1
|
Kawaguchi S, Isshiki W, Kai T. Factories without walls: The molecular architecture and functions of non-membrane organelles in small RNA-guided genome protection. Biochim Biophys Acta Gen Subj 2025; 1869:130811. [PMID: 40319768 DOI: 10.1016/j.bbagen.2025.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Non-membrane organelles, Yb body and nuage, play an essential role in piRNA-guided genome defense in Drosophila gonad by mediating piRNA biogenesis and transposon silencing. Yb body, found in somatic follicle cells, is responsible for primary piRNA processing, while nuage, located in germline cells, facilitates the ping-pong cycle to amplify the piRNAs corresponding to both sense and antisense strands of the expressed transposons. These organelles are assembled by liquid-liquid phase separation (LLPS) and protein-protein interactions, integrating RNA helicases (Vasa, Armitage), Tudor domain-containing proteins (Krimper, Tejas, Qin/Kumo), and proteins containing both domains (Yb, SoYb, Spn-E). Within these condensates, we summarize the protein-protein interactions experimentally validated and predicted by AlphaFold3, providing new structural insights into the non-membrane organelle assembly. This review highlights how the dynamic organization of Yb body and nuage enables efficient RNA processing, ensuring transposon suppression and genome stability.
Collapse
Affiliation(s)
- Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| | - Wakana Isshiki
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Verdonckt TW, Swevers L, Santos D. A model that integrates the different piRNA biogenesis pathways based on studies in silkworm BmN4 cells. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100108. [PMID: 40083348 PMCID: PMC11904557 DOI: 10.1016/j.cris.2025.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
PIWI-interacting (pi) RNAs play an essential role in protecting the genomic integrity of germ cells from the disruptive transpositions of selfish genetic elements. One of the most important model systems for studying piRNA biogenesis is the ovary derived BmN4 cell line of the silkworm Bombyx mori. In recent years, many steps and components of the pathways involved in this process have been unraveled. However, a holistic description of piRNA biogenesis in BmN4 cells is still unavailable. In this paper, we review the state of the art and propose a novel model for piRNA biogenesis in BmN4 cells. This model was built considering the latest published data and will empower researchers to plan future experiments and interpret experimental results.
Collapse
Affiliation(s)
- Thomas-Wolf Verdonckt
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Aguilar-Rodríguez J, Jakobson CM, Jarosz DF. The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective. J Mol Biol 2024; 436:168846. [PMID: 39481633 PMCID: PMC11608137 DOI: 10.1016/j.jmb.2024.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a "hub of hubs" that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Ho S, Theurkauf W, Rice N. piRNA-Guided Transposon Silencing and Response to Stress in Drosophila Germline. Viruses 2024; 16:714. [PMID: 38793595 PMCID: PMC11125864 DOI: 10.3390/v16050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Transposons are integral genome constituents that can be domesticated for host functions, but they also represent a significant threat to genome stability. Transposon silencing is especially critical in the germline, which is dedicated to transmitting inherited genetic material. The small Piwi-interacting RNAs (piRNAs) have a deeply conserved function in transposon silencing in the germline. piRNA biogenesis and function are particularly well understood in Drosophila melanogaster, but some fundamental mechanisms remain elusive and there is growing evidence that the pathway is regulated in response to genotoxic and environmental stress. Here, we review transposon regulation by piRNAs and the piRNA pathway regulation in response to stress, focusing on the Drosophila female germline.
Collapse
Affiliation(s)
- Samantha Ho
- Program in Molecular Medicine, University Campus, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| | | | - Nicholas Rice
- Program in Molecular Medicine, University Campus, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| |
Collapse
|
5
|
Xia J, Fei S, Huang Y, Lai W, Yu Y, Liang L, Wu H, Swevers L, Sun J, Feng M. Single-nucleus sequencing of silkworm larval midgut reveals the immune escape strategy of BmNPV in the midgut during the late stage of infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104043. [PMID: 38013005 DOI: 10.1016/j.ibmb.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The midgut is an important barrier against microorganism invasion and proliferation, yet is the first tissue encountered when a baculovirus naturally invades the host. However, only limited knowledge is available how different midgut cell types contribute to the immune response and the clearance or promotion of viral infection. Here, single-nucleus RNA sequencing (snRNA seq) was employed to analyze the responses of various cell subpopulations in the silkworm larval midgut to B. mori nucleopolyhedrovirus (BmNPV) infection. We identified 22 distinct clusters representing enteroendocrine cells (EEs), enterocytes (ECs), intestinal stem cells (ISCs), Goblet cell-like and muscle cell types in the BmNPV-infected and uninfected silkworm larvae midgut at 72 h post infection. Further, our results revealed that the strategies for immune escape of BmNPV in the midgut at the late stage of infection include (1) inhibiting the response of antiviral pathways; (2) inhibiting the expression of antiviral host factors; (3) stimulating expression levels of genes promoting BmNPV replication. These findings suggest that the midgut, as the first line of defense against the invasion of the baculovirus, has dual characteristics of "resistance" and "tolerance". Our single-cell dataset reveals the diversity of silkworm larval midgut cells, and the transcriptome analysis provides insights into the interaction between host and virus infection at the single-cell level.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yigui Huang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Wenxuan Lai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Lingying Liang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Hailin Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Iki T, Kawaguchi S, Kai T. miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. SCIENCE ADVANCES 2023; 9:eadh0397. [PMID: 37467338 PMCID: PMC10355832 DOI: 10.1126/sciadv.adh0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
PIWI-interacting RNA (piRNA) pathways control transposable elements (TEs) and endogenous genes, playing important roles in animal gamete formation. However, the underlying piRNA biogenesis mechanisms remain elusive. Here, we show that endogenous protein coding sequences (CDSs), which are normally used for translation, serve as origins of noncoding piRNA biogenesis in Drosophila melanogaster testes. The product, namely, CDS-piRNAs, formed silencing complexes with Aubergine (Aub) in germ cells. Proximity proteome and functional analyses show that CDS-piRNAs and cluster/TE-piRNAs are distinct species occupying Aub, the former loading selectively relies on chaperone Cyclophilin 40. Moreover, Argonaute 2 (Ago2) and Dicer-2 activities were found critical for CDS-piRNA production. We provide evidence that Ago2-bound short interfering RNAs (siRNAs) and microRNAs (miRNAs) specify precursors to be processed into piRNAs. We further demonstrate that Aub is crucial in spermatid differentiation, regulating chromatins through mRNA cleavage. Collectively, our data illustrate a unique strategy used by male germ line, expanding piRNA repertoire for silencing of endogenous genes during spermatogenesis.
Collapse
Affiliation(s)
| | - Shinichi Kawaguchi
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka, Japan
| | | |
Collapse
|
7
|
Nguyen TTM, Munkhzul C, Kim J, Kyoung Y, Vianney M, Shin S, Ju S, Pham-Bui HA, Kim J, Kim JS, Lee M. In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary. Development 2023; 150:286990. [PMID: 36762624 DOI: 10.1242/dev.201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are small RNAs that play a conserved role in genome defense. The piRNA processing pathway is dependent on the sequestration of RNA precursors and protein factors in specific subcellular compartments. Therefore, a highly resolved spatial proteomics approach can help identify the local interactions and elucidate the unknown aspects of piRNA biogenesis. Herein, we performed TurboID proximity labeling to investigate the interactome of Zucchini (Zuc), a key factor of piRNA biogenesis in germline cells and somatic follicle cells of the Drosophila ovary. Quantitative mass spectrometry analysis of biotinylated proteins defined the Zuc-proximal proteome, including the well-known partners of Zuc. Many of these were enriched in the outer mitochondrial membrane (OMM), where Zuc was specifically localized. The proximal proteome of Zuc showed a distinct set of proteins compared with that of Tom20, a representative OMM protein, indicating that chaperone function-related and endomembrane system/vesicle transport proteins are previously unreported interacting partners of Zuc. The functional relevance of several candidates in piRNA biogenesis was validated by derepression of transposable elements after knockdown. Our results present potential Zuc-interacting proteins, suggesting unrecognized biological processes.
Collapse
Affiliation(s)
- Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonju Kyoung
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Michele Vianney
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Seonmin Ju
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
8
|
Namba Y, Iwasaki YW, Nishida KM, Nishihara H, Sumiyoshi T, Siomi MC. Maelstrom functions in the production of Siwi-piRISC capable of regulating transposons in Bombyx germ cells. iScience 2022; 25:103914. [PMID: 35243263 PMCID: PMC8881725 DOI: 10.1016/j.isci.2022.103914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama 332-0012, Japan
| | - Kazumichi M. Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Corresponding author
| |
Collapse
|
9
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
10
|
17-Allylamino-demethoxygeldanamycin Used Alone or in Combination with Sodium Orthovanadate Promotes Apoptosis and Inhibits Invasion of SH-SY5Y Cells by Modulating PIWIL2. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/7894712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuroblastoma (NB) is one of the most common extracranial solid tumors of childhood and accounts for 15% of cancer deaths. Even with the multimodality treatment protocols, the advanced-stage tumor overall 5-year survival rate is less than 50%. Therefore, novel drug therapy targeting cellular signal transduction pathways regulating the apoptotic cascade may be important for the treatment of drug-resistant NB. In our previous studies, we have demonstrated that 5 μM sodium orthovanadate (SOV) induced the apoptosis of SH-SY5Y cells. 17-Allylamino-demethoxygeldanamycin (17-AAG) is a geldanamycin- (GA-) derived heat shock protein 90 (Hsp90) inhibitor, and it has been shown to have potent antitumor activity in head and neck cancers. However, the effect of 17-AAG on the apoptosis of NB cells has not been reported. Therefore, the purpose of this study was to determine the effects of 17-AAG and SOV on the growth and invasion of SH-SY5Y cells in vitro and explore the related mechanism. In this study, we first investigated the antiviability effect of 17-AAG on SH-SY5Y cells, then studied the cell apoptosis and invasion influenced by 17-AAG and SOV, and assessed the role of PIWI-Like2 (PIWIL2) and piRNA-PIWI signaling in it. The results showed that 5 μM 17-AAG inhibited cell growth and viability and induced apoptosis in SH-SY5Y cells. Both 17-AAG and SOV reduced the level of PIWIL2 and Bcl-xl proteins and inhibited the invasion of SH-SY5Y cells. In addition, the combined use of the two drugs had greater effect than the single use of any drug.
Collapse
|
11
|
CRISPR/Cas9-mediated mutagenesis of Ago2 and Siwi in silkworm cultured cells. Gene 2020; 768:145314. [PMID: 33220342 DOI: 10.1016/j.gene.2020.145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
The BmN-4 cell line, originated from the silkworm Bombyx mori ovary, possesses endogenous small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) pathways. We performed CRISPR/Cas9-mediated genome editing of Ago2 and Siwi, which are the core factors for siRNA and piRNA pathways, respectively, to understand the importance of the two distinct small RNA pathways in this cell line. We found that approximately half of the alleles contained loss-of-function mutations in both Ago2- and Siwi-mutated cells. The mutated cells grew at a slower rate compared to the control cells, strongly suggesting that the siRNA and piRNA pathways are both crucial for the normal growth of BmN-4 cells. The amounts of piRNAs decreased markedly in the Siwi-mutated cells, but global de-repression of transposable elements was not observed. Although the RNA amount of latently infected RNA virus, Bombyx mori macula-like virus (BmLV), increased in both Ago2- and Siwi-mutated cells, the siRNA and piRNA pathways showed a bias toward targeting BmLV genomic and subgenomic RNA, respectively. These results indicate the common, specific, and crucial roles of the two small RNA pathways in B. mori cultured cells.
Collapse
|
12
|
Katsuma S. Hsp90 function is required for stable transcription of the baculovirus transactivator ie-1 gene. Virus Res 2020; 291:198200. [PMID: 33080246 DOI: 10.1016/j.virusres.2020.198200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
A molecular chaperone heat shock protein 90 (Hsp90) is required for efficient infection by several viruses. Hsp90 has been recently implicated in baculovirus infection, but its exact role remains obscure. This study investigated the effect of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an Hsp90-specific inhibitor, on Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The 17-AAG treatment significantly decreased the production of budded viruses and occlusion bodies in BmNPV-infected Bombyx mori cultured cells. Immunoblot and SDS-PAGE analyses showed that the expression of early and delayed early gene products, DBP and BRO, was delayed and dysregulated, and the very late gene product POLH was almost completely diminished. RT-qPCR experiments revealed that 17-AAG treatment did not affect initiation of the immediate early gene ie-1 expression, but the expression decreased by ∼50 % during the late stage of infection. 17-AAG treatment also decreased ie-1 promoter activity by ∼50 %. In addition, the expression of delayed early and late genes was dysregulated and inhibited, respectively. These results indicated that Hsp90 function is required for stable ie-1 transcription. Inhibiting Hsp90 function negatively affects ie-1 expression, resulting in dysregulation of delayed early genes and a severe decrease in late and very late gene expression.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
13
|
Gvozdenov Z, Kolhe J, Freeman BC. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034009. [PMID: 30745291 PMCID: PMC6771373 DOI: 10.1101/cshperspect.a034009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a healthy and functional proteome in all cellular compartments is critical to cell and organismal homeostasis. Yet, our understanding of the proteostasis process within the nucleus is limited. Here, we discuss the identified roles of the major molecular chaperones Hsp90, Hsp70, and Hsp60 with client proteins working in diverse DNA-associated pathways. The unique challenges facing proteins in the nucleus are considered as well as the conserved features of the molecular chaperone system in facilitating DNA-linked processes. As nuclear protein inclusions are a common feature of protein-aggregation diseases (e.g., neurodegeneration), a better understanding of nuclear proteostasis is warranted.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801.,Department Chemie, Technische Universität München, Garching 85748, Germany
| | - Janhavi Kolhe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Brian C Freeman
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
14
|
Kolliopoulou A, Santos D, Taning CNT, Wynant N, Vanden Broeck J, Smagghe G, Swevers L. PIWI pathway against viruses in insects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1555. [PMID: 31183996 DOI: 10.1002/wrna.1555] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes. In this review, the role of the piRNA pathway in the antiviral response is reviewed based on recent findings in insect models such as Drosophila, mosquitoes, midges and the silkworm, Bombyx mori. We extensively discuss the special features that characterize host-virus piRNA responses with respect to the proteins and the genes involved, the viral piRNAs' sequence characteristics, the target strand orientation biases as well as the viral piRNA target hotspots across the viral genomes. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
15
|
Stein CB, Genzor P, Mitra S, Elchert AR, Ipsaro JJ, Benner L, Sobti S, Su Y, Hammell M, Joshua-Tor L, Haase AD. Decoding the 5' nucleotide bias of PIWI-interacting RNAs. Nat Commun 2019; 10:828. [PMID: 30783109 PMCID: PMC6381166 DOI: 10.1038/s41467-019-08803-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are at the center of a small RNA-based immune system that defends genomes against the deleterious action of mobile genetic elements (transposons). PiRNAs are highly variable in sequence with extensive targeting potential. Their diversity is restricted by their preference to start with a Uridine (U) at the 5' most position (1U-bias), a bias that remains poorly understood. Here we uncover that the 1U-bias of Piwi-piRNAs is established by consecutive discrimination against all nucleotides but U, first during piRNA biogenesis and then upon interaction with Piwi's specificity loop. Sequence preferences during piRNA processing also restrict U across the piRNA body with the potential to directly impact target recognition. Overall, the uncovered signatures could modulate specificity and efficacy of piRNA-mediated transposon restriction, and provide a substrate for purifying selection in the ongoing arms race between genomes and their mobile parasites.
Collapse
Affiliation(s)
- Chad B Stein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sanga Mitra
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra R Elchert
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonathan J Ipsaro
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, 11724, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Leif Benner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sushil Sobti
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yijun Su
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, 11724, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Reznik B, Cincotta SA, Jaszczak RG, Mateo LJ, Shen J, Cao M, Baskin L, Ye P, An W, Laird DJ. Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Development 2019; 146:dev.171157. [PMID: 30658985 DOI: 10.1242/dev.171157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic resetting in germ cells during development de-represses transposable elements (TEs). piRNAs protect fetal germ cells by targeted mRNA destruction and deposition of repressive epigenetic marks. Here, we provide the first evidence for an active piRNA pathway and TE repression in germ cells of human fetal testis. We identify pre-pachytene piRNAs with features of secondary amplification that map most abundantly to the long interspersed element type 1 (L1) family of TEs. L1-ORF1p expression is heterogeneous in fetal germ cells, peaks at mid-gestation and declines concomitantly with increases in piRNAs, nuclear localization of HIWI2 and an increase in H3K9me3. Surprisingly, the same cells with accumulation of L1-ORF1p display highest levels of HIWI2 and H3K9me3. Conversely, the earliest germ cells with high levels of L1-ORF1p express low levels of the chaperone HSP90α. We propose that a subset of germ cells resists L1 expression, whereas L1-expressing germ cells activate the repression pathway that leads to epigenetic silencing of L1 via H3K9me3.
Collapse
Affiliation(s)
- Boris Reznik
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Leslie J Mateo
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ping Ye
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57105, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
The nucleolar transcriptome regulates Piwi shuttling between the nucleolus and the nucleoplasm. Chromosome Res 2018; 27:141-152. [DOI: 10.1007/s10577-018-9595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023]
|
18
|
Russell SJ, Stalker L, LaMarre J. PIWIs, piRNAs and Retrotransposons: Complex battles during reprogramming in gametes and early embryos. Reprod Domest Anim 2018; 52 Suppl 4:28-38. [PMID: 29052331 DOI: 10.1111/rda.13053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gamete and embryo development are indispensable processes for successful reproduction. Cells involved in these processes acquire pluripotency, the ability to differentiate into multiple different cell types, through a series of events known as reprogramming that lead to profound changes in histone and DNA methylation. While essential for pluripotency, this epigenetic remodelling removes constraints that normally limit the expression of genomic sequences known as transposable elements (TEs). Unconstrained TE expression can lead to many deleterious consequences including infertility, so organisms have evolved complex and potent mechanistic arsenals to target and suppress TE expression during reprogramming. This review will focus on the control of transposable elements in gametes and embryos, and one important TE suppressing system known as the PIWI pathway. This broadly conserved, small RNA-targeted silencing mechanism appears critical for fertility in many species and may participate in multiple aspects of gene regulation in reproduction and other contexts.
Collapse
Affiliation(s)
- S J Russell
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - L Stalker
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - J LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Abstract
From bacteria to humans, ancient stress responses enable organisms to contend with damage to both the genome and the proteome. These pathways have long been viewed as fundamentally separate responses. Yet recent discoveries from multiple fields have revealed surprising links between the two. Many DNA-damaging agents also target proteins, and mutagenesis induced by DNA damage produces variant proteins that are prone to misfolding, degradation, and aggregation. Likewise, recent studies have observed pervasive engagement of a p53-mediated response, and other factors linked to maintenance of genomic integrity, in response to misfolded protein stress. Perhaps most remarkably, protein aggregation and self-assembly has now been observed in multiple proteins that regulate the DNA damage response. The importance of these connections is highlighted by disease models of both cancer and neurodegeneration, in which compromised DNA repair machinery leads to profound defects in protein quality control, and vice versa.
Collapse
|
20
|
Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It's not magic - Hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol 2018; 88:21-35. [PMID: 29807130 DOI: 10.1016/j.semcdb.2018.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
Canalization, or phenotypic robustness in the face of environmental and genetic perturbation, is an emergent property of living systems. Although this phenomenon has long been recognized, its molecular underpinnings have remained enigmatic until recently. Here, we review the contributions of the molecular chaperone Hsp90, a protein that facilitates the folding of many key regulators of growth and development, to canalization of phenotype - and de-canalization in times of stress - drawing on studies in eukaryotes as diverse as baker's yeast, mouse ear cress, and blind Mexican cavefish. Hsp90 is a hub of hubs that interacts with many so-called 'client proteins,' which affect virtually every aspect of cell signaling and physiology. As Hsp90 facilitates client folding and stability, it can epistatically suppress or enable the expression of genetic variants in its clients and other proteins that acquire client status through mutation. Hsp90's vast interaction network explains the breadth of its phenotypic reach, including Hsp90-dependent de novo mutations and epigenetic effects on gene regulation. Intrinsic links between environmental stress and Hsp90 function thus endow living systems with phenotypic plasticity in fluctuating environments. As environmental perturbations alter Hsp90 function, they also alter Hsp90's interaction with its client proteins, thereby re-wiring networks that determine the genotype-to-phenotype map. Ensuing de-canalization of phenotype creates phenotypic diversity that is not simply stochastic, but often has an underlying genetic basis. Thus, extreme phenotypes can be selected, and assimilated so that they no longer require environmental stress to manifest. In addition to acting on standing genetic variation, Hsp90 perturbation has also been linked to increased frequency of de novo variation and several epigenetic phenomena, all with the potential to generate heritable phenotypic change. Here, we aim to clarify and discuss the multiple means by which Hsp90 can affect phenotype and possibly evolutionary change, and identify their underlying common feature: at its core, Hsp90 interacts epistatically through its chaperone function with many other genes and their gene products. Its influence on phenotypic diversification is thus not magic but rather a fundamental property of genetics.
Collapse
Affiliation(s)
- Rebecca A Zabinsky
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
21
|
Okazaki K, Kato H, Iida T, Shinmyozu K, Nakayama JI, Murakami Y, Urano T. RNAi-dependent heterochromatin assembly in fission yeast Schizosaccharomyces pombe requires heat-shock molecular chaperones Hsp90 and Mas5. Epigenetics Chromatin 2018; 11:26. [PMID: 29866182 PMCID: PMC5985592 DOI: 10.1186/s13072-018-0199-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022] Open
Abstract
Background Heat-shock molecular chaperone proteins (Hsps) promote the loading of small interfering RNA (siRNA) onto RNA interference (RNAi) effector complexes. While the RNAi process is coupled with heterochromatin assembly in several model organisms, it remains unclear whether the Hsps contribute to epigenetic gene regulation. In this study, we used the fission yeast Schizosaccharomyces pombe as a model organism and investigated the roles of Hsp90 and Mas5 (a nucleocytoplasmic type-I Hsp40 protein) in RNAi-dependent heterochromatin assembly. Results Using a genetic screen and biochemical analyses, we identified Hsp90 and Mas5 as novel silencing factors. Mutations in the genes encoding these factors caused derepression of silencing at the pericentromere, where heterochromatin is assembled in an RNAi-dependent manner, but not at the subtelomere, where RNAi is dispensable. The mutations also caused a substantial reduction in the level of dimethylation of histone H3 at Lys9 at the pericentromere, where association of the Argonaute protein Ago1 was also abrogated. Consistently, siRNA corresponding to the pericentromeric repeats was undetectable in these mutant cells. In addition, levels of Tas3, which is a protein in the RNA-induced transcriptional silencing complex along with Ago1, were reduced in the absence of Mas5. Conclusions Our results suggest that the Hsps Hsp90 and Mas5 contribute to RNAi-dependent heterochromatin assembly. In particular, Mas5 appears to be required to stabilize Tas3 in vivo. We infer that impairment of Hsp90 and Hsp40 also may affect the integrity of the epigenome in other organisms. Electronic supplementary material The online version of this article (10.1186/s13072-018-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kosuke Okazaki
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,KNC Laboratories Co. Ltd., Kobe, Hyogo, 651-2271, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Tetsushi Iida
- Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima, 411-8540, Japan.,Laboratory for Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan.,National Cerebral and Cardiovascular Center, Suita, Osaka, 565-8565, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
22
|
Wang X, Luo H, Zhang R. Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:22-33. [PMID: 29241953 DOI: 10.1016/j.dci.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Innate immunity, the evolutionarily conserved defense system, has been extensively analyzed in insect models over recent decades. The significant progress in this area has formed our dominant conceptual framework of the innate immune system, but critical advances in other insects have had a profound impact on our insights into the mystery of innate immunity. In recent years, we focused on the immune responses in Antheraea pernyi, an important commercial silkworm species reared in China. Here, we review the immune responses of A. pernyi based on immune-related gene-encoded proteins that are divided into five categories, namely pattern recognition receptors, hemolymph proteinases and their inhibitors, prophenoloxidase, Toll pathway factors and antimicrobial peptides, and others. Although the summarized information is limited since the research on A. pernyi immunity is in its infancy, we hope to provide evidence for further exploration of innate immune mechanisms.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
23
|
Katsuma S, Kawamoto M, Shoji K, Aizawa T, Kiuchi T, Izumi N, Ogawa M, Mashiko T, Kawasaki H, Sugano S, Tomari Y, Suzuki Y, Iwanaga M. Transcriptome profiling reveals infection strategy of an insect maculavirus. DNA Res 2018; 25:4816134. [PMID: 29360973 PMCID: PMC6014269 DOI: 10.1093/dnares/dsx056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Bombyx mori macula-like virus (BmMLV) is a positive, single-stranded insect RNA virus that is closely related to plant maculaviruses. BmMLV is currently characterized as an unclassified maculavirus. BmMLV accumulates at extremely high levels in cell lines derived from the silkworm, Bombyx mori, but it does not lead to lethality and establishes persistent infections. It is unknown how this insect maculavirus replicates and establishes persistent infections in insect cells. Here, we showed that BmMLV p15, which is located on a subgenomic fragment and is not found in plant maculaviruses, is highly expressed in BmMLV-infected silkworm cells and that p15 protein is required to establish BmMLV infections in silkworm cells. We also showed that two distinct small RNA-mediated pathways maintain BmMLV levels in BmMLV-infected silkworm cells, thereby allowing the virus to establish persistent infection. Virus-derived siRNAs and piRNAs were both produced as the infection progressed. Knockdown experiments demonstrated that the exogenous RNAi pathway alone or RNAi and piRNA pathways function cooperatively to silence BmMLV RNA and that both pathways are important for normal growth of BmMLV-infected silkworm cells. On the basis of our study, we propose a mechanism of how a plant virus-like insect virus can establish persistent infections in insect cells.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takahiro Aizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Moe Ogawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takaaki Mashiko
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hideki Kawasaki
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Masashi Iwanaga
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| |
Collapse
|
24
|
Structural Foundations of RNA Silencing by Argonaute. J Mol Biol 2017; 429:2619-2639. [PMID: 28757069 DOI: 10.1016/j.jmb.2017.07.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.
Collapse
|
25
|
Abstract
Piwi proteins and their bound Piwi-interacting RNAs (piRNAs) are predominantly expressed in the germline and play crucial roles in germline development by silencing transposons and other targets. Bombyx mori BmN4 cells are culturable germ cells that equip the piRNA pathway. Because of the scarcity of piRNA-expressing culturable cells, BmN4 cells are being utilized for the analyses of piRNA biogenesis. We here report that the piRNA biogenesis in BmN4 cells is regulated by cell density. As cell density increased, the abundance of Piwi proteins and piRNA biogenesis factors was commonly upregulated, resulting in an increased number of perinuclear nuage-like granules where Piwi proteins localize. Along with these phenomena, the abundance of mature piRNAs also globally increased, whereas levels of long piRNA precursor and transposons decreased, suggesting that increasing cell density promotes piRNA biogenesis pathway and that the resultant accumulation of mature piRNAs is functionally significant for transposon silencing. Our study reveals a previously uncharacterized link between cell density and piRNA biogenesis, designates cell density as a critical variable in piRNA studies using BmN4 cell system, and suggests the alteration of cell density as a useful tool to monitor piRNA biogenesis and function.
Collapse
|
26
|
Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:164-176. [PMID: 28602845 PMCID: PMC5487533 DOI: 10.1016/j.gpb.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established “transposition-selection” population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms.
Collapse
|
27
|
Russell S, Patel M, Gilchrist G, Stalker L, Gillis D, Rosenkranz D, LaMarre J. Bovine piRNA-like RNAs are associated with both transposable elements and mRNAs. Reproduction 2017; 153:305-318. [DOI: 10.1530/rep-16-0620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/20/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
Abstract
PIWI proteins and their associated piRNAs have been the focus of intensive research in the past decade; therefore, their participation in the maintenance of genomic integrity during spermatogenesis has been well established. Recent studies have suggested important roles for the PIWI/piRNA system outside of gametogenesis, based on the presence of piRNAs and PIWI proteins in several somatic tissues, cancers, and the early embryo. Here, we investigated the small RNA complement present in bovine gonads, gametes, and embryos through next-generation sequencing. A distinct piRNA population was present in the testis as expected. However, we also found a large population of slightly shorter, 24–27 nt piRNA-like RNA (pilRNAs) in pools of oocytes and zygotes. These oocyte and embryo pilRNAs exhibited many of the canonical characteristics of piRNAs including a 1U bias, the presence of a ‘ping-pong’ signature, genomic clustering, and transposable element targeting. Some of the major transposons targeted by oocyte and zygote pilRNA were from the LINE RTE and ERV1 classes. We also identified pools of pilRNA potentially derived from, or targeted at, specific mRNA sequences. We compared the frequency of these gene-associated pilRNAs to the fold change in the expression of respective mRNAs from two previously reported transcriptome datasets. We observed significant negative correlations between the number of pilRNAs targeting mRNAs, and their fold change in expression between the 4–8 cell and 8–16 cell stages. Together, these results represent one of the first characterizations of the PIWI/piRNA pathway in the translational bovine model, and in the novel context of embryogenesis.
Collapse
|
28
|
Karam JA, Parikh RY, Nayak D, Rosenkranz D, Gangaraju VK. Co-chaperone Hsp70/Hsp90-organizing protein (Hop) is required for transposon silencing and Piwi-interacting RNA (piRNA) biogenesis. J Biol Chem 2017; 292:6039-6046. [PMID: 28193840 DOI: 10.1074/jbc.c117.777730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/08/2017] [Indexed: 11/06/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are 26-30-nucleotide germ line-specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element (transposons) silencing and maintenance of genome integrity. Drosophila Hsp70/90-organizing protein homolog (Hop), a co-chaperone, interacts with piRNA-binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known whether Hop has a direct role in piRNA biogenesis and transposon silencing. Here, we show that knockdown of Hop in the germ line nurse cells (GLKD) of Drosophila ovaries leads to activation of transposons. Hop GLKD females can lay eggs at the same rate as wild-type counterparts, but the eggs do not hatch into larvae. Hop GLKD leads to the accumulation of γ-H2Av foci in the germ line, indicating increased DNA damage in the ovary. We also show that Hop GLKD-induced transposon up-regulation is due to inefficient piRNA biogenesis. Based on these results, we conclude that Hop is a critical component of the piRNA pathway and that it maintains genome integrity by silencing transposons.
Collapse
Affiliation(s)
- Joseph A Karam
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Rasesh Y Parikh
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Dhananjaya Nayak
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - David Rosenkranz
- the Institute of Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany
| | - Vamsi K Gangaraju
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
29
|
Yang F, Xi R. Silencing transposable elements in the Drosophila germline. Cell Mol Life Sci 2017; 74:435-448. [PMID: 27600679 PMCID: PMC11107544 DOI: 10.1007/s00018-016-2353-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Transposable elements or transposons are DNA pieces that can move around within the genome and are, therefore, potential threat to genome stability and faithful transmission of the genetic information in the germline. Accordingly, self-defense mechanisms have evolved in the metazoan germline to silence transposons, and the primary mechanism requires the germline-specific non-coding small RNAs, named Piwi-interacting RNA (piRNAs), which are in complex with Argonaute family of PIWI proteins (the piRNA-RISC complexes), to silence transposons. piRNA-mediated transposon silencing occurs at both transcriptional and post-transcriptional levels. With the advantages of genetic manipulation and advances of sequencing technology, much progress has been made on the molecular mechanisms of piRNA-mediated transposon silencing in Drosophila melanogaster, which will be the focus of this review. Because piRNA-mediated transposon silencing is evolutionarily conserved in metazoan, model organisms, such as Drosophila, will continue to be served as pioneer systems towards the complete understanding of transposon silencing in the metazoan germline.
Collapse
Affiliation(s)
- Fu Yang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
30
|
Shoji K, Suzuki Y, Sugano S, Shimada T, Katsuma S. Artificial "ping-pong" cascade of PIWI-interacting RNA in silkworm cells. RNA (NEW YORK, N.Y.) 2017; 23:86-97. [PMID: 27777367 PMCID: PMC5159652 DOI: 10.1261/rna.058875.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/15/2016] [Indexed: 05/19/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.
Collapse
Affiliation(s)
- Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Ryan CP, Brownlie JC, Whyard S. Hsp90 and Physiological Stress Are Linked to Autonomous Transposon Mobility and Heritable Genetic Change in Nematodes. Genome Biol Evol 2016; 8:3794-3805. [PMID: 28082599 PMCID: PMC5521727 DOI: 10.1093/gbe/evw284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) have been recognized as potentially powerful drivers of genomic evolutionary change, but factors affecting their mobility and regulation remain poorly understood. Chaperones such as Hsp90 buffer environmental perturbations by regulating protein conformation, but are also part of the PIWI-interacting RNA pathway, which regulates genomic instability arising from mobile TEs in the germline. Stress-induced mutagenesis from TE movement could thus arise from functional trade-offs in the dual roles of Hsp90. We examined the functional constraints of Hsp90 and its role as a regulator of TE mobility by exposing nematodes (Caenorhabditis elegans and Caenorhabditis briggsae) to environmental stress, with and without RNAi-induced silencing of Hsp90. TE excision frequency increased with environmental stress intensity at multiple loci in several strains of each species. These effects were compounded by RNAi-induced knockdown of Hsp90. Mutation frequencies at the unc-22 marker gene in the offspring of animals exposed to environmental stress and Hsp90 RNAi mirrored excision frequency in response to these treatments. Our results support a role for Hsp90 in the suppression of TE mobility, and demonstrate that that the Hsp90 regulatory pathway can be overwhelmed with moderate environmental stress. By compromising genomic stability in germline cells, environmentally induced mutations arising from TE mobility and insertion can have permanent and heritable effects on both the phenotype and the genotype of subsequent generations.
Collapse
Affiliation(s)
- Calen P. Ryan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Anthropology, Northwestern University, Evanston, IL
| | - Jeremy C. Brownlie
- School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
32
|
Connerty P, Bajan S, Remenyi J, Fuller-Pace FV, Hutvagner G. The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the protein level of Ago2 in human cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1299-305. [DOI: 10.1016/j.bbagrm.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|
33
|
Kobayashi H, Tomari Y. RISC assembly: Coordination between small RNAs and Argonaute proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:71-81. [DOI: 10.1016/j.bbagrm.2015.08.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
|
34
|
piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:82-92. [DOI: 10.1016/j.bbagrm.2015.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
|
35
|
Lopez-Orozco J, Pare JM, Holme AL, Chaulk SG, Fahlman RP, Hobman TC. Functional analyses of phosphorylation events in human Argonaute 2. RNA (NEW YORK, N.Y.) 2015; 21:2030-2038. [PMID: 26443379 PMCID: PMC4647457 DOI: 10.1261/rna.053207.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
Argonaute 2 (Ago2) protein is a central effector of RNA interference (RNAi) pathways and regulates mammalian genes on a global level. The mechanisms of Ago2-mediated silencing are well understood, but less is known about its regulation. Recent reports indicate that phosphorylation significantly affects Ago2 activity. Here, we investigated the effect of mutating all known phospho-residues within Ago2 on its localization and activity. Ago2 associates with two different cytoplasmic RNA granules known as processing bodies (P-bodies) and stress granules, but the nature of this phenomenon is controversial. We report that replacing serine with a phospho-mimetic aspartic acid at position 798 completely abrogates association of Ago2 with P-bodies and stress granules. The effect of this mutation on its activity in gene silencing was modest, which was surprising because association of Ago2 with cytoplasmic RNA granules is thought to be a consequence of its role in RNAi. As such, our data indicate that targeting of Ago2 to P-bodies and stress granules is separable from its role in RNAi and likely requires dynamic phosphorylation of serine 798.
Collapse
Affiliation(s)
- Joaquin Lopez-Orozco
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Justin M Pare
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Andrea L Holme
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Steven G Chaulk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
36
|
Schwartz H, Scroggins B, Zuehlke A, Kijima T, Beebe K, Mishra A, Neckers L, Prince T. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas. Cell Stress Chaperones 2015; 20:729-41. [PMID: 26070366 PMCID: PMC4529871 DOI: 10.1007/s12192-015-0604-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Harvey Schwartz
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Brad Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Abbey Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Toshiki Kijima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Thomas Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
37
|
Kolliopoulou A, Van Nieuwerburgh F, Stravopodis DJ, Deforce D, Swevers L, Smagghe G. Transcriptome analysis of Bombyx mori larval midgut during persistent and pathogenic cytoplasmic polyhedrosis virus infection. PLoS One 2015; 10:e0121447. [PMID: 25816294 PMCID: PMC4376736 DOI: 10.1371/journal.pone.0121447] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/12/2015] [Indexed: 12/12/2022] Open
Abstract
Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host's transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic/metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host's RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following pathogenic infection with CPV, while they also highlight the relative importance of RNAi as an antiviral mechanism.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens, Greece
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dimitrios J. Stravopodis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens, Greece
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z, Wang PJ. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev 2015; 29:617-29. [PMID: 25762440 PMCID: PMC4378194 DOI: 10.1101/gad.254631.114] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Piwi-piRNA ribonucleoproteins (piRNPs) enforce retrotransposon silencing, a function critical for preserving genome integrity of germ cells. Vourekas et al. found that MOV10L1 exhibits 5? to 3? directional RNA unwinding activity in vitro and that a point mutation that abolishes this activity causes a failure in primary piRNA biogenesis in vivo. MOV10L1 selectively binds piRNA precursor transcripts and is essential for the generation of intermediate piRNA processing fragments that are subsequently loaded to Piwi proteins. Piwi–piRNA (Piwi-interacting RNA) ribonucleoproteins (piRNPs) enforce retrotransposon silencing, a function critical for preserving the genome integrity of germ cells. The molecular functions of most of the factors that have been genetically implicated in primary piRNA biogenesis are still elusive. Here we show that MOV10L1 exhibits 5′-to-3′ directional RNA-unwinding activity in vitro and that a point mutation that abolishes this activity causes a failure in primary piRNA biogenesis in vivo. We demonstrate that MOV10L1 selectively binds piRNA precursor transcripts and is essential for the generation of intermediate piRNA processing fragments that are subsequently loaded to Piwi proteins. Multiple analyses suggest an intimate coupling of piRNA precursor processing with elements of local secondary structures such as G quadruplexes. Our results support a model in which MOV10L1 RNA helicase activity promotes unwinding and funneling of the single-stranded piRNA precursor transcripts to the endonuclease that catalyzes the first cleavage step of piRNA processing.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Qi Fu
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jing Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ramesh S Pillai
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, Cedex 9, France
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - P Jeremy Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
39
|
Woehrer SL, Aronica L, Suhren JH, Busch CJL, Noto T, Mochizuki K. A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. EMBO J 2015; 34:559-77. [PMID: 25588944 PMCID: PMC4331008 DOI: 10.15252/embj.201490062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The loading of small interfering RNAs (siRNAs) and microRNAs into Argonaute proteins is enhanced by Hsp90 and ATP in diverse eukaryotes. However, whether this loading also occurs independently of Hsp90 and ATP remains unclear. We show that the Tetrahymena Hsp90 co-chaperone Coi12p promotes siRNA loading into the Argonaute protein Twi1p in both ATP-dependent and ATP-independent manners in vitro. The ATP-dependent activity requires Hsp90 and the tetratricopeptide repeat (TPR) domain of Coi12p, whereas these factors are dispensable for the ATP-independent activity. Both activities facilitate siRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important to specifically sort the 26- to 32-nt siRNAs to Twi1p. Although Coi12p lacking its TPR domain does not bind to Hsp90, it can partially restore the siRNA loading and DNA elimination defects of COI12 knockout cells, suggesting that Hsp90- and ATP-independent loading of siRNA occurs in vivo and plays a physiological role in Tetrahymena.
Collapse
Affiliation(s)
- Sophie L Woehrer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Lucia Aronica
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Jan H Suhren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Clara Jana-Lui Busch
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Tomoko Noto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
40
|
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) are essential for gametogenesis, embryogenesis, and stem cell maintenance in animals. Piwi proteins act on transposon RNAs by cleaving the RNAs and by interacting with factors involved in RNA regulation. Additionally, piRNAs generated from transposons and psuedogenes can be used by Piwi proteins to regulate mRNAs at the posttranscriptional level. Here we discuss piRNA biogenesis, recent findings on posttranscriptional regulation of mRNAs by the piRNA pathway, and the potential importance of this posttranscriptional regulation for a variety of biological processes such as gametogenesis, developmental transitions, and sex determination.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
41
|
Kolliopoulou A, Swevers L. Recent progress in RNAi research in Lepidoptera: intracellular machinery, antiviral immune response and prospects for insect pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:28-34. [PMID: 0 DOI: 10.1016/j.cois.2014.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 05/03/2023]
|
42
|
Wang W, Yoshikawa M, Han BW, Izumi N, Tomari Y, Weng Z, Zamore PD. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Mol Cell 2014; 56:708-16. [PMID: 25453759 DOI: 10.1016/j.molcel.2014.10.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022]
Abstract
PIWI-interacting RNAs (piRNAs) silence transposons in animal germ cells. PIWI proteins bind and amplify piRNAs via the "Ping-Pong" pathway. Because PIWI proteins cleave RNAs between target nucleotides t10 and t11-the nucleotides paired to piRNA guide positions g10 and g11-the first ten nucleotides of piRNAs participating in the Ping-Pong amplification cycle are complementary. Drosophila piRNAs bound to the PIWI protein Aubergine typically begin with uridine (1U), while piRNAs bound to Argonaute3, which are produced by Ping-Pong amplification, often have adenine at position 10 (10A). The Ping-Pong model proposes that the 10A is a consequence of 1U. We find that 10A is not caused by 1U. Instead, fly Aubergine as well as its homologs, Siwi in silkmoth and MILI in mice, have an intrinsic preference for adenine at the t1 position of their target RNAs; during Ping-Pong amplification, this t1A subsequently becomes the g10A of a piRNA bound to Argonaute3.
Collapse
Affiliation(s)
- Wei Wang
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mayu Yoshikawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Bo W Han
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Ichiyanagi T, Ichiyanagi K, Ogawa A, Kuramochi-Miyagawa S, Nakano T, Chuma S, Sasaki H, Udono H. HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse. Nucleic Acids Res 2014; 42:11903-11. [PMID: 25262350 PMCID: PMC4231750 DOI: 10.1093/nar/gku881] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals.
Collapse
Affiliation(s)
- Tomoko Ichiyanagi
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Ichiyanagi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayako Ogawa
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Shinichiro Chuma
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
44
|
Piacentini L, Fanti L, Specchia V, Bozzetti MP, Berloco M, Palumbo G, Pimpinelli S. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 2014; 123:345-54. [PMID: 24752783 PMCID: PMC4107273 DOI: 10.1007/s00412-014-0464-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
The mechanisms of biological evolution have always been, and still are, the subject of intense debate and modeling. One of the main problems is how the genetic variability is produced and maintained in order to make the organisms adaptable to environmental changes and therefore capable of evolving. In recent years, it has been reported that, in flies and plants, mutations in Hsp90 gene are capable to induce, with a low frequency, many different developmental abnormalities depending on the genetic backgrounds. This has suggested that the reduction of Hsp90 amount makes different development pathways more sensitive to hidden genetic variability. This suggestion revitalized a classical debate around the original Waddington hypothesis of canalization and genetic assimilation making Hsp90 the prototype of morphological capacitor. Other data have also suggested a different mechanism that revitalizes another classic debate about the response of genome to physiological and environmental stress put forward by Barbara McClintock. That data demonstrated that Hsp90 is involved in repression of transposon activity by playing a significant role in piwi-interacting RNA (piRNAs)-dependent RNA interference (RNAi) silencing. The important implication is that the fixed phenotypic abnormalities observed in Hsp90 mutants are probably related to de novo induced mutations by transposon activation. In this case, Hsp90 could be considered as a mutator. In the present theoretical paper, we discuss several possible implications about environmental stress, transposon, and evolution offering also a support to the concept of evolvability.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur, Fondazione Cenci-Bolognetti and Dipartimento Di Biologia e Biotecnologie, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fanti
- Istituto Pasteur, Fondazione Cenci-Bolognetti and Dipartimento Di Biologia e Biotecnologie, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Gino Palumbo
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Sergio Pimpinelli
- Istituto Pasteur, Fondazione Cenci-Bolognetti and Dipartimento Di Biologia e Biotecnologie, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
45
|
Chak LL, Okamura K. Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Front Genet 2014; 5:172. [PMID: 24959173 PMCID: PMC4050365 DOI: 10.3389/fgene.2014.00172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
A general feature of Argonaute-dependent small RNAs is their base-paired precursor structures, and precursor duplex structures are often required for confident annotation of miRNA genes. However, this rule has been broken by discoveries of functional small RNA species whose precursors lack a predictable double-stranded (ds-) RNA structure, arguing that duplex structures are not prerequisite for small RNA loading to Argonautes. The biological significance of single-stranded (ss-) RNA loading has been recognized particularly in systems where active small RNA amplification mechanisms are involved, because even a small amount of RNA molecules can trigger the production of abundant RNA species leading to profound biological effects. However, even in the absence of small RNA amplification mechanisms, recent studies have demonstrated that potent gene silencing can be achieved using chemically modified synthetic ssRNAs that are resistant to RNases in mice. Therefore, such ssRNA-mediated gene regulation may have broader roles than previously recognized, and the findings have opened the door for further research to optimize the design of ss-siRNAs toward future pharmaceutical and biomedical applications of gene silencing technologies. In this review, we will summarize studies about endogenous ssRNA species that are bound by Argonaute proteins and how ssRNA precursors are recognized by various small RNA pathways.
Collapse
Affiliation(s)
- Li-Ling Chak
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore Singapore, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore Singapore, Singapore ; School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
46
|
Izumi N, Tomari Y. Diversity of the piRNA pathway for nonself silencing: worm-specific piRNA biogenesis factors. Genes Dev 2014; 28:665-71. [PMID: 24696451 PMCID: PMC4015490 DOI: 10.1101/gad.241323.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway protects animal germline cells from transposable elements and other genomic invaders. Although the genome defense function of piRNAs has been well established, the mechanisms of their biogenesis remain poorly understood. In this issue of Genes & Development, three groups identify novel factors required for piRNA biogenesis in Caenorhabditis elegans. These works greatly expand our understanding of the piRNA pathway in worms, highlighting both its shared and its unique properties.
Collapse
Affiliation(s)
- Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
47
|
Abstract
Nematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.
Collapse
|