1
|
Chen G, Zhang W, Wang C, Chen M, Hu Y, Wang Z. Identification of prognostic biomarkers of sepsis and construction of ceRNA regulatory networks. Sci Rep 2025; 15:2850. [PMID: 39843498 PMCID: PMC11754875 DOI: 10.1038/s41598-024-78502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/31/2024] [Indexed: 01/24/2025] Open
Abstract
Sepsis is a life-threatening severe organ dysfunction, and the pathogenesis remains uncertain. Increasing evidence suggests that circRNAs, mRNAs, and microRNAs can interact to jointly regulate the development of sepsis. Identifying the interaction between ceRNA regulatory networks and sepsis may contribute to our deeper understanding of the pathogenesis of sepsis, bring new insights into early recognition and treatment of sepsis. Blood samples from sepsis patients in the Affiliated Hospital of Southwest Medical University were collected. RNA sequencing (mRNA/circRNA) was performed on Survivor group (n = 26) and Non-survivor group (n = 6), then quality control and differential expression analysis were performed. Subsequently, GO analysis was performed on the differential expression genes; Meta-analysis was used to screen for prognostic related genes; 10 × Single-cell RNA sequencing was used to annotate the cell distribution of core genes. Finally, combined with base complementary pairing and intergroup correlation analysis, a sepsis-associated circRNA-miRNA-mRNA regulatory network was constructed. Differential expression analysis screened 28 mRNAs and 16 circRNAs. GO results showed that differential expression genes were mainly involved in membrane raft, actin cytoskeleton, regulation of immune response, negative regulation of cAMP-dependent protein kinase activity, etc. Meta-analysis screened 2 core genes, GSPT1 and NPRL3, which are associated with sepsis prognosis. 10 × Single-cell RNA sequencing showed that GSPT1 and NPRL3 were widely localized in immune cells, mainly macrophages and T cells. A ceRNA network consisting of 4 circRNA, 26 miRNA, and 2 mRNA was constructed. GSPT1 and NPRL3 were lowly expressed in the sepsis Survivor group, compared with Non-survivor group, which may become novel prognostic biomarkers for sepsis. A sepsis-related ceRNA networks, which consists of 4 circRNA, 26 miRNA, and 2 core gene, may guide mechanistic studies.
Collapse
Affiliation(s)
- Guihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Zhang
- Department of Endocrinology and Metabolism, The Traditional Chinese Medicine Hospital of Luzhou City, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Gabiatti B, Freire E, Ferreira da Costa J, Ferrarini M, Reichert Assunção de Matos T, Preti H, Munhoz da Rocha I, Guimarães B, Kramer S, Zanchin N, Holetz F. Trypanosoma cruzi eIF4E3- and eIF4E4-containing complexes bind different mRNAs and may sequester inactive mRNAs during nutritional stress. Nucleic Acids Res 2025; 53:gkae1181. [PMID: 39658061 PMCID: PMC11754739 DOI: 10.1093/nar/gkae1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Many eIF4F and poly(A)-binding protein (PABP) paralogues are found in trypanosomes: six eIF4E, five eIF4G, one eIF4A and two PABPs. They are expressed simultaneously and assemble into different complexes, contrasting the situation in metazoans that use distinct complexes in different cell types/developmental stages. Each eIF4F complex has its own proteins, messenger RNAs (mRNAs) and, consequently, a distinct function. We set out to study the function and regulation of the two eIF4F complexes of the parasite Trypanosoma cruzi and identified the associated proteins and mRNAs of eIF4E3 and eIF4E4 in cells in exponential growth and in nutritional stress, an inducer of differentiation to an infective stage. Upon stress, eIF4G and PABP remain associated with the eIF4E, but the associations with other 43S pre-initiation factors decrease, indicating ribosome attachment is impaired. Most eIF4E3-associated mRNAs encode for proteins involved in anabolic metabolism, while eIF4E4 associate with mRNAs encoding ribosomal proteins as in Trypanosoma brucei. Interestingly, for both eIF4E3/4, more mRNAs were associated in stressed cells than in non-stressed cells, even though these have lower translational efficiencies in stress. In summary, trypanosomes have two co-existing eIF4F complexes associating to different mRNAs, but not stress/differentiation-associated mRNAs. Under stress, both complexes exit translation but remain bound to their mRNA targets.
Collapse
Affiliation(s)
- Bernardo Papini Gabiatti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Eden Ribeiro Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Jimena Ferreira da Costa
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Henrique Preti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Isadora Munhoz da Rocha
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Nilson Ivo Tonin Zanchin
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Fabíola Barbieri Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| |
Collapse
|
3
|
Yamagishi R, Inagaki H, Suzuki J, Hosoda N, Sugiyama H, Tomita K, Hotta T, Hoshino SI. Concerted action of ataxin-2 and PABPC1-bound mRNA poly(A) tail in the formation of stress granules. Nucleic Acids Res 2024; 52:9193-9209. [PMID: 38869059 PMCID: PMC11347130 DOI: 10.1093/nar/gkae497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Stress induces global stabilization of the mRNA poly(A) tail (PAT) and the assembly of untranslated poly(A)-tailed mRNA into mRNPs that accumulate in stress granules (SGs). While the mechanism behind stress-induced global PAT stabilization has recently emerged, the biological significance of PAT stabilization under stress remains elusive. Here, we demonstrate that stress-induced PAT stabilization is a prerequisite for SG formation. Perturbations in PAT length impact SG formation; PAT shortening, achieved by overexpressing mRNA deadenylases, inhibits SG formation, whereas PAT lengthening, achieved by overexpressing their dominant negative mutants or downregulating deadenylases, promotes it. PABPC1, which specifically binds to the PAT, is crucial for SG formation. Complementation analyses reveal that the PABC/MLLE domain of PABPC1, responsible for binding PAM2 motif-containing proteins, plays a key role. Among them, ataxin-2 is a known SG component. A dominant-negative approach reveals that the PAM2 motif of ataxin-2 is essential for SG formation. Notably, ataxin-2 increases stress sensitivity, lowering the threshold for SG formation, probably by promoting the aggregation of PABPC1-bound mRNA. The C-terminal region is responsible for the self-aggregation of ataxin-2. These findings underscore the critical roles of mRNA PAT, PABPC1 and ataxin-2 in SG formation and provide mechanistic insights into this process.
Collapse
Affiliation(s)
- Ryota Yamagishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroto Inagaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Jun Suzuki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Haruka Sugiyama
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kazunori Tomita
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takashi Hotta
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
4
|
Li L, Wang M, Huang L, Zheng X, Wang L, Miao H. Ataxin-2: a powerful RNA-binding protein. Discov Oncol 2024; 15:298. [PMID: 39039334 PMCID: PMC11263328 DOI: 10.1007/s12672-024-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.
Collapse
Affiliation(s)
- Lulu Li
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Meng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Lai Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Xiaoli Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Sellar RS, Sperling AS, Słabicki M, Gasser JA, McConkey ME, Donovan KA, Mageed N, Adams DN, Zou C, Miller PG, Dutta RK, Boettcher S, Lin AE, Sandoval B, Quevedo Barrios VA, Kovalcik V, Koeppel J, Henderson EK, Fink EC, Yang L, Chan A, Pokharel SP, Bergstrom EJ, Burt R, Udeshi ND, Carr SA, Fischer ES, Chen CW, Ebert BL. Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. J Clin Invest 2022; 132:e153514. [PMID: 35763353 PMCID: PMC9374383 DOI: 10.1172/jci153514] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early-phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR/Cas9 screens implicated decreased translation initiation as protective following GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to the effects of GSPT1 degradation. We defined 2 Crbn amino acids that prevent Gspt1 degradation in mice, generated a knockin mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant acute myeloid leukemia.
Collapse
Affiliation(s)
- Rob S. Sellar
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Adam S. Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jessica A. Gasser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Marie E. McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nada Mageed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dylan N. Adams
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Charles Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter G. Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ravi K. Dutta
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Steffen Boettcher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Amy E. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Brittany Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Veronica Kovalcik
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jonas Koeppel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth K. Henderson
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Emma C. Fink
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Anthony Chan
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Rajan Burt
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Nicholson-Shaw AL, Kofman ER, Yeo GW, Pasquinelli A. Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms. Nucleic Acids Res 2022; 50:4685-4702. [PMID: 35438785 PMCID: PMC9071453 DOI: 10.1093/nar/gkac263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
The poly(A)-tail appended to the 3'-end of most eukaryotic transcripts plays a key role in their stability, nuclear transport, and translation. These roles are largely mediated by Poly(A) Binding Proteins (PABPs) that coat poly(A)-tails and interact with various proteins involved in the biogenesis and function of RNA. While it is well-established that the nuclear PABP (PABPN) binds newly synthesized poly(A)-tails and is replaced by the cytoplasmic PABP (PABPC) on transcripts exported to the cytoplasm, the distribution of transcripts for different genes or isoforms of the same gene on these PABPs has not been investigated on a genome-wide scale. Here, we analyzed the identity, splicing status, poly(A)-tail size, and translation status of RNAs co-immunoprecipitated with endogenous PABPN or PABPC in human cells. At steady state, many protein-coding and non-coding RNAs exhibit strong bias for association with PABPN or PABPC. While PABPN-enriched transcripts more often were incompletely spliced and harbored longer poly(A)-tails and PABPC-enriched RNAs had longer half-lives and higher translation efficiency, there are curious outliers. Overall, our study reveals the landscape of RNAs bound by PABPN and PABPC, providing new details that support and advance the current understanding of the roles these proteins play in poly(A)-tail synthesis, maintenance, and function.
Collapse
Affiliation(s)
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UCSD Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UCSD Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Jolles B, Jean-Jean O. Poly(A) tail degradation in human cells: ATF4 mRNA as a model for biphasic deadenylation. Biochimie 2021; 185:128-134. [PMID: 33775689 DOI: 10.1016/j.biochi.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Eukaryotic mRNA deadenylation is generally considered as a two-step process in which the PAN2-PAN3 complex initiates the poly(A) tail degradation while, in the second step, the CCR4-NOT complex completes deadenylation, leading to decapping and degradation of the mRNA body. However, the mechanism of the biphasic poly(A) tail deadenylation remains enigmatic in several points such as the timing of the switch between the two steps, the role of translation termination and the mRNAs population involved. Here, we have studied the deadenylation of endogenous mRNAs in human cells depleted in either PAN3 or translation termination factor eRF3. Among the mRNAs tested, we found that only the endogenous ATF4 mRNA meets the biphasic model for deadenylation and that eRF3 prevents the shortening of its poly(A) tail. For the other mRNAs, the poor effect of PAN3 depletion on their poly(A) tail shortening questions the mode of their deadenylation. It is possible that these mRNAs experience a single step deadenylation process. Alternatively, we propose that a very short initial deadenylation by PAN2-PAN3 is followed by a rapid transition to the second phase involving CCR4-NOT complex. These differences in the timing of the transition from one deadenylation step to the other could explain the difficulties encountered in the generalization of the biphasic deadenylation model.
Collapse
Affiliation(s)
- Béatrice Jolles
- Sorbonne Université, Institute of Biology Paris-Seine, IBPS, CNRS, Biological Adaptation and Ageing, B2A, F, 75005, Paris, France
| | - Olivier Jean-Jean
- Sorbonne Université, Institute of Biology Paris-Seine, IBPS, CNRS, Biological Adaptation and Ageing, B2A, F, 75005, Paris, France.
| |
Collapse
|
9
|
Mattijssen S, Kozlov G, Fonseca BD, Gehring K, Maraia RJ. LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. RNA Biol 2021; 18:259-274. [PMID: 33522422 PMCID: PMC7928012 DOI: 10.1080/15476286.2020.1868753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
La-related proteins (LARPs) share a La motif (LaM) followed by an RNA recognition motif (RRM). Together these are termed the La-module that, in the prototypical nuclear La protein and LARP7, mediates binding to the UUU-3'OH termination motif of nascent RNA polymerase III transcripts. We briefly review La and LARP7 activities for RNA 3' end binding and protection from exonucleases before moving to the more recently uncovered poly(A)-related activities of LARP1 and LARP4. Two features shared by LARP1 and LARP4 are direct binding to poly(A) and to the cytoplasmic poly(A)-binding protein (PABP, also known as PABPC1). LARP1, LARP4 and other proteins involved in mRNA translation, deadenylation, and decay, contain PAM2 motifs with variable affinities for the MLLE domain of PABP. We discuss a model in which these PABP-interacting activities contribute to poly(A) pruning of active mRNPs. Evidence that the SARS-CoV-2 RNA virus targets PABP, LARP1, LARP 4 and LARP 4B to control mRNP activity is also briefly reviewed. Recent data suggests that LARP4 opposes deadenylation by stabilizing PABP on mRNA poly(A) tails. Other data suggest that LARP1 can protect mRNA from deadenylation. This is dependent on a PAM2 motif with unique characteristics present in its La-module. Thus, while nuclear La and LARP7 stabilize small RNAs with 3' oligo(U) from decay, LARP1 and LARP4 bind and protect mRNA 3' poly(A) tails from deadenylases through close contact with PABP.Abbreviations: 5'TOP: 5' terminal oligopyrimidine, LaM: La motif, LARP: La-related protein, LARP1: La-related protein 1, MLLE: mademoiselle, NTR: N-terminal region, PABP: cytoplasmic poly(A)-binding protein (PABPC1), Pol III: RNA polymerase III, PAM2: PABP-interacting motif 2, PB: processing body, RRM: RNA recognition motif, SG: stress granule.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Guennadi Kozlov
- Department of Biochemistry & Centre for Structural Biology, McGill University, Montreal, Canada
| | | | - Kalle Gehring
- Department of Biochemistry & Centre for Structural Biology, McGill University, Montreal, Canada
| | - Richard J. Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Inagaki H, Hosoda N, Tsuiji H, Hoshino SI. Direct evidence that Ataxin-2 is a translational activator mediating cytoplasmic polyadenylation. J Biol Chem 2020; 295:15810-15825. [PMID: 32989052 DOI: 10.1074/jbc.ra120.013835] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/13/2020] [Indexed: 12/27/2022] Open
Abstract
The RNA-binding protein Ataxin-2 binds to and stabilizes a number of mRNA sequences, including that of the transactive response DNA-binding protein of 43 kDa (TDP-43). Ataxin-2 is additionally involved in several processes requiring translation, such as germline formation, long-term habituation, and circadian rhythm formation. However, it has yet to be unambiguously demonstrated that Ataxin-2 is actually involved in activating the translation of its target mRNAs. Here we provide direct evidence from a polysome profile analysis showing that Ataxin-2 enhances translation of target mRNAs. Our recently established method for transcriptional pulse-chase analysis under conditions of suppressing deadenylation revealed that Ataxin-2 promotes post-transcriptional polyadenylation of the target mRNAs. Furthermore, Ataxin-2 binds to a poly(A)-binding protein PABPC1 and a noncanonical poly(A) polymerase PAPD4 via its intrinsically disordered region (amino acids 906-1095) to recruit PAPD4 to the targets. Post-transcriptional polyadenylation by Ataxin-2 explains not only how it activates translation but also how it stabilizes target mRNAs, including TDP-43 mRNA. Ataxin-2 is known to be a potent modifier of TDP-43 proteinopathies and to play a causative role in the neurodegenerative disease spinocerebellar ataxia type 2, so these findings suggest that Ataxin-2-induced cytoplasmic polyadenylation and activation of translation might impact neurodegeneration (i.e. TDP-43 proteinopathies), and this process could be a therapeutic target for Ataxin-2-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroto Inagaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
11
|
Chen CYA, Strouz K, Huang KL, Shyu AB. Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. RNA (NEW YORK, N.Y.) 2020; 26:1143-1159. [PMID: 32404348 PMCID: PMC7430666 DOI: 10.1261/rna.073528.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/08/2020] [Indexed: 05/24/2023]
Abstract
Tob2, an anti-proliferative protein, promotes deadenylation through recruiting Caf1 deadenylase to the mRNA poly(A) tail by simultaneously interacting with both Caf1 and poly(A)-binding protein (PABP). Previously, we found that changes in Tob2 phosphorylation can alter its PABP-binding ability and deadenylation-promoting function. However, it remained unknown regarding the relevant kinase(s). Moreover, it was unclear whether Tob2 phosphorylation modulates the transcriptome and whether the phosphorylation is linked to Tob2's anti-proliferative function. In this study, we found that c-Jun amino-terminal kinase (JNK) increases phosphorylation of Tob2 at many Ser/Thr sites in the intrinsically disordered region (IDR) that contains two separate PABP-interacting PAM2 motifs. JNK-induced phosphorylation or phosphomimetic mutations at these sites weaken the Tob2-PABP interaction. In contrast, JNK-independent phosphorylation of Tob2 at serine 254 (S254) greatly enhances Tob2 interaction with PABP and its ability to promote deadenylation. We discovered that both PAM2 motifs are required for Tob2 to display these features. Combining mass spectrometry analysis, poly(A) size-distribution profiling, transcriptome-wide mRNA turnover analyses, and cell proliferation assays, we found that the phosphomimetic mutation at S254 (S254D) enhances Tob2's association with PABP, leading to accelerated deadenylation and decay of mRNAs globally. Moreover, the Tob2-S254D mutant accelerates the decay of many transcripts coding for cell cycle related proteins and enhances anti-proliferation function. Our findings reveal a novel mechanism by which Ccr4-Not complex is recruited by Tob2 to the mRNA 3' poly(A)-PABP complex in a phosphorylation dependent manner to promote rapid deadenylation and decay across the transcriptome, eliciting transcriptome reprogramming and suppressed cell proliferation.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Krista Strouz
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Aliouat A, Hatin I, Bertin P, François P, Stierlé V, Namy O, Salhi S, Jean-Jean O. Divergent effects of translation termination factor eRF3A and nonsense-mediated mRNA decay factor UPF1 on the expression of uORF carrying mRNAs and ribosome protein genes. RNA Biol 2019; 17:227-239. [PMID: 31619139 PMCID: PMC6973328 DOI: 10.1080/15476286.2019.1674595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to its role in translation termination, eRF3A has been implicated in the nonsense-mediated mRNA decay (NMD) pathway through its interaction with UPF1. NMD is a RNA quality control mechanism, which detects and degrades aberrant mRNAs as well as some normal transcripts including those that harbour upstream open reading frames in their 5ʹ leader sequence. In this study, we used RNA-sequencing and ribosome profiling to perform a genome wide analysis of the effect of either eRF3A or UPF1 depletion in human cells. Our bioinformatics analyses allow to delineate the features of the transcripts controlled by eRF3A and UPF1 and to compare the effect of each of these factors on gene expression. We find that eRF3A and UPF1 have very different impacts on the human transcriptome, less than 250 transcripts being targeted by both factors. We show that eRF3A depletion globally derepresses the expression of mRNAs containing translated uORFs while UPF1 knockdown derepresses only the mRNAs harbouring uORFs with an AUG codon in an optimal context for translation initiation. Finally, we also find that eRF3A and UPF1 have opposite effects on ribosome protein gene expression. Together, our results provide important elements for understanding the impact of translation termination and NMD on the human transcriptome and reveal novel determinants of ribosome biogenesis regulation.
Collapse
Affiliation(s)
- Affaf Aliouat
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Isabelle Hatin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pierre Bertin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pauline François
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Vérène Stierlé
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Samia Salhi
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| |
Collapse
|
13
|
Translation termination-dependent deadenylation of MYC mRNA in human cells. Oncotarget 2018; 9:26171-26182. [PMID: 29899850 PMCID: PMC5995228 DOI: 10.18632/oncotarget.25459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 05/08/2018] [Indexed: 11/25/2022] Open
Abstract
The earliest step in the mRNA degradation process is deadenylation, a progressive shortening of the mRNA poly(A) tail by deadenylases. The question of when deadenylation takes place remains open. MYC mRNA is one of the rare examples for which it was proposed a shortening of the poly(A) tail during ongoing translation. In this study, we analyzed the poly(A) tail length distribution of various mRNAs, including MYC mRNA. The mRNAs were isolated from the polysomal fractions of polysome profiling experiments and analyzed using ligase-mediated poly(A) test analysis. We show that, for all the mRNAs tested with the only exception of MYC, the poly(A) tail length distribution does not change in accordance with the number of ribosomes carried by the mRNA. Conversely, for MYC mRNA, we observed a poly(A) tail length decrease in the fractions containing the largest polysomes. Because the fractions with the highest number of ribosomes are also those for which translation termination is more frequent, we analyzed the poly(A) tail length distribution in polysomal fractions of cells depleted in translation termination factor eRF3. Our results show that the shortening of MYC mRNA poly(A) tail is alleviated by the silencing of translation termination factor eRF3. These findings suggest that MYC mRNA is co-translationally deadenylated and that the deadenylation process requires translation termination to proceed.
Collapse
|
14
|
Sawazaki R, Imai S, Yokogawa M, Hosoda N, Hoshino SI, Mio M, Mio K, Shimada I, Osawa M. Characterization of the multimeric structure of poly(A)-binding protein on a poly(A) tail. Sci Rep 2018; 8:1455. [PMID: 29362417 PMCID: PMC5780489 DOI: 10.1038/s41598-018-19659-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
Eukaryotic mature mRNAs possess a poly adenylate tail (poly(A)), to which multiple molecules of poly(A)-binding protein C1 (PABPC1) bind. PABPC1 regulates translation and mRNA metabolism by binding to regulatory proteins. To understand functional mechanism of the regulatory proteins, it is necessary to reveal how multiple molecules of PABPC1 exist on poly(A). Here, we characterize the structure of the multiple molecules of PABPC1 on poly(A), by using transmission electron microscopy (TEM), chemical cross-linking, and NMR spectroscopy. The TEM images and chemical cross-linking results indicate that multiple PABPC1 molecules form a wormlike structure in the PABPC1-poly(A) complex, in which the PABPC1 molecules are linearly arrayed. NMR and cross-linking analyses indicate that PABPC1 forms a multimer by binding to the neighbouring PABPC1 molecules via interactions between the RNA recognition motif (RRM) 2 in one molecule and the middle portion of the linker region of another molecule. A PABPC1 mutant lacking the interaction site in the linker, which possesses an impaired ability to form the multimer, reduced the in vitro translation activity, suggesting the importance of PABPC1 multimer formation in the translation process. We therefore propose a model of the PABPC1 multimer that provides clues to comprehensively understand the regulation mechanism of mRNA translation.
Collapse
Affiliation(s)
- Ryoichi Sawazaki
- Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nao Hosoda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shin-Ichi Hoshino
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Muneyo Mio
- Molecular Profiling Research Center for Drug Discovery and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuhiro Mio
- Molecular Profiling Research Center for Drug Discovery and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Fatscher T, Gehring NH. Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay. Sci Rep 2016; 6:37311. [PMID: 27874031 PMCID: PMC5118804 DOI: 10.1038/srep37311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular process that eliminates messenger RNA (mRNA) substrates with premature translation termination codons (PTCs). In addition, NMD regulates the expression of a number of physiological mRNAs, for example transcripts containing long 3′ UTRs. Current models implicate the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and translation termination in NMD. Accordingly, PABPC1 present within close proximity of a termination codon antagonizes NMD. Here, we use reporter mRNAs with different NMD-inducing 3′ UTRs to establish a general NMD-inhibiting property of PABPC1. NMD-inhibition is not limited to PABPC1, but can also be achieved by peptides consisting of the PABP-interacting motif 2 (PAM2) of different proteins when recruited to an NMD-inhibiting position of NMD reporter transcripts. The short PAM2 peptides efficiently suppress NMD activated by a long 3′ UTR, an exon-junction complex (EJC) and individual EJC components, and stabilize a PTC-containing β-globin mRNA. In conclusion, our results establish short PABPC1-recruiting peptides as potent but position-dependent inhibitors of mammalian NMD.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Jerbi S, Jolles B, Bouceba T, Jean-Jean O. Studies on human eRF3-PABP interaction reveal the influence of eRF3a N-terminal glycin repeat on eRF3-PABP binding affinity and the lower affinity of eRF3a 12-GGC allele involved in cancer susceptibility. RNA Biol 2016; 13:306-15. [PMID: 26818177 PMCID: PMC4829321 DOI: 10.1080/15476286.2015.1137421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The eukaryotic release factor 3 (eRF3) has been involved in the control of mRNA degradation through its association with the cytoplasmic Poly(A) Binding Protein, PABP. In mammals, eRF3 N-terminal domain contains two overlapping PAM2 motifs which specifically recognize the MLLE domain of PABP. In humans, eRF3a/GSPT1 gene contains a stable GGC repeat encoding a repeat of glycine residues in eRF3a N-terminus. There are five known eRF3a/GSPT1 alleles in the human population, encoding 7, 9, 10, 11 and 12 glycines. Several studies have reported that the presence of eRF3a 12-GGC allele is correlated with an increased risk of cancer development. Using surface plasmon resonance, we have studied the interaction of the various allelic forms of eRF3a with PABP alone or poly(A)-bound PABP. We found that the N-terminal glycine repeat of eRF3a influences eRF3a-PABP interaction and that eRF3a 12-GGC allele has a decreased binding affinity for PABP. Our comparative analysis on eRF3a alleles suggests that the presence of eRF3a 12-GGC allele could modify the coupling between translation termination and mRNA deadenylation.
Collapse
Affiliation(s)
- Soumaya Jerbi
- a Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-UMR8256 , 7 quai Saint Bernard, Paris , France
| | - Béatrice Jolles
- a Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-UMR8256 , 7 quai Saint Bernard, Paris , France
| | - Tahar Bouceba
- b Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-FR3631 , 7 quai Saint Bernard, Paris , France
| | - Olivier Jean-Jean
- a Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-UMR8256 , 7 quai Saint Bernard, Paris , France
| |
Collapse
|
17
|
Makino J, Nii M, Kamiya T, Hara H, Adachi T. Oxidized low-density lipoprotein accelerates the destabilization of extracellular-superoxide dismutase mRNA during foam cell formation. Arch Biochem Biophys 2015; 575:54-60. [PMID: 25906743 DOI: 10.1016/j.abb.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022]
Abstract
Extracellular-superoxide dismutase (EC-SOD) is one of the main anti-oxidative enzymes that protect cells against the damaging effects of superoxide. In the present study, we investigated the regulation of EC-SOD expression during the oxidized low density lipoprotein (oxLDL)-induced foam cell formation of THP-1-derived macrophages. The uptake of oxLDL into THP-1-derived macrophages was increased and EC-SOD expression was decreased in a time-dependent manner by oxLDL. Furthermore, EC-SOD suppression by oxLDL was mediated by the binding to scavenger receptors, especially CD36, from the results with siRNA experience. EC-SOD expression is known to be regulated by histone acetylation and binding of the transcription factor Sp1/3 to the EC-SOD promoter region in human cell lines. However, oxLDL did not affect these processes. On the other hand, the stability of EC-SOD mRNA was decreased by oxLDL. Moreover, oxLDL promoted destabilization of ectopically expressed mRNA from EC-SOD or chimeric Cu,Zn-SOD gene with the sequence corresponding to 3'UTR of EC-SOD mRNA, whereas oxLDL had no effect on ectopic mRNA produced from EC-SOD gene lacking the sequence. These results suggested that oxLDL decreased the expression of EC-SOD, which, in turn, accelerated the destabilization of EC-SOD mRNA, leading to weaker protection against oxidative stress and atherosclerosis.
Collapse
Affiliation(s)
- Junya Makino
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Miyuki Nii
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Hirokazu Hara
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Department of Biomedical Pharmaceutics, Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
18
|
Yamagishi R, Hosoda N, Hoshino SI. Arsenite inhibits mRNA deadenylation through proteolytic degradation of Tob and Pan3. Biochem Biophys Res Commun 2014; 455:323-31. [PMID: 25446091 DOI: 10.1016/j.bbrc.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 01/24/2023]
Abstract
The poly(A) tail of mRNAs plays pivotal roles in the posttranscriptional control of gene expression at both translation and mRNA stability. Recent findings demonstrate that the poly(A) tail is globally stabilized by some stresses. However, the mechanism underlying this phenomenon has not been elucidated. Here, we show that arsenite-induced oxidative stress inhibits deadenylation of mRNA primarily through downregulation of Tob and Pan3, both of which mediate the recruitment of deadenylases to mRNA. Arsenite selectively induces the proteolytic degradation of Tob and Pan3, and siRNA-mediated knockdown of Tob and Pan3 recapitulates stabilization of the mRNA poly(A) tail observed during arsenite stress. Although arsenite also inhibits translation by activating the eIF2α kinase HRI, arsenite-induced mRNA stabilization can be observed under HRI-depleted conditions. These results highlight the essential role of Tob and Pan3 in the stress-induced global stabilization of mRNA.
Collapse
Affiliation(s)
- Ryota Yamagishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
19
|
Fatscher T, Boehm V, Weiche B, Gehring NH. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2014; 20:1579-92. [PMID: 25147240 PMCID: PMC4174440 DOI: 10.1261/rna.044933.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) eliminates different classes of mRNA substrates including transcripts with long 3' UTRs. Current models of NMD suggest that the long physical distance between the poly(A) tail and the termination codon reduces the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and the eukaryotic release factor 3a (eRF3a) during translation termination. In the absence of PABPC1 binding, eRF3a recruits the NMD factor UPF1 to the terminating ribosome, triggering mRNA degradation. Here, we have used the MS2 tethering system to investigate the suppression of NMD by PABPC1. We show that tethering of PABPC1 between the termination codon and a long 3' UTR specifically inhibits NMD-mediated mRNA degradation. Contrary to the current model, tethered PABPC1 mutants unable to interact with eRF3a still efficiently suppress NMD. We find that the interaction of PABPC1 with eukaryotic initiation factor 4G (eIF4G), which mediates the circularization of mRNAs, is essential for NMD inhibition by tethered PABPC1. Furthermore, recruiting either eRF3a or eIF4G in proximity to an upstream termination codon antagonizes NMD. While tethering of an eRF3a mutant unable to interact with PABPC1 fails to suppress NMD, tethered eIF4G inhibits NMD in a PABPC1-independent manner, indicating a sequential arrangement of NMD antagonizing factors. In conclusion, our results establish a previously unrecognized link between translation termination, mRNA circularization, and NMD suppression, thereby suggesting a revised model for the activation of NMD at termination codons upstream of long 3' UTR.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Benjamin Weiche
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
20
|
The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1062-8. [PMID: 25120199 DOI: 10.1016/j.bbagrm.2014.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 08/04/2014] [Indexed: 11/21/2022]
Abstract
The cytoplasmic poly(A) binding protein 1 (PABPC1) is an essential eukaryotic translational initiation factor first described over 40 years ago. Most studies of PABPC1 have focused on its N-terminal RRM domains, which bind the mRNA 3' poly(A) tail and 5' translation complex eIF4F via eIF4G; however, the protein also contains a C-terminal MLLE domain that binds a peptide motif, termed PAM2, found in many proteins involved in translation regulation and mRNA metabolism. Studies over the past decade have revealed additional functions of PAM2-containing proteins (PACs) in neurodegenerative diseases, circadian rhythms, innate defense, and ubiquitin-mediated protein degradation. Here, we summarize functional and structural studies of the MLLE/PAM2 interaction and discuss the diverse roles of PACs.
Collapse
|
21
|
Jiménez-López D, Guzmán P. Insights into the evolution and domain structure of Ataxin-2 proteins across eukaryotes. BMC Res Notes 2014; 7:453. [PMID: 25027299 PMCID: PMC4105795 DOI: 10.1186/1756-0500-7-453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/03/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. RESULTS We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. CONCLUSION Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
| |
Collapse
|
22
|
Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:612-23. [PMID: 23435113 DOI: 10.1016/j.bbagrm.2013.02.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is well known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with truncated open reading frames (ORF) due to the presence of a premature termination codon (PTC). However, a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD targets. In this review, we focus on mechanistic aspects of target mRNA identification and degradation in mammalian cells, based on the available biochemical and genetic data, and point out knowledge gaps. Translation termination in a messenger ribonucleoprotein particle (mRNP) environment lacking necessary factors for proper translation termination emerges as a key determinant for subjecting an mRNA to NMD, and we therefore review recent structural and mechanistic insight into translation termination. In addition, the central role of UPF1, its crucial phosphorylation/dephosphorylation cycle and dynamic interactions with other NMD factors are discussed. Moreover, we address the role of exon junction complexes (EJCs) in NMD and summarize the functions of SMG5, SMG6 and SMG7 in promoting mRNA decay through different routes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
23
|
Yamashita A. Role of SMG-1-mediated Upf1 phosphorylation in mammalian nonsense-mediated mRNA decay. Genes Cells 2013; 18:161-75. [DOI: 10.1111/gtc.12033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022]
|