarius in splicing has been enigmatic6,7. Here the inactivation of Aquarius leads to the stalling of a spliceosome intermediate-the BAQR complex-found halfway through the catalytic activation process. The cryogenic electron microscopy structure of BAQR reveals how PRP2 and Aquarius remodel Bact and BAQR, respectively. Notably, PRP2 translocates along the intron while it strips away the RES complex, opens the SF3B1 clamp and unfastens the branch helix. Translocation terminates six nucleotides downstream of the branch site through an assembly of PPIL4, SKIP and the amino-terminal domain of PRP2. Finally, Aquarius enables the dissociation of PRP2, plus the SF3A and SF3B complexes, which promotes the relocation of the branch duplex for catalysis. This work elucidates catalytic activation in human splicing, reveals how a DEAH helicase operates and provides a paradigm for how helicases can coordinate their activities.
Collapse
Affiliation(s)
- Jana Schmitzová
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constantin Cretu
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK
- Cluster of Excellence Multiscale Bioimaging (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christian Dienemann
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Sciences, Göttingen, Germany
| | - Vladimir Pena
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
| |
Collapse
|
7
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
8
|
Bertrand RE, Wang J, Li Y, Cheng X, Wang K, Stoilov P, Chen R. Cwc27, associated with retinal degeneration, functions as a splicing factor in vivo. Hum Mol Genet 2022; 31:1278-1292. [PMID: 34726245 PMCID: PMC9029344 DOI: 10.1093/hmg/ddab319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Previous in vitro studies indicate that CWC27 functions as a splicing factor in the Bact spliceosome complex, interacting with CWC22 to form a landing platform for eIF4A3, a core component of the exon junction complex. However, the function of CWC27 as a splicing factor has not been validated in any in vivo systems. CWC27 variants have been shown to cause autosomal recessive retinal degeneration, in both syndromic and non-syndromic forms. The Cwc27K338fs/K338fs mouse model was shown to have significant retinal dysfunction and degeneration by 6 months of age. In this report, we have taken advantage of the Cwc27K338fs/K338fs mouse model to show that Cwc27 is involved in splicing in vivo in the context of the retina. Bulk RNA and single cell RNA-sequencing of the mouse retina showed that there were gene expression and splicing pattern changes, including alternative splice site usage and intron retention. Positive staining for CHOP suggests that ER stress may be activated in response to the splicing pattern changes and is a likely contributor to the disease mechanism. Our results provide the first evidence that CWC27 functions as a splicing factor in an in vivo context. The splicing defects and gene expression changes observed in the Cwc27K338fs/K338fs mouse retina provide insight to the potential disease mechanisms, paving the way for targeted therapeutic development.
Collapse
Affiliation(s)
- Renae Elaine Bertrand
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Jobbins AM, Campagne S, Weinmeister R, Lucas CM, Gosliga AR, Clery A, Chen L, Eperon LP, Hodson MJ, Hudson AJ, Allain FHT, Eperon IC. Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3. EMBO J 2022; 41:e107640. [PMID: 34779515 PMCID: PMC8724738 DOI: 10.15252/embj.2021107640] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.
Collapse
Affiliation(s)
- Andrew M Jobbins
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
MRC London Institute of Medical SciencesLondonUK
- Present address:
Institute of Clinical SciencesImperial College LondonLondonUK
| | - Sébastien Campagne
- Institute of BiochemistryETH ZürichSwitzerland
- Present address:
Inserm U1212CNRS UMR5320ARNA LaboratoryBordeaux CedexFrance
| | - Robert Weinmeister
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | - Christian M Lucas
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Alison R Gosliga
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
Institut für Industrielle GenetikAbt.(eilung) SystembiologieUniversität StuttgartStuttgartGermany
| | | | - Li Chen
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Lucy P Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Mark J Hodson
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Andrew J Hudson
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | | | - Ian C Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| |
Collapse
|
10
|
Hamann F, Zimmerningkat LC, Becker RA, Garbers TB, Neumann P, Hub JS, Ficner R. The structure of Prp2 bound to RNA and ADP-BeF 3- reveals structural features important for RNA unwinding by DEAH-box ATPases. Acta Crystallogr D Struct Biol 2021; 77:496-509. [PMID: 33825710 PMCID: PMC8025883 DOI: 10.1107/s2059798321001194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
Noncoding intron sequences present in precursor mRNAs need to be removed prior to translation, and they are excised via the spliceosome, a multimegadalton molecular machine composed of numerous protein and RNA components. The DEAH-box ATPase Prp2 plays a crucial role during pre-mRNA splicing as it ensures the catalytic activation of the spliceosome. Despite high structural similarity to other spliceosomal DEAH-box helicases, Prp2 does not seem to function as an RNA helicase, but rather as an RNA-dependent ribonucleoprotein particle-modifying ATPase. Recent crystal structures of the spliceosomal DEAH-box ATPases Prp43 and Prp22, as well as of the related RNA helicase MLE, in complex with RNA have contributed to a better understanding of how RNA binding and processivity might be achieved in this helicase family. In order to shed light onto the divergent manner of function of Prp2, an N-terminally truncated construct of Chaetomium thermophilum Prp2 was crystallized in the presence of ADP-BeF3- and a poly-U12 RNA. The refined structure revealed a virtually identical conformation of the helicase core compared with the ADP-BeF3-- and RNA-bound structure of Prp43, and only a minor shift of the C-terminal domains. However, Prp2 and Prp43 differ in the hook-loop and a loop of the helix-bundle domain, which interacts with the hook-loop and evokes a different RNA conformation immediately after the 3' stack. On replacing these loop residues in Prp43 by the Prp2 sequence, the unwinding activity of Prp43 was abolished. Furthermore, a putative exit tunnel for the γ-phosphate after ATP hydrolysis could be identified in one of the Prp2 structures.
Collapse
Affiliation(s)
- Florian Hamann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Georg-August-University Göttingen, Göttingen, Germany
| | - Lars C. Zimmerningkat
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Robert A. Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Tim B. Garbers
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Bai R, Wan R, Yan C, Jia Q, Lei J, Shi Y. Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2. Science 2020; 371:science.abe8863. [PMID: 33243853 DOI: 10.1126/science.abe8863] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Spliceosome remodeling, executed by conserved adenosine triphosphatase (ATPase)/helicases including Prp2, enables precursor messenger RNA (pre-mRNA) splicing. However, the structural basis for the function of the ATPase/helicases remains poorly understood. Here, we report atomic structures of Prp2 in isolation, Prp2 complexed with its coactivator Spp2, and Prp2-loaded activated spliceosome and the results of structure-guided biochemical analysis. Prp2 weakly associates with the spliceosome and cannot function without Spp2, which stably associates with Prp2 and anchors on the spliceosome, thus tethering Prp2 to the activated spliceosome and allowing Prp2 to function. Pre-mRNA is loaded into a featured channel between the N and C halves of Prp2, where Leu536 from the N half and Arg844 from the C half prevent backward sliding of pre-mRNA toward its 5'-end. Adenosine 5'-triphosphate binding and hydrolysis trigger interdomain movement in Prp2, which drives unidirectional stepwise translocation of pre-mRNA toward its 3'-end. These conserved mechanisms explain the coupling of spliceosome remodeling to pre-mRNA splicing.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Jia
- Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Advanced Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
13
|
Mendelsohn BA, Beleford DT, Abu-El-Haija A, Alsaleh NS, Rahbeeni Z, Martin PM, Rego S, Huang A, Capodanno G, Shieh JT, Van Ziffle J, Risch N, Alkuraya FS, Slavotinek AM. A novel truncating variant in ring finger protein 113A (RNF113A) confirms the association of this gene with X-linked trichothiodystrophy. Am J Med Genet A 2019; 182:513-520. [PMID: 31880405 DOI: 10.1002/ajmg.a.61450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
We describe an 11-year old boy with severe global developmental delays, failure to thrive and growth retardation, refractory seizures with recurrent status epilepticus, hypogammaglobulinemia, hypergonadotropic hypogonadism, and duodenal strictures. He had facial and skin findings compatible with trichothiodystrophy, including sparse and brittle hair, thin eyebrows, and dry skin. Exome sequencing showed a hemizygous, truncating variant in RNF113A, c.903_910delGCAGACCA, predicting p.(Gln302fs*12), that was inherited from his mother. Although his clinical features overlap closely with features described in the two previously reported male first cousins with RNF113A loss of function mutations, the duodenal strictures seen in this patient have not been reported. Interestingly, the patient's mother had short stature and 100% skewed X-inactivation as seen in other obligate female carriers. A second male with developmental delays, microcephaly, seizures, ambiguous genitalia, and facial anomalies that included sparse and brittle hair, thin eyebrows and dry skin was recently reported to have c.897_898delTG, predicting p.(Cys299*) in RNF113A and we provide additional clinical details for this patient. This report further supports deleterious variants in RNF113A as a cause of a novel trichothiodystrophy syndrome.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Daniah T Beleford
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Aya Abu-El-Haija
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Norah S Alsaleh
- Division of Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Pierre-Marie Martin
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Shannon Rego
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Alyssa Huang
- Division of Pediatric Endocrinology, University of California, San Francisco, California
| | - Gina Capodanno
- Division of Pediatric Endocrinology, University of California, San Francisco, California
| | - Joseph T Shieh
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Jessica Van Ziffle
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Fowzan S Alkuraya
- Division of Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Anne M Slavotinek
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Wu NY, Cheng SC. Functional analysis of Cwc24 ZF-domain in 5' splice site selection. Nucleic Acids Res 2019; 47:10327-10339. [PMID: 31504764 PMCID: PMC6821175 DOI: 10.1093/nar/gkz733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
The essential splicing factor Cwc24 contains a zinc-finger (ZF) domain required for its function in splicing. Cwc24 binds over the 5' splice site after the spliceosome is activated, and its binding prior to Prp2-mediated spliceosome remodeling is important for proper interactions of U5 and U6 with the 5' splice site sequence and selection of the 5' splice site. Here, we show that Cwc24 transiently interacts with the 5' splice site in formation of the functional RNA catalytic core during spliceosome remodeling, and the ZF-motif is required for specific interaction of Cwc24 with the 5' splice site. Deletion of the ZF domain or mutation of the conserved ZF residues greatly weakened the association of Cwc24 with the spliceosome, and lowered the affinity and specificity of its interaction with the 5' splice site, resulting in atypical interactions of U5, U6 and Prp8 with the 5' splice site, and aberrant cleavage at the 5' splice site. Our results reveal a crucial role of the Cwc24 ZF-motif for defining 5' splice site selection in the first splicing step.
Collapse
Affiliation(s)
- Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
16
|
Kastner B, Will CL, Stark H, Lührmann R. Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:a032417. [PMID: 30765414 PMCID: PMC6824238 DOI: 10.1101/cshperspect.a032417] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The spliceosome is a highly complex, dynamic ribonucleoprotein molecular machine that undergoes numerous structural and compositional rearrangements that lead to the formation of its active site. Recent advances in cyroelectron microscopy (cryo-EM) have provided a plethora of near-atomic structural information about the inner workings of the spliceosome. Aided by previous biochemical, structural, and functional studies, cryo-EM has confirmed or provided a structural basis for most of the prevailing models of spliceosome function, but at the same time allowed novel insights into splicing catalysis and the intriguing dynamics of the spliceosome. The mechanism of pre-mRNA splicing is highly conserved between humans and yeast, but the compositional dynamics and ribonucleoprotein (RNP) remodeling of the human spliceosome are more complex. Here, we summarize recent advances in our understanding of the molecular architecture of the human spliceosome, highlighting differences between the human and yeast splicing machineries.
Collapse
Affiliation(s)
- Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
17
|
Jobbins AM, Reichenbach LF, Lucas CM, Hudson AJ, Burley GA, Eperon IC. The mechanisms of a mammalian splicing enhancer. Nucleic Acids Res 2019; 46:2145-2158. [PMID: 29394380 PMCID: PMC5861446 DOI: 10.1093/nar/gky056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Abstract
Exonic splicing enhancer (ESE) sequences are bound by serine & arginine-rich (SR) proteins, which in turn enhance the recruitment of splicing factors. It was inferred from measurements of splicing around twenty years ago that Drosophila doublesex ESEs are bound stably by SR proteins, and that the bound proteins interact directly but with low probability with their targets. However, it has not been possible with conventional methods to demonstrate whether mammalian ESEs behave likewise. Using single molecule multi-colour colocalization methods to study SRSF1-dependent ESEs, we have found that that the proportion of RNA molecules bound by SRSF1 increases with the number of ESE repeats, but only a single molecule of SRSF1 is bound. We conclude that initial interactions between SRSF1 and an ESE are weak and transient, and that these limit the activity of a mammalian ESE. We tested whether the activation step involves the propagation of proteins along the RNA or direct interactions with 3' splice site components by inserting hexaethylene glycol or abasic RNA between the ESE and the target 3' splice site. These insertions did not block activation, and we conclude that the activation step involves direct interactions. These results support a model in which regulatory proteins bind transiently and in dynamic competition, with the result that each ESE in an exon contributes independently to the probability that an activator protein is bound and in close proximity to a splice site.
Collapse
Affiliation(s)
- Andrew M Jobbins
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, UK
| | | | - Christian M Lucas
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, UK
| | - Andrew J Hudson
- Leicester Institute of Structural & Chemical Biology and Department of Chemistry, University of Leicester, UK
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, UK
| | - Ian C Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, UK
| |
Collapse
|
18
|
Bao P, Boon KL, Will CL, Hartmuth K, Lührmann R. Multiple RNA-RNA tertiary interactions are dispensable for formation of a functional U2/U6 RNA catalytic core in the spliceosome. Nucleic Acids Res 2019; 46:12126-12138. [PMID: 30335160 PMCID: PMC6294511 DOI: 10.1093/nar/gky966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 01/24/2023] Open
Abstract
The active 3D conformation of the spliceosome's catalytic U2/U6 RNA core is stabilised by a network of secondary and tertiary RNA interactions, but also depends on spliceosomal proteins for its formation. To determine the contribution towards splicing of specific RNA secondary and tertiary interactions in the U2/U6 RNA core, we introduced mutations in critical U6 nucleotides and tested their effect on splicing using a yeast in vitro U6 depletion/complementation system. Elimination of selected RNA tertiary interactions involving the U6 catalytic triad, or deletions of the bases of U6-U80 or U6-A59, had moderate to no effect on splicing, showing that the affected secondary and tertiary interactions are not required for splicing catalysis. However, removal of the base of U6-G60 of the catalytic triad completely blocked splicing, without affecting assembly of the activated spliceosome or its subsequent conversion into a B*-like complex. Our data suggest that the catalytic configuration of the RNA core that allows catalytic metal M1 binding can be maintained by Protein–RNA contacts. However, RNA stacking interactions in the U2/U6 RNA core are required for productive coordination of metal M2. The functional conformation of the U2/U6 RNA core is thus highly buffered, with overlapping contributions from RNA–RNA and Protein–RNA interactions.
Collapse
Affiliation(s)
- Penghui Bao
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Kum-Loong Boon
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
19
|
Eysmont K, Matylla-Kulińska K, Jaskulska A, Magnus M, Konarska MM. Rearrangements within the U6 snRNA Core during the Transition between the Two Catalytic Steps of Splicing. Mol Cell 2019; 75:538-548.e3. [PMID: 31229405 DOI: 10.1016/j.molcel.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Abstract
The RNA catalytic core of spliceosomes as visualized by cryoelectron microscopy (cryo-EM) remains unchanged at different stages of splicing. However, we demonstrate that mutations within the core of yeast U6 snRNA modulate conformational changes between the two catalytic steps. We propose that the intramolecular stem-loop (ISL) of U6 exists in two competing states, changing between a default, non-catalytic conformation and a transient, catalytic conformation. Whereas stable interactions in the catalytic triplex promote catalysis and their disruptions favor exit from the catalytic conformation, destabilization of the lower ISL stem promotes catalysis and its stabilization supports exit from the catalytic conformation. Thus, in addition to the catalytic triplex, U6-ISL acts as an important dynamic component of the catalytic center. The relative flexibility of the lower U6-ISL stem is conserved across eukaryotes. Similar features are found in U6atac and domain V of group II introns, arguing for the generality of the proposed mechanism.
Collapse
Affiliation(s)
- Katarzyna Eysmont
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | - Agata Jaskulska
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Magnus
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Maria M Konarska
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
20
|
Gatti da Silva GH, Jurica MS, Chagas da Cunha JP, Oliveira CC, Coltri PP. Human RNF113A participates of pre-mRNA splicing in vitro. J Cell Biochem 2019; 120:8764-8774. [PMID: 30506991 DOI: 10.1002/jcb.28163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
Pre-messenger RNA (mRNA) splicing is an essential step in the control of eukaryotic gene expression. During splicing, the introns are removed from the gene transcripts as the exons are ligated to create mature mRNA sequences. Splicing is performed by the spliceosome, which is a macromolecular complex composed of five small nuclear RNAs (snRNAs) and more than 100 proteins. Except for the core snRNP proteins, most spliceosome proteins are transiently associated and presumably involved with the regulation of spliceosome activity. In this study, we explored the association and participation of the human protein RNF113A in splicing. The addition of excess recombinant RNF113A to in vitro splicing reactions results in splicing inhibition. In whole-cell lysates, RNF113A co-immunoprecipitated with U2, U4, and U6 snRNAs, which are components of the tri-snRNP, and with proteins PRP19 and BRR2. When HeLa cells were CRISPR-edited to reduce the RNF113A levels, the in vitro splicing efficiency was severely affected. Consistently, the splicing activity was partially restored after the addition of the recombinant GST-RNF113A. On the basis on these results, we propose a model in which RNF113A associates with the spliceosome by interacting with PRP19, promoting essential rearrangements that lead to splicing.
Collapse
Affiliation(s)
- Guilherme H Gatti da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S Jurica
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California
| | | | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Patricia P Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Abstract
To ensure efficient and accurate gene expression, pre-mRNA processing and mRNA export need to be balanced. However, how this balance is ensured remains largely unclear. Here, we found that SF3b, a component of U2 snRNP that participates in splicing and 3' processing of pre-mRNAs, interacts with the key mRNA export adaptor THO in vivo and in vitro. Depletion of SF3b reduces THO binding with the mRNA and causes nuclear mRNA retention. Consistently, introducing SF3b binding sites into the mRNA enhances THO recruitment and nuclear export in a dose-dependent manner. These data demonstrate a role of SF3b in promoting mRNA export. In support of this role, SF3b binds with mature mRNAs in the cells. Intriguingly, disruption of U2 snRNP by using a U2 antisense morpholino oligonucleotide does not inhibit, but promotes, the role of SF3b in mRNA export as a result of enhanced SF3b-THO interaction and THO recruitment to the mRNA. Together, our study uncovers a U2-snRNP-independent role of SF3b in mRNA export and suggests that SF3b contributes to balancing pre-mRNA processing and mRNA export.
Collapse
|
22
|
Wan R, Bai R, Yan C, Lei J, Shi Y. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. Cell 2019; 177:339-351.e13. [PMID: 30879786 DOI: 10.1016/j.cell.2019.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
23
|
Frankiw L, Majumdar D, Burns C, Vlach L, Moradian A, Sweredoski MJ, Baltimore D. BUD13 Promotes a Type I Interferon Response by Countering Intron Retention in Irf7. Mol Cell 2019; 73:803-814.e6. [DOI: 10.1016/j.molcel.2018.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/20/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023]
|
24
|
Yan C, Wan R, Shi Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Cold Spring Harb Perspect Biol 2019; 11:11/1/a032409. [PMID: 30602541 DOI: 10.1101/cshperspect.a032409] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is executed by the spliceosome. In the past 3 years, cryoelectron microscopy (cryo-EM) structures have been elucidated for a majority of the yeast spliceosomal complexes and for a few human spliceosomes. During the splicing reaction, the dynamic spliceosome has an immobile core of about 20 protein and RNA components, which are organized around a conserved splicing active site. The divalent metal ions, coordinated by U6 small nuclear RNA (snRNA), catalyze the branching reaction and exon ligation. The spliceosome also contains a mobile but compositionally stable group of about 13 proteins and a portion of U2 snRNA, which facilitate substrate delivery into the splicing active site. The spliceosomal transitions are driven by the RNA-dependent ATPase/helicases, resulting in the recruitment and dissociation of specific splicing factors that enable the reaction. In summary, the spliceosome is a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, Zhejiang Province, China
| |
Collapse
|
25
|
Schmitt A, Hamann F, Neumann P, Ficner R. Crystal structure of the spliceosomal DEAH-box ATPase Prp2. Acta Crystallogr D Struct Biol 2018; 74:643-654. [PMID: 29968674 PMCID: PMC6038383 DOI: 10.1107/s2059798318006356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
The DEAH-box ATPase Prp2 plays a key role in the activation of the spliceosome as it promotes the transition from the Bact to the catalytically active B* spliceosome. Here, four crystal structures of Prp2 are reported: one of the nucleotide-free state and three different structures of the ADP-bound state. The overall conformation of the helicase core, formed by two RecA-like domains, does not differ significantly between the ADP-bound and the nucleotide-free states. However, intrinsic flexibility of Prp2 is observed, varying the position of the C-terminal domains with respect to the RecA domains. Additionally, in one of the structures a unique ADP conformation is found which has not been observed in any other DEAH-box, DEAD-box or NS3/NPH-II helicase.
Collapse
Affiliation(s)
- Andreas Schmitt
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Florian Hamann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Su YL, Chen HC, Tsai RT, Lin PC, Cheng SC. Cwc23 is a component of the NTR complex and functions to stabilize Ntr1 and facilitate disassembly of spliceosome intermediates. Nucleic Acids Res 2018; 46:3764-3773. [PMID: 29390077 PMCID: PMC6044358 DOI: 10.1093/nar/gky052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
Cwc23 is a member of the J protein family, and has been shown to interact with Ntr1, a scaffold protein that interacts with Ntr2 and Prp43 to form the NTR complex that mediates spliceosome disassembly. We show that Cwc23 is also an intrinsic component of the NTR complex, and that it interacts with the carboxyl terminus of Ntr1. Metabolic depletion of Cwc23 concurrently depleted Ntr1 and Ntr2, suggesting a role for Cwc23 in stabilizing these two proteins. Ntr1, Ntr2 and Cwc23 are stoichiometrically balanced, and form a stable heterotrimer. Depletion of Cwc23 from splicing extracts using antibodies resulted in depletion of all three proteins and accumulation of intron-lariat in the splicing reaction. Cwc23 is not required for disassembly of intron-lariat spliceosome (ILS), but facilitates disassembly of spliceosome intermediates after the actions of Prp2 and Prp16 by stabilizing the association of Ntr1 with the spliceosome. Cwc23 has a more limited effect on the association of Ntr1 with the ILS. Our data suggest that Cwc23 is important for maintaining the levels of Ntr1 and Ntr2, and that it also plays a regulatory role in targeting spliceosome intermediates for disassembly.
Collapse
Affiliation(s)
- Yu-Lun Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Rong-Tzong Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Pei-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
27
|
Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Structure of the human activated spliceosome in three conformational states. Cell Res 2018; 28:307-322. [PMID: 29360106 PMCID: PMC5835773 DOI: 10.1038/cr.2018.14] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
During each cycle of pre-mRNA splicing, the pre-catalytic spliceosome (B complex) is converted into the activated spliceosome (Bact complex), which has a well-formed active site but cannot proceed to the branching reaction. Here, we present the cryo-EM structure of the human Bact complex in three distinct conformational states. The EM map allows atomic modeling of nearly all protein components of the U2 small nuclear ribonucleoprotein (snRNP), including three of the SF3a complex and seven of the SF3b complex. The structure of the human Bact complex contains 52 proteins, U2, U5, and U6 small nuclear RNA (snRNA), and a pre-mRNA. Three distinct conformations have been captured, representing the early, mature, and late states of the human Bact complex. These complexes differ in the orientation of the Switch loop of Prp8, the splicing factors RNF113A and NY-CO-10, and most components of the NineTeen complex (NTC) and the NTC-related complex. Analysis of these three complexes and comparison with the B and C complexes reveal an ordered flux of components in the B-to-Bact and the Bact-to-B* transitions, which ultimately prime the active site for the branching reaction.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Hangzhou, Zhejiang 310064, China
| |
Collapse
|
28
|
Bao P, Will CL, Urlaub H, Boon KL, Lührmann R. The RES complex is required for efficient transformation of the precatalytic B spliceosome into an activated B act complex. Genes Dev 2018; 31:2416-2429. [PMID: 29330354 PMCID: PMC5795787 DOI: 10.1101/gad.308163.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022]
Abstract
The precise function of the trimeric retention and splicing (RES) complex in pre-mRNA splicing remains unclear. Here we dissected the role of RES during the assembly and activation of yeast spliceosomes. The efficiency of pre-mRNA splicing was significantly lower in the absence of the RES protein Snu17, and the recruitment of its binding partners, Pml1 (pre-mRNA leakage protein 1) and Bud13 (bud site selection protein 13), to the spliceosome was either abolished or substantially reduced. RES was not required for the assembly of spliceosomal B complexes, but its absence hindered efficient Bact complex formation. ΔRES spliceosomes were no longer strictly dependent on Prp2 activity for their catalytic activation, suggesting that they are structurally compromised. Addition of Prp2, Spp2, and UTP to affinity-purified ΔRES B or a mixture of B/Bact complexes formed on wild-type pre-mRNA led to their disassembly. However, no substantial disassembly was observed with ΔRES spliceosomes formed on a truncated pre-mRNA that allows Prp2 binding but blocks its activity. Thus, in the absence of RES, Prp2 appears to bind prematurely, leading to the disassembly of the ΔRES B complexes to which it binds. Our data suggest that Prp2 can dismantle B complexes with an aberrant protein composition, suggesting that it may proofread the spliceosome's RNP structure prior to activation.
Collapse
Affiliation(s)
- Penghui Bao
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Kum-Loong Boon
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
29
|
Bao P, Höbartner C, Hartmuth K, Lührmann R. Yeast Prp2 liberates the 5' splice site and the branch site adenosine for catalysis of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2017; 23:1770-1779. [PMID: 28864812 PMCID: PMC5688998 DOI: 10.1261/rna.063115.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/31/2017] [Indexed: 05/20/2023]
Abstract
The RNA helicase Prp2 facilitates the remodeling of the spliceosomal Bact complex to the catalytically activated B* complex just before step one of splicing. As a high-resolution cryo-EM structure of the B* complex is currently lacking, the precise spliceosome remodeling events mediated by Prp2 remain poorly understood. To investigate the latter, we used chemical structure probing to compare the RNA structure of purified yeast Bact and B* complexes. Our studies reveal deviations from conventional RNA helices in the functionally important U6 snRNA internal stem-loop and U2/U6 helix Ib in the activated Bact complex, and to a lesser extent in B*. Interestingly, the N7 of U6-G60 of the catalytic triad becomes accessible to DMS modification in the B* complex, suggesting that the Hoogsteen interaction with U6-A52 is destabilized in B*. Our data show that Prp2 action does not unwind double-stranded RNA, but enhances the flexibility of the first step reactants, the pre-mRNA's 5' splice site and branch site adenosine. Prp2 therefore appears to act primarily as an RNPase to achieve catalytic activation by liberating the first step reactants in preparation for catalysis of the first step of splicing.
Collapse
Affiliation(s)
- Penghui Bao
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Claudia Höbartner
- Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, 37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
30
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
31
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Carrocci TJ, Zoerner DM, Paulson JC, Hoskins AA. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res 2017; 45:4837-4852. [PMID: 28062854 PMCID: PMC5416834 DOI: 10.1093/nar/gkw1349] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
RNA and protein components of the spliceosome work together to identify the 5΄ splice site, the 3΄ splice site, and the branchsite (BS) of nascent pre-mRNA. SF3b1 plays a key role in recruiting the U2 snRNP to the BS. Mutations in human SF3b1 have been linked to many diseases such as myelodysplasia (MDS) and cancer. We have used SF3b1 mutations associated with MDS to interrogate the role of the yeast ortholog, Hsh155, in BS selection and splicing. These alleles change how the spliceosome recognizes the BS and alter splicing when nonconsensus nucleotides are present at the −2, −1 and +1 positions relative to the branchpoint adenosine. This indicates that changes in BS usage observed in humans with SF3b1 mutations may result from perturbation of a conserved mechanism of BS recognition. Notably, different HSH155 alleles elicit disparate effects on splicing: some increase the fidelity of BS selection while others decrease fidelity. Our data support a model wherein conformational changes in SF3b1 promote U2 association with the BS independently of the action of the DEAD-box ATPase Prp5. We propose that SF3b1 functions to stabilize weak U2/BS duplexes to drive spliceosome assembly and splicing.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas M Zoerner
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
33
|
Fourmann JB, Tauchert MJ, Ficner R, Fabrizio P, Lührmann R. Regulation of Prp43-mediated disassembly of spliceosomes by its cofactors Ntr1 and Ntr2. Nucleic Acids Res 2017; 45:4068-4080. [PMID: 27923990 PMCID: PMC5397206 DOI: 10.1093/nar/gkw1225] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
The DEAH-box NTPase Prp43 disassembles spliceosomes in co-operation with the cofactors Ntr1/Spp382 and Ntr2, forming the NTR complex. How Prp43 is regulated by its cofactors to discard selectively only intron-lariat spliceosomes (ILS) and defective spliceosomes and to prevent disassembly of earlier and properly assembled/wild-type spliceosomes remains unclear. First, we show that Ntr1΄s G-patch motif (Ntr1GP) can be replaced by the GP motif of Pfa1/Sqs1, a Prp43΄s cofactor in ribosome biogenesis, demonstrating that the specific function of Ntr1GP is to activate Prp43 for spliceosome disassembly and not to guide Prp43 to its binding site in the spliceosome. Furthermore, we show that Ntr1΄s C-terminal domain (CTD) plays a safeguarding role by preventing Prp43 from disrupting wild-type spliceosomes other than the ILS. Ntr1 and Ntr2 can also discriminate between wild-type and defective spliceosomes. In both type of spliceosomes, Ntr1-CTD impedes Prp43-mediated disassembly while the Ntr1GP promotes disassembly. Intriguingly, Ntr2 plays a specific role in defective spliceosomes, likely by stabilizing Ntr1 and allowing Prp43 to enter a productive interaction with the GP motif of Ntr1. Our data indicate that Ntr1 and Ntr2 act as ‘doorkeepers’ and suggest that both cofactors inspect the RNP structure of spliceosomal complexes thereby targeting suboptimal spliceosomes for Prp43-mediated disassembly.
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Marcel J Tauchert
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg August University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg August University of Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| |
Collapse
|
34
|
Shi Y. The Spliceosome: A Protein-Directed Metalloribozyme. J Mol Biol 2017; 429:2640-2653. [PMID: 28733144 DOI: 10.1016/j.jmb.2017.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/15/2022]
Abstract
Pre-mRNA splicing is executed by the ribonucleoprotein machinery spliceosome. Nearly 40 years after the discovery of pre-mRNA splicing, the atomic structure of the spliceosome has finally come to light. Four distinct conformational states of the yeast spliceosome have been captured at atomic or near-atomic resolutions. Two catalytic metal ions at the active site are specifically coordinated by the U6 small nuclear RNA (snRNA) and catalyze both the branching reaction and the exon ligation. Of the three snRNAs in the fully assembled spliceosome, U5 and U6, along with 30 contiguous nucleotides of U2 at its 5'-end, remain structurally rigid throughout the splicing reaction. The rigidity of these RNA elements is safeguarded by Prp8 and 16 core protein components, which maintain the same overall conformation in all structurally characterized spliceosomes during the splicing reaction. Only the sequences downstream of nucleotide 30 of U2 snRNA are mobile; their movement, directed by the protein components, delivers the intron branch site into the close proximity of the 5'-splice site for the branching reaction. A set of additional structural rearrangement is required for exon ligation, and the lariat junction is moved out of the active site for recruitment of the 3'-splice site and 3'-exon. The spliceosome is proven to be a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310064, Zhejiang Province, Province, China.
| |
Collapse
|
35
|
van Roon AMM, Oubridge C, Obayashi E, Sposito B, Newman AJ, Séraphin B, Nagai K. Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. RNA (NEW YORK, N.Y.) 2017; 23:968-981. [PMID: 28348170 PMCID: PMC5435868 DOI: 10.1261/rna.059378.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/17/2017] [Indexed: 05/02/2023]
Abstract
Spliceosomal proteins Hsh49p and Cus1p are components of SF3b, which together with SF3a, Msl1p/Lea1p, Sm proteins, and U2 snRNA, form U2 snRNP, which plays a crucial role in pre-mRNA splicing. Hsh49p, comprising two RRMs, forms a heterodimer with Cus1p. We determined the crystal structures of Saccharomyces cerevisiae full-length Hsh49p as well as its RRM1 in complex with a minimal binding region of Cus1p (residues 290-368). The structures show that the Cus1 fragment binds to the α-helical surface of Hsh49p RRM1, opposite the four-stranded β-sheet, leaving the canonical RNA-binding surface available to bind RNA. Hsh49p binds the 5' end region of U2 snRNA via RRM1. Its affinity is increased in complex with Cus1(290-368)p, partly because an extended RNA-binding surface forms across the protein-protein interface. The Hsh49p RRM1-Cus1(290-368)p structure fits well into cryo-EM density of the Bact spliceosome, corroborating the biological relevance of our crystal structure.
Collapse
Affiliation(s)
| | - Chris Oubridge
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Eiji Obayashi
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Benedetta Sposito
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé et de la Recherche Médicale (INSERM), U964/Université de Strasbourg, 67404 Illkirch, France
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
36
|
van der Feltz C, Hoskins AA. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET. Methods 2017; 125:45-54. [PMID: 28529063 DOI: 10.1016/j.ymeth.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022] Open
Abstract
The spliceosome is an extraordinarily dynamic molecular machine in which significant changes in composition as well as protein and RNA conformation are required for carrying out pre-mRNA splicing. Single-molecule fluorescence resonance energy transfer (smFRET) can be used to elucidate these dynamics both in well-characterized model systems and in entire spliceosomes. These types of single-molecule data provide novel information about spliceosome components and can be used to identify sub-populations of molecules with unique behaviors. When smFRET is combined with single-molecule fluorescence colocalization, conformational dynamics can be further linked to the presence or absence of a given spliceosome component. Here, we provide a description of experimental considerations, approaches, and workflows for smFRET with an emphasis on applications for the splicing machinery.
Collapse
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Abstract
Major developments in cryo-electron microscopy in the past three or four years have led to the solution of a number of spliceosome structures at high resolution, e.g., the fully assembled but not yet active spliceosome (Bact), the spliceosome just after the first step of splicing (C), and the spliceosome activated for the second step (C*). Therefore 30 years of genetics and biochemistry of the spliceosome can now be interpreted at the structural level. I have closely examined the RNase H domain of Prp8 in each of the structures. Interestingly, the RNase H domain has different and unexpected roles in each of the catalytic steps of splicing.
Collapse
Affiliation(s)
- John Abelson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| |
Collapse
|
38
|
Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency. Proc Natl Acad Sci U S A 2017; 114:4739-4744. [PMID: 28416677 DOI: 10.1073/pnas.1701462114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is an essential step of eukaryotic gene expression that requires both high efficiency and high fidelity. Prp8 has long been considered the "master regulator" of the spliceosome, the molecular machine that executes pre-mRNA splicing. Cross-linking and structural studies place the RNaseH domain (RH) of Prp8 near the spliceosome's catalytic core and demonstrate that prp8 alleles that map to a 17-aa extension in RH stabilize it in one of two mutually exclusive structures, the biological relevance of which are unknown. We performed an extensive characterization of prp8 alleles that map to this extension and, using in vitro and in vivo reporter assays, show they fall into two functional classes associated with the two structures: those that promote error-prone/efficient splicing and those that promote hyperaccurate/inefficient splicing. Identification of global locations of endogenous splice-site activation by lariat sequencing confirms the fidelity effects seen in our reporter assays. Furthermore, we show that error-prone/efficient RH alleles suppress a prp2 mutant deficient at promoting the first catalytic step of splicing, whereas hyperaccurate/inefficient RH alleles exhibit synthetic sickness. Together our data indicate that prp8 RH alleles link splicing fidelity with catalytic efficiency by biasing the relative stabilities of distinct spliceosome conformations. We hypothesize that the spliceosome "toggles" between such error-prone/efficient and hyperaccurate/inefficient conformations during the splicing cycle to regulate splicing fidelity.
Collapse
|
39
|
Xu M, Xie Y(A, Abouzeid H, Gordon CT, Fiorentino A, Sun Z, Lehman A, Osman IS, Dharmat R, Riveiro-Alvarez R, Bapst-Wicht L, Babino D, Arno G, Busetto V, Zhao L, Li H, Lopez-Martinez MA, Azevedo LF, Hubert L, Pontikos N, Eblimit A, Lorda-Sanchez I, Kheir V, Plagnol V, Oufadem M, Soens ZT, Yang L, Bole-Feysot C, Pfundt R, Allaman-Pillet N, Nitschké P, Cheetham ME, Lyonnet S, Agrawal SA, Li H, Pinton G, Michaelides M, Besmond C, Li Y, Yuan Z, von Lintig J, Webster AR, Le Hir H, Stoilov P, Amiel J, Hardcastle AJ, Ayuso C, Sui R, Chen R, Allikmets R, Schorderet DF, Black G, Hall G, Gillespie R, Ramsden S, Manson F, Sergouniotis P, Inglehearn C, Toomes C, Ali M, McKibbin M, Poulter J, Lord E, Nemeth A, Halford S, Downes S, Yu J. Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies. Am J Hum Genet 2017; 100:592-604. [PMID: 28285769 DOI: 10.1016/j.ajhg.2017.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 10/20/2022] Open
Abstract
Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.
Collapse
|
40
|
Tseng CK, Chung CS, Chen HC, Cheng SC. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2017; 23:546-556. [PMID: 28057857 PMCID: PMC5340917 DOI: 10.1261/rna.059204.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Splicing of precursor mRNA occurs via two consecutive steps of transesterification reaction; both require ATP and several proteins. Despite the energy requirement in the catalytic phase, incubation of the purified spliceosome under proper ionic conditions can elicit competitive reversible transesterification, debranching, and spliced-exon-reopening reactions without the necessity for ATP or other factors, suggesting that small changes in the conformational state of the spliceosome can lead to disparate chemical consequences for the substrate. We show here that Cwc25 plays a central role in modulating the conformational state of the catalytic spliceosome during normal splicing reactions. Cwc25 binds tightly to the spliceosome after the reaction and is then removed from the spliceosome, which normally requires DExD/H-box protein Prp16 and ATP hydrolysis, to allow the occurrence of the second reaction. When deprived of Cwc25, the purified first-step spliceosome catalyzes both forward and reverse splicing reactions under normal splicing conditions without requiring energy. Both reactions are inhibited when Cwc25 is added back, presumably due to the stabilization of first-step conformation. Prp16 is dispensable for the second reaction when splicing is carried out under conditions that destabilize Cwc25. We also show that the purified precatalytic spliceosome can catalyze two steps of the reaction at a low efficiency without requiring Cwc25, Slu7, or Prp18 when incubated under proper conditions. Our study reveals conformational modulation of the spliceosome by Cwc25 and Prp16 in stabilization and destabilization of first-step conformation, respectively, to facilitate the splicing process.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
41
|
Role of Cwc24 in the First Catalytic Step of Splicing and Fidelity of 5' Splice Site Selection. Mol Cell Biol 2017; 37:MCB.00580-16. [PMID: 27994011 DOI: 10.1128/mcb.00580-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/11/2016] [Indexed: 12/17/2022] Open
Abstract
Cwc24 is an essential splicing factor but only transiently associates with the spliceosome, with an unknown function. The protein contains a RING finger and a zinc finger domain in the carboxyl terminus. The human ortholog of Cwc24, RNF113A, has been associated with the disorder trichothiodystrophy. Here, we show that the zinc finger domain is essential for Cwc24 function, while the RING finger domain is dispensable. Cwc24 binds to the spliceosome after the Prp19-associated complex and is released upon Prp2 action. Cwc24 is not required for Prp2-mediated remodeling of the spliceosome, but the spliceosome becomes inactive if remodeling occurs before the addition of Cwc24. Cwc24 binds directly to pre-mRNA at the 5' splice site, spanning the splice junction. In the absence of Cwc24, U5 and U6 modes of interaction with the 5' splice site are altered, and splicing is very inefficient, with aberrant cleavage at the 5' splice site. Our data suggest roles for Cwc24 in orchestrating organization of the spliceosome into an active configuration prior to Prp2-mediated spliceosome remodeling and in promoting specific interaction of U5 and U6 with the 5' splice site for fidelity of 5' splice site selection.
Collapse
|
42
|
Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 2017; 542:318-323. [DOI: 10.1038/nature21079] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
|
43
|
Absmeier E, Santos KF, Wahl MC. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 2016; 15:3362-3377. [PMID: 27792457 DOI: 10.1080/15384101.2016.1249549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
44
|
DeHaven AC, Norden IS, Hoskins AA. Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2016; 7:683-701. [PMID: 27198613 PMCID: PMC4990488 DOI: 10.1002/wrna.1358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The process of removing intronic sequences from a precursor to messenger RNA (pre-mRNA) to yield a mature mRNA transcript via splicing is an integral step in eukaryotic gene expression. Splicing is carried out by a cellular nanomachine called the spliceosome that is composed of RNA components and dozens of proteins. Despite decades of study, many fundamentals of spliceosome function have remained elusive. Recent developments in single-molecule fluorescence microscopy have afforded new tools to better probe the spliceosome and the complex, dynamic process of splicing by direct observation of single molecules. These cutting-edge technologies enable investigators to monitor the dynamics of specific splicing components, whole spliceosomes, and even cotranscriptional splicing within living cells. WIREs RNA 2016, 7:683-701. doi: 10.1002/wrna.1358 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexander C. DeHaven
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Ian S. Norden
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Aaron A. Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
45
|
Sun C, Rigo N, Fabrizio P, Kastner B, Lührmann R. A protein map of the yeast activated spliceosome as obtained by electron microscopy. RNA (NEW YORK, N.Y.) 2016; 22:1427-40. [PMID: 27368340 PMCID: PMC4986897 DOI: 10.1261/rna.057778.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 05/09/2023]
Abstract
We have elucidated the spatial arrangement of proteins and snRNP subunits within the purified spliceosomal B(act) complex from Saccharomyces cerevisiae, using negative-stain immunoelectron microscopy. The B(act) spliceosome exhibits a mushroom-like shape with a main body connected to a foot and a steep and a shallow slope. The U5 core components, including proteins Snu114 and Prp8, are located in the main body and foot, while Brr2 is on the shallow slope. U2 snRNP components and the RNA helicase Prp2 were predominantly located in the upper regions of both slopes. While several proteins of the "nineteen complex" are located on the steep slope, Prp19, Cef1, and the U6 snRNA-binding protein Cwc2 are on the main body. Our results also indicate that the catalytic core RNP of the spliceosome resides in its main body. We thus assign distinct domains of the B(act) complex to its snRNP and protein components, and we provide first structural insights into the remodeling events at the spliceosome during its transformation from the B to the B(act) complex.
Collapse
Affiliation(s)
- Chengfu Sun
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Norbert Rigo
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Rauhut R, Fabrizio P, Dybkov O, Hartmuth K, Pena V, Chari A, Kumar V, Lee CT, Urlaub H, Kastner B, Stark H, Lührmann R. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 2016; 353:1399-1405. [PMID: 27562955 DOI: 10.1126/science.aag1906] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5' splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile-the branchsite adenosine-is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5'ss. Our structure suggests that Prp2 adenosine triphosphatase-mediated remodeling leads to conformational changes in Hsh155's HEAT domain that liberate the first-step reactants for catalysis.
Collapse
Affiliation(s)
- Reinhard Rauhut
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Vladimir Pena
- Research Group Macromolecular Crystallography, MPI for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ashwin Chari
- 3D Electron Cryomicroscopy Group, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Vinay Kumar
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Holger Stark
- 3D Electron Cryomicroscopy Group, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Department of 3D Electron Cryomicroscopy, Georg-August Universität, Göttingen, Justus von-Liebig-Weg 11, D-37077 Germany.
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
47
|
Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites. Cell 2016; 164:985-98. [PMID: 26919433 DOI: 10.1016/j.cell.2016.01.025] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
During pre-mRNA splicing, a central step in the expression and regulation of eukaryotic genes, the spliceosome selects splice sites for intron excision and exon ligation. In doing so, the spliceosome must distinguish optimal from suboptimal splice sites. At the catalytic stage of splicing, suboptimal splice sites are repressed by the DEAH-box ATPases Prp16 and Prp22. Here, using budding yeast, we show that these ATPases function further by enabling the spliceosome to search for and utilize alternative branch sites and 3' splice sites. The ATPases facilitate this search by remodeling the splicing substrate to disengage candidate splice sites. Our data support a mechanism involving 3' to 5' translocation of the ATPases along substrate RNA and toward a candidate site, but, surprisingly, not across the site. Thus, our data implicate DEAH-box ATPases in acting at a distance by pulling substrate RNA from the catalytic core of the spliceosome.
Collapse
Affiliation(s)
- Daniel R Semlow
- Graduate Program in Cell and Molecular Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Mario R Blanco
- Cellular and Molecular Biology, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA; Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
48
|
Fourmann JB, Dybkov O, Agafonov DE, Tauchert MJ, Urlaub H, Ficner R, Fabrizio P, Lührmann R. The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction. eLife 2016; 5. [PMID: 27115347 PMCID: PMC4866824 DOI: 10.7554/elife.15564] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
The DEAH-box NTPase Prp43 and its cofactors Ntr1 and Ntr2 form the NTR complex and are required for disassembling intron-lariat spliceosomes (ILS) and defective earlier spliceosomes. However, the Prp43 binding site in the spliceosome and its target(s) are unknown. We show that Prp43 fused to Ntr1's G-patch motif (Prp43_Ntr1GP) is as efficient as the NTR in ILS disassembly, yielding identical dissociation products and recognizing its natural ILS target even in the absence of Ntr1’s C-terminal-domain (CTD) and Ntr2. Unlike the NTR, Prp43_Ntr1GP disassembles earlier spliceosomal complexes (A, B, Bact), indicating that Ntr2/Ntr1-CTD prevents NTR from disrupting properly assembled spliceosomes other than the ILS. The U2 snRNP-intron interaction is disrupted in all complexes by Prp43_Ntr1GP, and in the spliceosome contacts U2 proteins and the pre-mRNA, indicating that the U2 snRNP-intron interaction is Prp43’s major target. DOI:http://dx.doi.org/10.7554/eLife.15564.001
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel J Tauchert
- Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bionalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
49
|
de Almeida RA, O'Keefe RT. The NineTeen Complex (NTC) and NTC-associated proteins as targets for spliceosomal ATPase action during pre-mRNA splicing. RNA Biol 2015; 12:109-14. [PMID: 25654271 PMCID: PMC4615276 DOI: 10.1080/15476286.2015.1008926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression that removes intron sequences efficiently and accurately to produce a mature mRNA for translation. It is the large and dynamic RNA-protein complex called the spliceosome that catalyzes intron removal. To carry out splicing the spliceosome not only needs to assemble correctly with the pre-mRNA but the spliceosome requires extensive remodelling of its RNA and protein components to execute the 2 steps of intron removal. Spliceosome remodelling is achieved through the action of ATPases that target both RNA and proteins to produce spliceosome conformations competent for each step of spliceosome activation, catalysis and disassembly. An increasing amount of research has pointed to the spliceosome associated NineTeen Complex (NTC) of proteins as targets for the action of a number of the spliceosomal ATPases during spliceosome remodelling. In this point-of-view article we present the latest findings on the changes in the NTC that occur following ATPase action that are required for spliceosome activation, catalysis and disassembly. We proposed that the NTC is one of the main targets of ATPase action during spliceosome remodelling required for pre-mRNA splicing.
Collapse
|
50
|
Schneider C, Agafonov DE, Schmitzová J, Hartmuth K, Fabrizio P, Lührmann R. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. PLoS Genet 2015; 11:e1005539. [PMID: 26393790 PMCID: PMC4579134 DOI: 10.1371/journal.pgen.1005539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/27/2015] [Indexed: 01/10/2023] Open
Abstract
Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act) spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act) crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.
Collapse
Affiliation(s)
- Cornelius Schneider
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Dmitry E. Agafonov
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Klaus Hartmuth
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| |
Collapse
|