1
|
Senyushkina T, Samatova E, Klimova M, Rodnina M. Kinetics of programmed and spontaneous ribosome sliding along the mRNA. Nucleic Acids Res 2024; 52:6507-6517. [PMID: 38783118 PMCID: PMC11194080 DOI: 10.1093/nar/gkae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
The ribosome can slide along mRNA without establishing codon-anticodon interactions. This movement can be regulated (programmed) by the elements encoded in the mRNA, as observed in bypassing of non-coding gap in gene 60 of bacteriophage T4, or occur spontaneously, such as during traversal by the 70S ribosome of the 3'UTRs or upon re-initiation on bacterial polycistronic genes. In this study, we investigate the kinetic mechanism underlying the programmed and spontaneous ribosome sliding. We show that the translation rate of gene 60 mRNA decreases as the ribosome approaches the take-off site, especially when the KKYK regulatory sequence in the nascent peptide reaches the constriction site in the ribosome exit tunnel. However, efficiency of bypassing increases when the ribosome traverses the gap quickly. With the non-coding gap exceeding the natural 50 nt, the processivity of sliding remains high up to 56 nt, but drops sharply beyond that due to the loss of mRNA elements support. Sliding efficiency is temperature-dependent; while temperature regulates the number of ribosomes initiating programmed bypassing, traversing the long gaps becomes increasingly unfavorable at lower temperatures. This data offers novel insights into the kinetic determinants of programmed and spontaneous ribosome sliding along the mRNA.
Collapse
Affiliation(s)
- Tamara Senyushkina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Maria Klimova
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany
| |
Collapse
|
2
|
O'Loughlin S, Capece MC, Klimova M, Wills NM, Coakley A, Samatova E, O'Connor PBF, Loughran G, Weissman JS, Baranov PV, Rodnina MV, Puglisi JD, Atkins JF. Polysomes Bypass a 50-Nucleotide Coding Gap Less Efficiently Than Monosomes Due to Attenuation of a 5' mRNA Stem-Loop and Enhanced Drop-off. J Mol Biol 2020; 432:4369-4387. [PMID: 32454154 PMCID: PMC7245268 DOI: 10.1016/j.jmb.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Efficient translational bypassing of a 50-nt non-coding gap in a phage T4 topoisomerase subunit gene (gp60) requires several recoding signals. Here we investigate the function of the mRNA stem–loop 5′ of the take-off codon, as well as the importance of ribosome loading density on the mRNA for efficient bypassing. We show that polysomes are less efficient at mediating bypassing than monosomes, both in vitro and in vivo, due to their preventing formation of a stem–loop 5′ of the take-off codon and allowing greater peptidyl-tRNA drop off. A ribosome profiling analysis of phage T4-infected Escherichia coli yielded protected mRNA fragments within the normal size range derived from ribosomes stalled at the take-off codon. However, ribosomes at this position also yielded some 53-nucleotide fragments, 16 longer. These were due to protection of the nucleotides that form the 5′ stem–loop. NMR shows that the 5′ stem–loop is highly dynamic. The importance of different nucleotides in the 5′ stem–loop is revealed by mutagenesis studies. These data highlight the significance of the 5′ stem–loop for the 50-nt bypassing and further enhance appreciation of relevance of the extent of ribosome loading for recoding. Monosomes are more efficient than polysome in mediating 50-nt translational bypassing. A 5′ mRNA stem–loop facilitates translational bypassing by monosomes. Ribosome profiling yields an extra-long, 53-nt, protected fragment of mRNA.
Collapse
Affiliation(s)
- Sinéad O'Loughlin
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland
| | - Mark C Capece
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-4090, USA
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Arthur Coakley
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick B F O'Connor
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow 117997, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-4090, USA
| | - John F Atkins
- School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
3
|
Rodnina MV, Korniy N, Klimova M, Karki P, Peng BZ, Senyushkina T, Belardinelli R, Maracci C, Wohlgemuth I, Samatova E, Peske F. Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Res 2020; 48:1056-1067. [PMID: 31511883 PMCID: PMC7026636 DOI: 10.1093/nar/gkz783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, –1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
4
|
Busan S, Weidmann CA, Sengupta A, Weeks KM. Guidelines for SHAPE Reagent Choice and Detection Strategy for RNA Structure Probing Studies. Biochemistry 2019; 58:2655-2664. [PMID: 31117385 DOI: 10.1021/acs.biochem.8b01218] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical probing is an important tool for characterizing the complex folded structures of RNA molecules, many of which play key cellular roles. Electrophilic SHAPE reagents create adducts at the 2'-hydroxyl position on the RNA backbone of flexible ribonucleotides with relatively little dependence on nucleotide identity. Strategies for adduct detection such as mutational profiling (MaP) allow accurate, automated calculation of relative adduct frequencies for each nucleotide in a given RNA or group of RNAs. A number of alternative reagents and adduct detection strategies have been proposed, especially for use in living cells. Here we evaluate five SHAPE reagents: three previously well-validated reagents 1M7 (1-methyl-7-nitroisatoic anhydride), 1M6 (1-methyl-6-nitroisatoic anhydride), and NMIA ( N-methylisatoic anhydride), one more recently proposed NAI (2-methylnicotinic acid imidazolide), and one novel reagent 5NIA (5-nitroisatoic anhydride). We clarify the importance of carefully designed software in reading out SHAPE experiments using massively parallel sequencing approaches. We examine SHAPE modification in living cells in diverse cell lines, compare MaP and reverse transcription-truncation as SHAPE adduct detection strategies, make recommendations for SHAPE reagent choice, and outline areas for future development.
Collapse
Affiliation(s)
- Steven Busan
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Chase A Weidmann
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Arnab Sengupta
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
5
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
6
|
Agirrezabala X, Samatova E, Klimova M, Zamora M, Gil-Carton D, Rodnina MV, Valle M. Ribosome rearrangements at the onset of translational bypassing. SCIENCE ADVANCES 2017; 3:e1700147. [PMID: 28630923 PMCID: PMC5462505 DOI: 10.1126/sciadv.1700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bypassing is a recoding event that leads to the translation of two distal open reading frames into a single polypeptide chain. We present the structure of a translating ribosome stalled at the bypassing take-off site of gene 60 of bacteriophage T4. The nascent peptide in the exit tunnel anchors the P-site peptidyl-tRNAGly to the ribosome and locks an inactive conformation of the peptidyl transferase center (PTC). The mRNA forms a short dynamic hairpin in the decoding site. The ribosomal subunits adopt a rolling conformation in which the rotation of the small subunit around its long axis causes the opening of the A-site region. Together, PTC conformation and mRNA structure safeguard against premature termination and read-through of the stop codon and reconfigure the ribosome to a state poised for take-off and sliding along the noncoding mRNA gap.
Collapse
Affiliation(s)
- Xabier Agirrezabala
- Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain
- Corresponding author. (X.A.); (M.V.R.); (M.V.)
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Miguel Zamora
- Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain
| | | | - Marina V. Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Corresponding author. (X.A.); (M.V.R.); (M.V.)
| | - Mikel Valle
- Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain
- Corresponding author. (X.A.); (M.V.R.); (M.V.)
| |
Collapse
|
7
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
8
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
9
|
Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions. Cell 2016; 163:1267-1280. [PMID: 26590426 DOI: 10.1016/j.cell.2015.10.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 01/13/2023]
Abstract
Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3' of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4's gene 60 mRNA. Ribosomes that bypass are characterized by a 10- to 20-fold longer pause in a non-canonical rotated state at the take-off codon. During the pause, mRNA secondary structure rearrangements are coupled to ribosome forward movement, facilitated by nascent peptide interactions that disengage the ribosome anticodon-codon interactions for slippage. Close to the landing site, the ribosome then scans mRNA in search of optimal base-pairing interactions. Our results provide a mechanistic and conformational framework for bypassing, highlighting a non-canonical ribosomal state to allow for mRNA structure refolding to drive large-scale ribosome movements.
Collapse
|
10
|
Rinaldi AJ, Lund PE, Blanco MR, Walter NG. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts. Nat Commun 2016; 7:8976. [PMID: 26781350 PMCID: PMC4735710 DOI: 10.1038/ncomms9976] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 01/20/2023] Open
Abstract
In response to intracellular signals in Gram-negative bacteria, translational riboswitches—commonly embedded in messenger RNAs (mRNAs)—regulate gene expression through inhibition of translation initiation. It is generally thought that this regulation originates from occlusion of the Shine-Dalgarno (SD) sequence upon ligand binding; however, little direct evidence exists. Here we develop Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) to investigate the ligand-dependent accessibility of the SD sequence of an mRNA hosting the 7-aminomethyl-7-deazaguanine (preQ1)-sensing riboswitch. Spike train analysis reveals that individual mRNA molecules alternate between two conformational states, distinguished by ‘bursts' of probe binding associated with increased SD sequence accessibility. Addition of preQ1 decreases the lifetime of the SD's high-accessibility (bursting) state and prolongs the time between bursts. In addition, ligand-jump experiments reveal imperfect riboswitching of single mRNA molecules. Such complex ligand sensing by individual mRNA molecules rationalizes the nuanced ligand response observed during bulk mRNA translation. In response to intracellular signals, bacterial translational riboswitches embedded in mRNAs can regulate gene expression through inhibition of translation initiation. Here, the authors describe SiM-KARTS, a novel approach for detecting changes in the structure of single RNA molecules in response to a ligand.
Collapse
Affiliation(s)
- Arlie J Rinaldi
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mario R Blanco
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Programmed translational bypassing elements in mitochondria: structure, mobility, and evolutionary origin. Trends Genet 2015; 31:187-94. [PMID: 25795412 DOI: 10.1016/j.tig.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/03/2023]
Abstract
Programmed translational bypassing enables ribosomes to 'ignore' a precise mRNA interval of several dozen nucleotides. Well-characterized bypassed sequences include hop and byp elements, present in bacteriophage T4 and mitochondria of the yeast Magnusiomyces capitatus, respectively. The bypassing mechanism of byps is probably similar to that of hop, yet the former appears more effective and less constrained as to sequence context. Furthermore, both elements are mobile but hop moves as part of a cassette including a homing endonuclease, whereas byps seem to spread like miniature DNA transposable elements known as GC clusters. Here, we argue that hop and byps arose independently by convergent evolution, and that byps evolved in magnusiomycete mitochondria due to (as yet unknown) alterations of the mitochondrial translation machinery.
Collapse
|
12
|
Nodin L, Noël O, Chaminade F, Maskri O, Barbier V, David O, Fossé P, Xie J. RNA SHAPE chemistry with aromatic acylating reagents. Bioorg Med Chem Lett 2014; 25:566-70. [PMID: 25557357 DOI: 10.1016/j.bmcl.2014.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023]
Abstract
As chemical methods for RNA secondary structure determination, SHAPE chemistry (selective 2'-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature. In order to improve the specificity of acylating reagents towards unpaired nucleotides, we have explored the reactivity of symmetric anhydrides, acyl fluorides, active esters like succinimidyl ester and cyanomethyl esters for 2'-O-acylation reaction. Among the tested compounds, only the acyl fluoride 4 showed a low reactivity (compared to NMIA). However, this study is the first to show that nucleophilic catalysts like DMAP greatly improved the selective 2'-hydroxyl acylation by symmetric anhydrides, acyl fluorides and succinimidyl ester, with the 2-fluorobenzoic anhydride 5 being the most reactive.
Collapse
Affiliation(s)
- Laura Nodin
- PPSM, CNRS, Institut d'Alembert, ENS de Cachan, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Olivier Noël
- PPSM, CNRS, Institut d'Alembert, ENS de Cachan, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Françoise Chaminade
- LBPA, CNRS, Institut d'Alembert, ENS de Cachan, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Ouerdia Maskri
- LBPA, CNRS, Institut d'Alembert, ENS de Cachan, 61 Avenue du P(t) Wilson, F-94235 Cachan, France
| | - Vincent Barbier
- Institut Lavoisier, CNRS, Université de Versailles St. Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Olivier David
- Institut Lavoisier, CNRS, Université de Versailles St. Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Philippe Fossé
- LBPA, CNRS, Institut d'Alembert, ENS de Cachan, 61 Avenue du P(t) Wilson, F-94235 Cachan, France.
| | - Juan Xie
- PPSM, CNRS, Institut d'Alembert, ENS de Cachan, 61 Avenue du P(t) Wilson, F-94235 Cachan, France.
| |
Collapse
|
13
|
Witzany G. RNA sociology: group behavioral motifs of RNA consortia. Life (Basel) 2014; 4:800-18. [PMID: 25426799 PMCID: PMC4284468 DOI: 10.3390/life4040800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023] Open
Abstract
RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional) needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives.
Collapse
Affiliation(s)
- Guenther Witzany
- Telos-Philosophische Praxis, Vogelsangstraße 18c, 5111-Buermoos, Austria.
| |
Collapse
|
14
|
High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nat Commun 2014; 5:4459. [PMID: 25041899 DOI: 10.1038/ncomms5459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 02/08/2023] Open
Abstract
The gene product 60 (gp60) of bacteriophage T4 is synthesized as a single polypeptide chain from a discontinuous reading frame as a result of bypassing of a non-coding mRNA region of 50 nucleotides by the ribosome. To identify the minimum set of signals required for bypassing, we recapitulated efficient translational bypassing in an in vitro reconstituted translation system from Escherichia coli. We find that the signals, which promote efficient and accurate bypassing, are specified by the gene 60 mRNA sequence. Systematic analysis of the mRNA suggests unexpected contributions of sequences upstream and downstream of the non-coding gap region as well as of the nascent peptide. During bypassing, ribosomes glide forward on the mRNA track in a processive way. Gliding may have a role not only for gp60 synthesis, but also during regular mRNA translation for reading frame selection during initiation or tRNA translocation during elongation.
Collapse
|
15
|
Sripathi KN, Tay WW, Banáš P, Otyepka M, Šponer J, Walter NG. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. RNA (NEW YORK, N.Y.) 2014; 20:1112-28. [PMID: 24854621 PMCID: PMC4114689 DOI: 10.1261/rna.044982.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.
Collapse
Affiliation(s)
- Kamali N. Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Wendy W. Tay
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Pavel Banáš
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
- Masaryk University, Campus Bohunice, 625 00 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|