1
|
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond. RNA Biol 2025; 22:1-25. [PMID: 39723662 DOI: 10.1080/15476286.2024.2442856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Porat J. Circuit logic: interdependent RNA modifications shape mRNA and noncoding RNA structure and function. RNA (NEW YORK, N.Y.) 2025; 31:613-622. [PMID: 40044218 PMCID: PMC12001972 DOI: 10.1261/rna.080421.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Continued advances in high-throughput detection of posttranscriptional RNA modifications have enabled large-scale, mechanistic studies into the importance of RNA modifications in regulating the structure, function, and stability of coding and noncoding RNAs. More recently, this has expanded beyond investigations of independent single modifications, revealing the breadth of modification complexities in single transcripts and the biogenesis pathways involved that lead to coordinately modified RNA species. This has resulted in the concept of modification circuits, where one modification can promote or inhibit the subsequent installation of other modifications, or when modifications are coordinated across different RNA species. These circuits play important roles in the biogenesis of multistepped posttranscriptional modifications, modulate ribonucleoprotein complex formation and conformational switches, and mediate codon-biased translation through the coordination of mRNA and tRNA modifications. Here, I review evidence of complex modification circuits in mRNA and noncoding RNA and highlight open questions concerning the molecular mechanisms giving rise to modification circuits and their importance in the context of RNA processing and maturation.
Collapse
MESH Headings
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Nucleic Acid Conformation
- Humans
- Animals
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
3
|
Shaw E, Thomas N, Jones J, Abu-Shumays R, Vaaler A, Akeson M, Koutmou K, Jain M, Garcia D. Combining Nanopore direct RNA sequencing with genetics and mass spectrometry for analysis of T-loop base modifications across 42 yeast tRNA isoacceptors. Nucleic Acids Res 2024; 52:12074-12092. [PMID: 39340295 PMCID: PMC11514469 DOI: 10.1093/nar/gkae796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure. We sequenced the 42 cytosolic tRNA isoacceptors from wild-type yeast and five tRNA-modifying enzyme knockout mutants. These data permitted comprehensive analysis of three neighboring and conserved modifications in T-loops: 5-methyluridine (m5U54), pseudouridine (Ψ55), and 1-methyladenosine (m1A58). Our results were validated using direct measurements of chemical modifications by mass spectrometry. We observed concerted T-loop modification circuits-the potent influence of Ψ55 for subsequent m1A58 modification on more tRNA isoacceptors than previously observed. Growing cells under nutrient depleted conditions also revealed a novel condition-specific increase in m1A58 modification on some tRNAs. A global and isoacceptor-specific classification strategy was developed to predict the status of T-loop modifications from a user-input tRNA DRS dataset, applicable to other conditions and tRNAs in other organisms. These advancements demonstrate how orthogonal technologies combined with genetics enable precise detection of modification landscapes of individual, full-length tRNAs, at transcriptome-scale.
Collapse
Affiliation(s)
- Ethan A Shaw
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Niki K Thomas
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin L Abu-Shumays
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Vaaler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mark Akeson
- Biomolecular Engineering Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - David M Garcia
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
4
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
5
|
Masuda I, Hou YM. A tRNA modification pattern that facilitates interpretation of the genetic code. Front Microbiol 2024; 15:1415100. [PMID: 38933027 PMCID: PMC11199890 DOI: 10.3389/fmicb.2024.1415100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Interpretation of the genetic code from triplets of nucleotides to amino acids is fundamental to life. This interpretation is achieved by cellular tRNAs, each reading a triplet codon through its complementary anticodon (positions 34-36) while delivering the amino acid charged to its 3'-end. This amino acid is then incorporated into the growing polypeptide chain during protein synthesis on the ribosome. The quality and versatility of the interpretation is ensured not only by the codon-anticodon pairing, but also by the post-transcriptional modifications at positions 34 and 37 of each tRNA, corresponding to the wobble nucleotide at the first position of the anticodon and the nucleotide on the 3'-side of the anticodon, respectively. How each codon is read by the matching anticodon, and which modifications are required, cannot be readily predicted from the codon-anticodon pairing alone. Here we provide an easily accessible modification pattern that is integrated into the genetic code table. We focus on the Gram-negative bacterium Escherichia coli as a model, which is one of the few organisms whose entire set of tRNA modifications and modification genes is identified and mapped. This work provides an important reference tool that will facilitate research in protein synthesis, which is at the core of the cellular life.
Collapse
|
6
|
Funk HM, Brooks JH, Detmer AE, Creech NN, Guy MP. Identification of Amino Acids in Trm734 Required for 2'- O-Methylation of the tRNA Phe Wobble Residue. ACS OMEGA 2024; 9:25063-25072. [PMID: 38882062 PMCID: PMC11170731 DOI: 10.1021/acsomega.4c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
All organisms methylate their nucleic acids, and this methylation is critical for proper gene expression at both the transcriptional and translational levels. For proper translation in eukaryotes, 2'-O-methylation of C32 (Cm32) and G34 (Gm34) in the anticodon loop of tRNAPhe is critical, with defects in these modifications associated with human disease. In yeast, Cm32 is formed by an enzyme that consists of the methyltransferase Trm7 in complex with the auxiliary protein Trm732, and Gm34 is formed by an enzyme that consists of Trm7 in complex with Trm734. The role of Trm732 and Trm734 in tRNA modification is not fully understood, although previous studies have suggested that Trm734 is important for tRNA binding. In this report, we generated Trm734 variants and tested their ability to work with Trm7 to modify tRNAPhe. Using this approach, we identified several regions of amino acids that are important for Trm734 activity and/or stability. Based on the previously determined Trm7-Trm734 crystal structure, these crucial amino acids are near the active site of Trm7 and are not directly involved in Trm7-Trm734 protein-protein interactions. Immunoprecipitation experiments with these Trm734 variants and Trm7 confirm that these residues are not involved in Trm7-Trm734 binding. Further experiments should help determine if these residues are important for tRNA binding or have another role in the modification of the tRNA. Furthermore, our discovery of a nonfunctional, stable Trm734 variant will be useful in determining if the reported roles of Trm734 in other biological processes such as retromer processing and resistance to Ty1 transposition are due to tRNA modification defects or to other bona fide cellular roles of Trm734.
Collapse
Affiliation(s)
- Holly M Funk
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Jennifer H Brooks
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Alisha E Detmer
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Natalie N Creech
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| | - Michael P Guy
- Department of Chemistry & Biochemistry, Dorothy Westerman Herrmann Science Center (SC), Room 204F, Northern Kentucky University, Highland Heights, Kentucky 41076, United States of America
| |
Collapse
|
7
|
Cui J, Liu X, Dong W, Liu Y, Ruan X, Zhang M, Wang P, Liu L, Xue Y. SNORD17-mediated KAT6B mRNA 2'-O-methylation regulates vasculogenic mimicry in glioblastoma cells. Cell Biol Toxicol 2023; 39:2841-2860. [PMID: 37058271 DOI: 10.1007/s10565-023-09805-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
Glioblastoma (GBM) is a primary tumor in the intracranial compartment. Vasculogenic mimicry (VM) is a process in which a pipeline of tumor cells that provide blood support to carcinogenic cells is formed, and studying VM could provide a new strategy for clinical targeted treatment of GBM. In the present study, we found that SNORD17 and ZNF384 were significantly upregulated and promoted VM in GBM, whereas KAT6B was downregulated and inhibited VM in GBM. RTL-P assays were performed to verify the 2'-O-methylation of KAT6B by SNORD17; IP assays were used to detect the acetylation of ZNF384 by KAT6B. In addition, the binding of ZNF384 to the promoter regions of VEGFR2 and VE-cadherin promoted transcription, as validated by chromatin immunoprecipitation and luciferase reporter assays. And finally, knockdown of SNORD17 and ZNF384 combined with KAT6B overexpression effectively reduced the xenograft tumor size, prolonged the survival time of nude mice and reduced the number of VM channels. This study reveals a novel mechanism of the SNORD17/KAT6B/ZNF384 axis in modulating VM development in GBM that may provide a new goal for the comprehensive treatment of GBM.
Collapse
Affiliation(s)
- Jingyi Cui
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Mengyang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
8
|
Wang Z, Xu X, Li X, Fang J, Huang Z, Zhang M, Liu J, Qiu X. Investigations of Single-Subunit tRNA Methyltransferases from Yeast. J Fungi (Basel) 2023; 9:1030. [PMID: 37888286 PMCID: PMC10608323 DOI: 10.3390/jof9101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
tRNA methylations, including base modification and 2'-O-methylation of ribose moiety, play critical roles in the structural stabilization of tRNAs and the fidelity and efficiency of protein translation. These modifications are catalyzed by tRNA methyltransferases (TRMs). Some of the TRMs from yeast can fully function only by a single subunit. In this study, after performing the primary bioinformatic analyses, the progress of the studies of yeast single-subunit TRMs, as well as the studies of their homologues from yeast and other types of eukaryotes and the corresponding TRMs from other types of organisms was systematically reviewed, which will facilitate the understanding of the evolutionary origin of functional diversity of eukaryotic single-subunit TRM.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiangbin Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| |
Collapse
|
9
|
Xiong QP, Li J, Li H, Huang ZX, Dong H, Wang ED, Liu RJ. Human TRMT1 catalyzes m 2G or m 22G formation on tRNAs in a substrate-dependent manner. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2295-2309. [PMID: 37204604 DOI: 10.1007/s11427-022-2295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 05/20/2023]
Abstract
TRMT1 is an N2-methylguanosine (m2G) and N2,N2-methylguanosine (m22G) methyltransferase that targets G26 of both cytoplasmic and mitochondrial tRNAs. In higher eukaryotes, most cytoplasmic tRNAs with G26 carry m22G26, although the majority of mitochondrial G26-containing tRNAs carry m2G26 or G26, suggesting differences in the mechanisms by which TRMT1 catalyzes modification of these tRNAs. Loss-of-function mutations of human TRMT1 result in neurological disorders and completely abrogate tRNA:m22G26 formation. However, the mechanism underlying the independent catalytic activity of human TRMT1 and identity of its specific substrate remain elusive, hindering a comprehensive understanding of the pathogenesis of neurological disorders caused by TRMT1 mutations. Here, we showed that human TRMT1 independently catalyzes formation of the tRNA:m2G26 or m22G26 modification in a substrate-dependent manner, which explains the distinct distribution of m2G26 and m22G26 on cytoplasmic and mitochondrial tRNAs. For human TRMT1-mediated tRNA:m22G26 formation, the semi-conserved C11:G24 serves as the determinant, and the U10:A25 or G10:C25 base pair is also required, while the size of the variable loop has no effect. We defined the requirements of this recognition mechanism as the "m22G26 criteria". We found that the m22G26 modification occurred in almost all the higher eukaryotic tRNAs conforming to these criteria, suggesting the "m22G26 criteria" are applicable to other higher eukaryotic tRNAs.
Collapse
Affiliation(s)
- Qing-Ping Xiong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Xuan Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Han Dong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Chen AY, Owens MC, Liu KF. Coordination of RNA modifications in the brain and beyond. Mol Psychiatry 2023; 28:2737-2749. [PMID: 37138184 PMCID: PMC11758487 DOI: 10.1038/s41380-023-02083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression. Although numerous studies have been conducted regarding the impact that single modifications in single RNA molecules have on gene expression, emerging evidence highlights potential crosstalk between and coordination of modifications across RNA species. These potential coordination axes of RNA modifications have emerged as a new direction in the field of epitranscriptomic research. In this review, we will highlight several examples of gene regulation via RNA modification in the nervous system, followed by a summary of the current state of the field of RNA modification coordination axes. In doing so, we aim to inspire the field to gain a deeper understanding of the roles of RNA modifications and coordination of these modifications in the nervous system.
Collapse
Affiliation(s)
- Anthony Yulin Chen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
12
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
13
|
Nazemi-Rafie J, Fatehi F, Hasrak S. A comparative transcriptome analysis of the head of 1 and 9 days old worker honeybees ( Apis mellifera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:253-270. [PMID: 36511774 DOI: 10.1017/s0007485322000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The role of bees in the environment, economic, biodiversity and pharmaceutical industries is due to its social behavior, which is oriented from the brain and hypopharyngeal gland that is the center of royal jelly (RJ) production. Limited studies have been performed on the head gene expression profile at the RJ production stage. The aim of this study was to compare the gene expressions in 9 and 1-day-old (DO) honeybee workers in order to achieve better understanding about head gene expression pattern. After sequencing of RNAs, transcriptome and their networks were compared. The head expression profile undergoes various changes. 1662 gene transcripts had differential expressions which 1125 and 537 were up and down regulated, respectively, in 9_DO compared with 1_DO honey bees. The day 1th had more significant role in the expression of genes related to RJ production as major RJ protein 1, 2, 3, 5, 6 and 9 encoding genes, but their maximum secretion occurred at day 9th. All process related to hypopharyngeal glands activities as CYP450 gene, fatty acid synthase gene, vitamin B6 metabolism and some of genes involved in fatty acid elongation and degradation process had an upward trend from 1_DO and were age-dependent. By increasing the age, the activity of pathways related to immune system increased for keeping the health of bees against the chemical compound. The expression of aromatic amino acid genes involved in Phenylalanine, tyrosine and tryptophan biosynthesis pathway are essential for early stage of life. In 9_DO honeybees, the energy supplying, reducing stress, protein production and export pathways have a crucial role for support the body development and the social duties. It can be stated that the activity of honeybee head is focused on energy supply instead of storage, while actively trying to improve the level of cell dynamics for increasing the immunity and reducing stress. Results of current study identified key genes of certain behaviors of honeybee workers. Deeper considering of some pathways will be evaluated in future studies.
Collapse
Affiliation(s)
- Javad Nazemi-Rafie
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Shabnam Hasrak
- Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Brazane M, Dimitrova DG, Pigeon J, Paolantoni C, Ye T, Marchand V, Da Silva B, Schaefer E, Angelova MT, Stark Z, Delatycki M, Dudding-Byth T, Gecz J, Plaçais PY, Teysset L, Préat T, Piton A, Hassan BA, Roignant JY, Motorin Y, Carré C. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance. Life Sci Alliance 2023; 6:e202201877. [PMID: 36720500 PMCID: PMC9889914 DOI: 10.26508/lsa.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.
Collapse
Affiliation(s)
- Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Julien Pigeon
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tao Ye
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor,Nancy, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Margarita T Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Thomas Préat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Amélie Piton
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
15
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
16
|
Nostramo RT, Hopper AK. A Simple Method for the Detection of Wybutosine-Modified tRNA PheGAA as a Readout of Retrograde tRNA Nuclear Import and Re-export: HCl/Aniline Cleavage and Nonradioactive Northern Hybridization. Methods Mol Biol 2023; 2666:1-14. [PMID: 37166653 PMCID: PMC10370157 DOI: 10.1007/978-1-0716-3191-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
tRNAs are highly mobile molecules that are trafficked back and forth between the nucleus and cytoplasm by several proteins. However, characterization of the movement of tRNAs and the proteins mediating these movements can be difficult. Here, we describe an easy and cost-effective assay to discover genes that are involved in two specific tRNA trafficking events, retrograde nuclear import and nuclear re-export for yeast, Saccharomyces cerevisiae. This assay, referred to as the hydrochloric acid (HCl)/aniline assay, identifies the presence or absence of a unique modification on tRNAPheGAA called wybutosine (yW) that requires mature, spliced tRNAPheGAA to undergo retrograde nuclear import and subsequent nuclear re-export for its addition. Therefore, the presence/absence of yW-modified tRNAPheGAA serves as a readout of retrograde nuclear import and nuclear re-export. This simple assay can be used to determine the role of any gene product in these previously elusive tRNA trafficking events.
Collapse
Affiliation(s)
- Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Cavallin I, Bartosovic M, Skalicky T, Rengaraj P, Demko M, Schmidt-Dengler MC, Drino A, Helm M, Vanacova S. HITS-CLIP analysis of human ALKBH8 reveals interactions with fully processed substrate tRNAs and with specific noncoding RNAs. RNA (NEW YORK, N.Y.) 2022; 28:1568-1581. [PMID: 36192131 PMCID: PMC9670814 DOI: 10.1261/rna.079421.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.
Collapse
Affiliation(s)
- Ivana Cavallin
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Marek Bartosovic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Tomas Skalicky
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Praveenkumar Rengaraj
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Martin Demko
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Aleksej Drino
- Medical University of Vienna, Center for Anatomy and Cell Biology, 1090 Vienna, Austria
| | - Mark Helm
- Johannes Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Science (IPBS), D-55128 Mainz, Germany
| | - Stepanka Vanacova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Tasak M, Phizicky EM. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species. PLoS Genet 2022; 18:e1010215. [PMID: 35901126 PMCID: PMC9362929 DOI: 10.1371/journal.pgen.1010215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.
Collapse
Affiliation(s)
- Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Funk H, DiVita DJ, Sizemore HE, Wehrle K, Miller CLW, Fraley ME, Mullins AK, Guy AR, Phizicky EM, Guy MP. Identification of a Trm732 Motif Required for 2'- O-methylation of the tRNA Anticodon Loop by Trm7. ACS OMEGA 2022; 7:13667-13675. [PMID: 35559166 PMCID: PMC9088939 DOI: 10.1021/acsomega.1c07231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Posttranscriptional tRNA modifications are essential for proper gene expression, and defects in the enzymes that perform tRNA modifications are associated with numerous human disorders. Throughout eukaryotes, 2'-O-methylation of residues 32 and 34 of the anticodon loop of tRNA is important for proper translation, and in humans, a lack of these modifications results in non-syndromic X-linked intellectual disability. In yeast, the methyltransferase Trm7 forms a complex with Trm732 to 2'-O-methylate tRNA residue 32 and with Trm734 to 2'-O-methylate tRNA residue 34. Trm732 and Trm734 are required for the methylation activity of Trm7, but the role of these auxiliary proteins is not clear. Additionally, Trm732 and Trm734 homologs are implicated in biological processes not directly related to translation, suggesting that these proteins may have additional cellular functions. To identify critical amino acids in Trm732, we generated variants and tested their ability to function in yeast cells. We identified a conserved RRSAGLP motif in the conserved DUF2428 domain of Trm732 that is required for tRNA modification activity by both yeast Trm732 and its human homolog, THADA. The identification of Trm732 variants that lack tRNA modification activity will help to determine if other biological functions ascribed to Trm732 and THADA are directly due to tRNA modification or to secondary effects due to other functions of these proteins.
Collapse
Affiliation(s)
- Holly
M. Funk
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Daisy J. DiVita
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Hannah E. Sizemore
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Kendal Wehrle
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Catherine L. W. Miller
- Department
of Biochemistry and Biophysics, University
of Rochester School of Medicine, Rochester, New York 14642, United States
| | - Morgan E. Fraley
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Alex K. Mullins
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Adrian R. Guy
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
| | - Eric M. Phizicky
- Department
of Biochemistry and Biophysics, University
of Rochester School of Medicine, Rochester, New York 14642, United States
| | - Michael P. Guy
- Department
of Chemistry & Biochemistry, Northern
Kentucky University, Highland
Heights, Kentucky 41076, United States
- Department
of Biochemistry and Biophysics, University
of Rochester School of Medicine, Rochester, New York 14642, United States
| |
Collapse
|
20
|
Nishida Y, Ohmori S, Kakizono R, Kawai K, Namba M, Okada K, Yamagami R, Hirata A, Hori H. Required Elements in tRNA for Methylation by the Eukaryotic tRNA (Guanine- N2-) Methyltransferase (Trm11-Trm112 Complex). Int J Mol Sci 2022; 23:ijms23074046. [PMID: 35409407 PMCID: PMC8999500 DOI: 10.3390/ijms23074046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
The Saccharomyces cerevisiae Trm11 and Trm112 complex (Trm11-Trm112) methylates the 2-amino group of guanosine at position 10 in tRNA and forms N2-methylguanosine. To determine the elements required in tRNA for methylation by Trm11-Trm112, we prepared 60 tRNA transcript variants and tested them for methylation by Trm11-Trm112. The results show that the precursor tRNA is not a substrate for Trm11-Trm112. Furthermore, the CCA terminus is essential for methylation by Trm11-Trm112, and Trm11-Trm112 also only methylates tRNAs with a regular-size variable region. In addition, the G10-C25 base pair is required for methylation by Trm11-Trm112. The data also demonstrated that Trm11-Trm112 recognizes the anticodon-loop and that U38 in tRNAAla acts negatively in terms of methylation. Likewise, the U32-A38 base pair in tRNACys negatively affects methylation. The only exception in our in vitro study was tRNAValAAC1. Our experiments showed that the tRNAValAAC1 transcript was slowly methylated by Trm11-Trm112. However, position 10 in this tRNA was reported to be unmodified G. We purified tRNAValAAC1 from wild-type and trm11 gene deletion strains and confirmed that a portion of tRNAValAAC1 is methylated by Trm11-Trm112 in S. cerevisiae. Thus, our study explains the m2G10 modification pattern of all S. cerevisiae class I tRNAs and elucidates the Trm11-Trm112 binding sites.
Collapse
|
21
|
Kelley M, Paulines MJ, Yoshida G, Myers R, Jora M, Levoy JP, Addepalli B, Benoit JB, Limbach PA. Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs. PLoS One 2022; 17:e0266239. [PMID: 35349591 PMCID: PMC8963569 DOI: 10.1371/journal.pone.0266239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mellie June Paulines
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ryan Myers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joel P. Levoy
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Fractional 2'-O-methylation in the ribosomal RNA of Dictyostelium discoideum supports ribosome heterogeneity in Amoebozoa. Sci Rep 2022; 12:1952. [PMID: 35121764 PMCID: PMC8817022 DOI: 10.1038/s41598-022-05447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
A hallmark of ribosomal RNA (rRNA) are 2′-O-methyl groups that are introduced sequence specifically by box C/D small nucleolar RNAs (snoRNAs) in ribonucleoprotein particles. Most data on this chemical modification and its impact on RNA folding and stability are derived from organisms of the Opisthokonta supergroup. Using bioinformatics and RNA-seq data, we identify 30 novel box C/D snoRNAs in Dictyostelium discoideum, many of which are differentially expressed during the multicellular development of the amoeba. By applying RiboMeth-seq, we find 49 positions in the 17S and 26S rRNA 2′-O-methylated. Several of these nucleotides are substoichiometrically modified, with one displaying dynamic modification levels during development. Using homology-based models for the D. discoideum rRNA secondary structures, we localize many modified nucleotides in the vicinity of the ribosomal A, P and E sites. For most modified positions, a guiding box C/D snoRNA could be identified, allowing to determine idiosyncratic features of the snoRNA/rRNA interactions in the amoeba. Our data from D. discoideum represents the first evidence for ribosome heterogeneity in the Amoebozoa supergroup, allowing to suggest that it is a common feature of all eukaryotes.
Collapse
|
23
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
24
|
Zhou JB, Wang ED, Zhou XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell Mol Life Sci 2021; 78:7087-7105. [PMID: 34605973 PMCID: PMC11071707 DOI: 10.1007/s00018-021-03948-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 93 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
25
|
Lant JT, Kiri R, Duennwald ML, O'Donoghue P. Formation and persistence of polyglutamine aggregates in mistranslating cells. Nucleic Acids Res 2021; 49:11883-11899. [PMID: 34718744 PMCID: PMC8599886 DOI: 10.1093/nar/gkab898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rashmi Kiri
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
26
|
Yang WQ, Xiong QP, Ge JY, Li H, Zhu WY, Nie Y, Lin X, Lv D, Li J, Lin H, Liu RJ. THUMPD3-TRMT112 is a m2G methyltransferase working on a broad range of tRNA substrates. Nucleic Acids Res 2021; 49:11900-11919. [PMID: 34669960 PMCID: PMC8599901 DOI: 10.1093/nar/gkab927] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional modifications affect tRNA biology and are closely associated with human diseases. However, progress on the functional analysis of tRNA modifications in metazoans has been slow because of the difficulty in identifying modifying enzymes. For example, the biogenesis and function of the prevalent N2-methylguanosine (m2G) at the sixth position of tRNAs in eukaryotes has long remained enigmatic. Herein, using a reverse genetics approach coupled with RNA-mass spectrometry, we identified that THUMP domain-containing protein 3 (THUMPD3) is responsible for tRNA: m2G6 formation in human cells. However, THUMPD3 alone could not modify tRNAs. Instead, multifunctional methyltransferase subunit TRM112-like protein (TRMT112) interacts with THUMPD3 to activate its methyltransferase activity. In the in vitro enzymatic assay system, THUMPD3-TRMT112 could methylate all the 26 tested G6-containing human cytoplasmic tRNAs by recognizing the characteristic 3'-CCA of mature tRNAs. We also showed that m2G7 of tRNATrp was introduced by THUMPD3-TRMT112. Furthermore, THUMPD3 is widely expressed in mouse tissues, with an extremely high level in the testis. THUMPD3-knockout cells exhibited impaired global protein synthesis and reduced growth. Our data highlight the significance of the tRNA: m2G6/7 modification and pave a way for further studies of the role of m2G in sperm tRNA derived fragments.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing-Ping Xiong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Daizhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
27
|
Gobet C, Naef F. Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data. Methods 2021; 203:10-16. [PMID: 34673173 DOI: 10.1016/j.ymeth.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Protein synthesis is an energy consuming process characterised as a pivotal and highly regulated step in gene expression. The net protein output is dictated by a combination of translation initiation, elongation and termination rates that have remained difficult to measure. Recently, the development of ribosome profiling has enabled the inference of translation parameters through modelling, as this method informs on the ribosome position along the mRNA. Here, we present an automated, reproducible and portable computational pipeline to infer relative single-codon and codon-pair dwell times as well as gene flux from raw ribosome profiling sequencing data. As a case study, we applied our workflow to a publicly available yeast ribosome profiling dataset consisting of 57 independent gene knockouts related to RNA and tRNA modifications. We uncovered the effects of those modifications on translation elongation and codon selection during decoding. In particular, knocking out mod5 and trm7 increases codon-specific dwell times which indicates their potential tRNA targets, and highlights effects of nucleotide modifications on ribosome decoding rate.
Collapse
Affiliation(s)
- Cédric Gobet
- Institute of Bioengineering (IBI), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Félix Naef
- Institute of Bioengineering (IBI), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
28
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
29
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
30
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
31
|
Partially modified tRNAs for the study of tRNA maturation and function. Methods Enzymol 2021; 658:225-250. [PMID: 34517948 DOI: 10.1016/bs.mie.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer RNA (tRNA) is the most highly and diversely modified class of RNA in all domains of life. However, we still have only a limited understanding of the concerted action of the many enzymes that modify tRNA during tRNA maturation and the synergistic functions of tRNA modifications for protein synthesis. Here, we describe the preparation of in vitro transcribed tRNAs with a partial set of defined modifications and the use of partially modified tRNAs in biochemical assays. By comparing the affinity and activity of tRNA modification enzymes for partially modified and unmodified tRNAs, we gain insight into the preferred pathways of tRNA maturation. Additionally, partially modified tRNAs will be highly useful to investigate the importance of tRNA modifications for tRNA function during translation including the interaction with aminoacyl-tRNA synthases, translation factors and the ribosome. Thereby, the methods described here lay the foundation for understanding the mechanistic function of tRNA modifications.
Collapse
|
32
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
33
|
Tavares JF, Davis NK, Poim A, Reis A, Kellner S, Sousa I, Soares AR, Moura GMR, Dedon PC, Santos M. tRNA-modifying enzyme mutations induce codon-specific mistranslation and protein aggregation in yeast. RNA Biol 2021; 18:563-575. [PMID: 32893724 PMCID: PMC7971265 DOI: 10.1080/15476286.2020.1819671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
Protein synthesis rate and accuracy are tightly controlled by the cell and are essential for proteome homoeostasis (proteostasis); however, the full picture of how mRNA translational factors maintain protein synthesis accuracy and co-translational protein folding are far from being fully understood. To address this question, we evaluated the role of 70 yeast tRNA-modifying enzyme genes on protein aggregation and used mass spectrometry to identify the aggregated proteins. We show that modification of uridine at anticodon position 34 (U34) by the tRNA-modifying enzymes Elp1, Elp3, Sml3 and Trm9 is critical for proteostasis, the mitochondrial tRNA-modifying enzyme Slm3 plays a fundamental role in general proteostasis and that stress response proteins whose genes are enriched in codons decoded by tRNAs lacking mcm5U34, mcm5s2U34, ncm5U34, ncm5Um34, modifications are overrepresented in protein aggregates of the ELP1, SLM3 and TRM9 KO strains. Increased rates of amino acid misincorporation were also detected in these strains at protein sites that specifically mapped to the codons sites that are decoded by the hypomodified tRNAs, demonstrating that U34 tRNA modifications safeguard the proteome from translational errors, protein misfolding and proteotoxic stress.
Collapse
Affiliation(s)
- Joana F Tavares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nick K. Davis
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
| | - Ana Poim
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Andreia Reis
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
| | - Inês Sousa
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana R. Soares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela M R Moura
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise – CREATE, Singapore
| | - Manuel Santos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
34
|
Nagayoshi Y, Chujo T, Hirata S, Nakatsuka H, Chen CW, Takakura M, Miyauchi K, Ikeuchi Y, Carlyle BC, Kitchen RR, Suzuki T, Katsuoka F, Yamamoto M, Goto Y, Tanaka M, Natsume K, Nairn AC, Suzuki T, Tomizawa K, Wei FY. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. SCIENCE ADVANCES 2021; 7:7/13/eabf3072. [PMID: 33771871 PMCID: PMC7997516 DOI: 10.1126/sciadv.abf3072] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/09/2021] [Indexed: 05/06/2023]
Abstract
FtsJ RNA 2'-O-methyltransferase 1 (FTSJ1) gene has been implicated in X-linked intellectual disability (XLID), but the molecular pathogenesis is unknown. We show that Ftsj1 is responsible for 2'-O-methylation of 11 species of cytosolic transfer RNAs (tRNAs) at the anticodon region, and these modifications are abolished in Ftsj1 knockout (KO) mice and XLID patient-derived cells. Loss of 2'-O-methylation in Ftsj1 KO mouse selectively reduced the steady-state level of tRNAPhe in the brain, resulting in a slow decoding at Phe codons. Ribosome profiling showed that translation efficiency is significantly reduced in a subset of genes that need to be efficiently translated to support synaptic organization and functions. Ftsj1 KO mice display immature synaptic morphology and aberrant synaptic plasticity, which are associated with anxiety-like and memory deficits. The data illuminate a fundamental role of tRNA modification in the brain through regulation of translation efficiency and provide mechanistic insights into FTSJ1-related XLID.
Collapse
Affiliation(s)
- Y Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - T Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - S Hirata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - H Nakatsuka
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - C-W Chen
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - M Takakura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - K Miyauchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Y Ikeuchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - B C Carlyle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - R R Kitchen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - T Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - F Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - M Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Y Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neurology, NCNP, Tokyo 187-8551, Japan
| | - M Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - K Natsume
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - A C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - T Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - K Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - F-Y Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
35
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
36
|
Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol Cell 2021; 81:1802-1815.e7. [PMID: 33581077 PMCID: PMC8062790 DOI: 10.1016/j.molcel.2021.01.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modification-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly computational analysis toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, and human cells and is applicable to any organism with a known genome. We applied mim-tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a surprising interdependence of modifications at distinct sites within the same tRNA transcript. mim-tRNAseq overcomes experimental and computational hurdles to tRNA quantitation mim-tRNAseq includes a comprehensive computational toolkit for tRNA read analysis tRNA abundance, aminoacylation, and modification status quantified in one reaction mim-tRNAseq reveals an interdependence of modifications at distinct tRNA positions
Collapse
Affiliation(s)
- Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
37
|
Funk HM, Zhao R, Thomas M, Spigelmyer SM, Sebree NJ, Bales RO, Burchett JB, Mamaril JB, Limbach PA, Guy MP. Identification of the enzymes responsible for m2,2G and acp3U formation on cytosolic tRNA from insects and plants. PLoS One 2020; 15:e0242737. [PMID: 33253256 PMCID: PMC7704012 DOI: 10.1371/journal.pone.0242737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modification of tRNA is critical for efficient protein translation and proper cell growth, and defects in tRNA modifications are often associated with human disease. Although most of the enzymes required for eukaryotic tRNA modifications are known, many of these enzymes have not been identified and characterized in several model multicellular eukaryotes. Here, we present two related approaches to identify the genes required for tRNA modifications in multicellular organisms using primer extension assays with fluorescent oligonucleotides. To demonstrate the utility of these approaches we first use expression of exogenous genes in yeast to experimentally identify two TRM1 orthologs capable of forming N2,N2-dimethylguanosine (m2,2G) on residue 26 of cytosolic tRNA in the model plant Arabidopsis thaliana. We also show that a predicted catalytic aspartate residue is required for function in each of the proteins. We next use RNA interference in cultured Drosophila melanogaster cells to identify the gene required for m2,2G26 formation on cytosolic tRNA. Additionally, using these approaches we experimentally identify D. melanogaster gene CG10050 as the corresponding ortholog of human DTWD2, which encodes the protein required for formation of 3-amino-3-propylcarboxyuridine (acp3U) on residue 20a of cytosolic tRNA. We further show that A. thaliana gene AT2G41750 can form acp3U20b on an A. thaliana tRNA expressed in yeast cells, and that the aspartate and tryptophan residues in the DXTW motif of this protein are required for modification activity. These results demonstrate that these approaches can be used to study tRNA modification enzymes.
Collapse
Affiliation(s)
- Holly M. Funk
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Maggie Thomas
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Sarah M. Spigelmyer
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Nichlas J. Sebree
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Regan O. Bales
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Jamison B. Burchett
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Justen B. Mamaril
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael P. Guy
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, United States of America
| |
Collapse
|
38
|
Nostramo RT, Hopper AK. A novel assay provides insight into tRNAPhe retrograde nuclear import and re-export in S. cerevisiae. Nucleic Acids Res 2020; 48:11577-11588. [PMID: 33074312 PMCID: PMC7672469 DOI: 10.1093/nar/gkaa879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, tRNAs are transcribed in the nucleus and subsequently exported to the cytoplasm where they serve as essential adaptor molecules in translation. However, tRNAs can be returned to the nucleus by the evolutionarily conserved process called tRNA retrograde nuclear import, before relocalization back to the cytoplasm via a nuclear re-export step. Several important functions of these latter two trafficking events have been identified, yet the pathways are largely unknown. Therefore, we developed an assay in Saccharomyces cerevisiae to identify proteins mediating tRNA retrograde nuclear import and re-export using the unique wybutosine modification of mature tRNAPhe. Our hydrochloric acid/aniline assay revealed that the karyopherin Mtr10 mediates retrograde import of tRNAPhe, constitutively and in response to amino acid deprivation, whereas the Hsp70 protein Ssa2 mediates import specifically in the latter. Furthermore, tRNAPhe is re-exported by Crm1 and Mex67, but not by the canonical tRNA exporters Los1 or Msn5. These findings indicate that the re-export process occurs in a tRNA family-specific manner. Together, this assay provides insights into the pathways for tRNAPhe retrograde import and re-export and is a tool that can be used on a genome-wide level to identify additional gene products involved in these tRNA trafficking events.
Collapse
Affiliation(s)
- Regina T Nostramo
- Department of Molecular Genetics Center for RNA Biology The Ohio State University, Columbus, OH 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics Center for RNA Biology The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
De Zoysa T, Phizicky EM. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet 2020; 16:e1008893. [PMID: 32841241 PMCID: PMC7473580 DOI: 10.1371/journal.pgen.1008893] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
40
|
Li J, Wang Y, Xu B, Liu Y, Zhou M, Long T, Li H, Dong H, Nie Y, Chen PR, Wang E, Liu R. Intellectual disability-associated gene ftsj1 is responsible for 2'-O-methylation of specific tRNAs. EMBO Rep 2020; 21:e50095. [PMID: 32558197 PMCID: PMC7403668 DOI: 10.15252/embr.202050095] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
tRNA modifications at the anti-codon loop are critical for accurate decoding. FTSJ1 was hypothesized to be a human tRNA 2'-O-methyltransferase. tRNAPhe (GAA) from intellectual disability patients with mutations in ftsj1 lacks 2'-O-methylation at C32 and G34 (Cm32 and Gm34). However, the catalytic activity, RNA substrates, and pathogenic mechanism of FTSJ1 remain unknown, owing, in part, to the difficulty in reconstituting enzymatic activity in vitro. Here, we identify an interacting protein of FTSJ1, WDR6. For the first time, we reconstitute the 2'-O-methylation activity of the FTSJ1-WDR6 complex in vitro, which occurs at position 34 of specific tRNAs with m1 G37 as a prerequisite. We find that modifications at positions 32, 34, and 37 are interdependent and occur in a hierarchical order in vivo. We also show that the translation efficiency of the UUU codon, but not the UUC codon decoded by tRNAPhe (GAA), is reduced in ftsj1 knockout cells. Bioinformatics analysis reveals that almost 40% of the high TTT-biased genes are related to brain/nervous functions. Our data potentially enhance our understanding of the relationship between FTSJ1 and nervous system development.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yan‐Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Bei‐Si Xu
- Center for Applied BioinformaticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ya‐Ping Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationSynthetic and Functional Biomolecules CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Mi Zhou
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Tao Long
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Hao Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Han Dong
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Peng R Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationSynthetic and Functional Biomolecules CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - En‐Duo Wang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ru‐Juan Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
41
|
de Crécy-Lagard V, Ross RL, Jaroch M, Marchand V, Eisenhart C, Brégeon D, Motorin Y, Limbach PA. Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168. Biomolecules 2020; 10:E977. [PMID: 32629984 PMCID: PMC7408541 DOI: 10.3390/biom10070977] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria, Escherichia coli and Mycoplasma capricolum. Bacillus subtilis sp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted from B. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared to E. coli. In general, B. subtilis tRNAs are less modified than those in E. coli, even if some modifications, such as m1A22 or ms2t6A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer from E. coli to B. subtilis based on homology only without further experimental validation. This difficulty was shown with the identification of the B. subtilis enzyme that introduces ψ at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes in B. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Robert L. Ross
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Virginie Marchand
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Christina Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 Quai Saint Bernard, CEDEX 05, F-75252 Paris, France;
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| |
Collapse
|
42
|
Höfler S, Carlomagno T. Structural and functional roles of 2'-O-ribose methylations and their enzymatic machinery across multiple classes of RNAs. Curr Opin Struct Biol 2020; 65:42-50. [PMID: 32610226 DOI: 10.1016/j.sbi.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 01/27/2023]
Abstract
RNA complexity is augmented by numerous post-transcriptional modifications, which influence RNA function by modulating its structure and interactome. One prominent modification is methylation at the ribose 2'-hydroxyl group. 2'-O-methylation has been found in all RNA classes, with rRNA and tRNA being extensively modified. The exact function of 2'-O-methylation at specific RNA sites is still not understood, with a few notable exceptions. The relevance of 2'-O-methylation for cell survival and well-being is proven by the large effort that the cell spends in maintaining a diverse and highly regulated methylation machinery. Here, we review the current knowledge on the impact of 2'-O-methylation on structure and function of different RNAs as well as on the factors determining substrate specificity in the enzymatic machinery.
Collapse
Affiliation(s)
- Simone Höfler
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Teresa Carlomagno
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Helmholz Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
43
|
Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, Yonezawa K, Shimizu N, Hori H. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Nucleic Acids Res 2020; 47:10942-10955. [PMID: 31586407 PMCID: PMC6847430 DOI: 10.1093/nar/gkz856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
The complex between Trm7 and Trm734 (Trm7–Trm734) from Saccharomyces cerevisiae catalyzes 2′-O-methylation at position 34 in tRNA. We report biochemical and structural studies of the Trm7–Trm734 complex. Purified recombinant Trm7–Trm734 preferentially methylates tRNAPhe transcript variants possessing two of three factors (Cm32, m1G37 and pyrimidine34). Therefore, tRNAPhe, tRNATrp and tRNALeu are specifically methylated by Trm7–Trm734. We have solved the crystal structures of the apo and S-adenosyl-L-methionine bound forms of Trm7–Trm734. Small angle X-ray scattering reveals that Trm7–Trm734 exists as a hetero-dimer in solution. Trm7 possesses a Rossmann-fold catalytic domain, while Trm734 consists of three WD40 β-propeller domains (termed BPA, BPB and BPC). BPA and BPC form a unique V-shaped cleft, which docks to Trm7. The C-terminal region of Trm7 is required for binding to Trm734. The D-arm of substrate tRNA is required for methylation by Trm7–Trm734. If the D-arm in tRNAPhe is docked onto the positively charged area of BPB in Trm734, the anticodon-loop is located near the catalytic pocket of Trm7. This model suggests that Trm734 is required for correct positioning of tRNA for methylation. Additionally, a point-mutation in Trm7, which is observed in FTSJ1 (human Trm7 ortholog) of nosyndromic X-linked intellectual disability patients, decreases the methylation activity.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Keisuke Okada
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuaki Yoshii
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Shiraishi
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinya Saijo
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- To whom correspondence should be addressed. Tel: +81 89 927 8548; Fax: +81 89 927 9941;
| |
Collapse
|
44
|
2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations. Nat Commun 2020; 11:1509. [PMID: 32198346 PMCID: PMC7083880 DOI: 10.1038/s41467-020-15140-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsense mutations cause about 10% of genetic disease cases, and no treatments are available. Nonsense mutations can be corrected by molecules with nonsense mutation readthrough activity. An extract of the mushroom Lepista inversa has recently shown high-efficiency correction of UGA and UAA nonsense mutations. One active constituent of this extract is 2,6-diaminopurine (DAP). In Calu-6 cancer cells, in which TP53 gene has a UGA nonsense mutation, DAP treatment increases p53 level. It also decreases the growth of tumors arising from Calu-6 cells injected into immunodeficient nude mice. DAP acts by interfering with the activity of a tRNA-specific 2′-O-methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNATrp. Low-toxicity and high-efficiency UGA nonsense mutation correction make DAP a good candidate for the development of treatments for genetic diseases caused by nonsense mutations. Nonsense mutations can be corrected by several molecules that activate readthrough of premature termination codon. Here, the authors report that 2,6-diaminopurine efficiently corrects UGA nonsense mutations with no significant toxicity.
Collapse
|
45
|
Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, Brazane M, Goyenvalle C, Bourguignon-Igel V, Shehzada S, Khouider S, Lence T, Guerineau V, Roignant JY, Antoniewski C, Teysset L, Bregeon D, Motorin Y, Schaefer MR, Carré C. tRNA 2'-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res 2020; 48:2050-2072. [PMID: 31943105 PMCID: PMC7038984 DOI: 10.1093/nar/gkaa002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
2′-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.
Collapse
Affiliation(s)
- Margarita T Angelova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Caroline Jacquier
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Cyrinne Achour
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Mira Brazane
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Catherine Goyenvalle
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Valérie Bourguignon-Igel
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France.,Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Salman Shehzada
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Souraya Khouider
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Tina Lence
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Guerineau
- Institut de Chimie de Substances Naturelles, Centre de Recherche de Gif CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jean-Yves Roignant
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Damien Bregeon
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Yuri Motorin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Clément Carré
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
46
|
2'-O-ribose methylation of transfer RNA promotes recovery from oxidative stress in Saccharomyces cerevisiae. PLoS One 2020; 15:e0229103. [PMID: 32053677 PMCID: PMC7018073 DOI: 10.1371/journal.pone.0229103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
Chemical modifications that regulate protein expression at the translational level are emerging as vital components of the cellular stress response. Transfer RNAs (tRNAs) are significant targets for methyl-based modifications, which are catalyzed by tRNA methyltransferases (Trms). Here, Saccharomyces cerevisiae served as a model eukaryote system to investigate the role of 2'-O-ribose tRNA methylation in the cell's response to oxidative stress. Using 2'-O-ribose deletion mutants for trms 3, 7, 13, and 44, in acute and chronic exposure settings, we demonstrate a broad cell sensitivity to oxidative stress-inducing toxicants (i.e., hydrogen peroxide, rotenone, and acetic acid). A global analysis of hydrogen peroxide-induced tRNA modifications shows a complex profile of decreased, or undetectable, 2'-O-ribose modification events in 2’-O-ribose trm mutant strains, providing a critical link between this type of modification event and Trm status post-exposure. Based on the pronounced oxidative stress sensitivity observed for trm7 mutants, we used a bioinformatic tool to identify transcripts as candidates for regulation by Trm7-catalyzed modifications (i.e., enriched in UUC codons decoded by tRNAPheGmAA). This screen identified transcripts linked to diverse biological processes that promote cellular recovery after oxidative stress exposure, including DNA repair, chromatin remodeling, and nutrient acquisition (i.e., CRT10, HIR3, HXT2, and GNP1); moreover, these mutants were also oxidative stress-sensitive. Together, these results solidify a role for TRM3, 7, 13, and 44, in the cellular response to oxidative stress, and implicate 2'-O-ribose tRNA modification as an epitranscriptomic strategy for oxidative stress recovery.
Collapse
|
47
|
Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2019; 21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Jensen LR, Garrett L, Hölter SM, Rathkolb B, Rácz I, Adler T, Prehn C, Hans W, Rozman J, Becker L, Aguilar-Pimentel JA, Puk O, Moreth K, Dopatka M, Walther DJ, von Bohlen und Halbach V, Rath M, Delatycki M, Bert B, Fink H, Blümlein K, Ralser M, Van Dijck A, Kooy F, Stark Z, Müller S, Scherthan H, Gecz J, Wurst W, Wolf E, Zimmer A, Klingenspor M, Graw J, Klopstock T, Busch D, Adamski J, Fuchs H, Gailus-Durner V, de Angelis MH, von Bohlen und Halbach O, Ropers HH, Kuss AW. A mouse model for intellectual disability caused by mutations in the X-linked 2′‑O‑methyltransferase Ftsj1 gene. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2083-2093. [DOI: 10.1016/j.bbadis.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
|
49
|
Barraud P, Tisné C. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life 2019; 71:1126-1140. [PMID: 30932315 PMCID: PMC6850298 DOI: 10.1002/iub.2041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNAs (tRNAs) are essential components of the cellular protein synthesis machineries, but are also implicated in many roles outside translation. To become functional, tRNAs, initially transcribed as longer precursor tRNAs, undergo a tightly controlled biogenesis process comprising the maturation of their extremities, removal of intronic sequences if present, addition of the 3'-CCA amino-acid accepting sequence, and aminoacylation. In addition, the most impressive feature of tRNA biogenesis consists in the incorporation of a large number of posttranscriptional chemical modifications along its sequence. The chemical nature of these modifications is highly diverse, with more than hundred different modifications identified in tRNAs to date. All functions of tRNAs in cells are controlled and modulated by modifications, making the understanding of the mechanisms that determine and influence nucleotide modifications in tRNAs an essential point in tRNA biology. This review describes the different aspects that determine whether a certain position in a tRNA molecule is modified or not. We describe how sequence and structural determinants, as well as the presence of prior modifications control modification processes. We also describe how environmental factors and cellular stresses influence the level and/or the nature of certain modifications introduced in tRNAs, and report situations where these dynamic modulations of tRNA modification levels are regulated by active demodification processes. © 2019 IUBMB Life, 71(8):1126-1140, 2019.
Collapse
Affiliation(s)
- Pierre Barraud
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| | - Carine Tisné
- Expression génétique microbienneInstitut de biologie physico‐chimique (IBPC), UMR 8261, CNRS, Université Paris DiderotParisFrance
| |
Collapse
|
50
|
Masuda I, Takase R, Matsubara R, Paulines MJ, Gamper H, Limbach PA, Hou YM. Selective terminal methylation of a tRNA wobble base. Nucleic Acids Res 2019; 46:e37. [PMID: 29361055 PMCID: PMC5909439 DOI: 10.1093/nar/gky013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3′-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuma Matsubara
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mellie June Paulines
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|