1
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
2
|
Sidibé H, Khalfallah Y, Xiao S, Gómez NB, Fakim H, Tank EMH, Di Tomasso G, Bareke E, Aulas A, McKeever PM, Melamed Z, Destroimaisons L, Deshaies JE, Zinman L, Parker JA, Legault P, Tétreault M, Barmada SJ, Robertson J, Vande Velde C. TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia. Brain 2021; 144:3461-3476. [PMID: 34115105 PMCID: PMC8677511 DOI: 10.1093/brain/awab217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/04/2022] Open
Abstract
TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. Ras-GAP SH3-domain-binding protein 1 (G3BP1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3' untranslated region. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data indicate that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Yousra Khalfallah
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Nicolás B Gómez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hana Fakim
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geneviève Di Tomasso
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Eric Bareke
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Anaïs Aulas
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Ze’ev Melamed
- University of California, San Diego/Ludwig Institute for Cancer Research, San Diego, CA 92093, USA
| | | | | | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - J Alex Parker
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Pascale Legault
- Department of Biochemistry, Université de Montréal, Montréal, QC H3A 0E8, Canada
| | - Martine Tétreault
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, Montréal, QC H3A 0E8, Canada
- CHUM Research Center, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
3
|
Dagenais P, Desjardins G, Legault P. An integrative NMR-SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res 2021; 49:11959-11973. [PMID: 34718697 PMCID: PMC8599749 DOI: 10.1093/nar/gkab963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.
Collapse
Affiliation(s)
- Pierre Dagenais
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Geneviève Desjardins
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| |
Collapse
|
4
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
5
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
6
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
7
|
A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:71-79. [PMID: 31071581 DOI: 10.1016/j.jchromb.2019.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Recently, non-coding RNA (ncRNA) became the centerpiece of human genome research. Modern ncRNA-based research has revolutionized disease diagnosis and therapeutics. However, decoding structural/functional information of ncRNA requires large amount of pure RNA, and hence effective RNA preparation and purification protocols. This review focuses on purification schemes of synthetic oligonucleotides, particularly liquid chromatographic (LC) techniques as improved alternatives to urea-polyacrylamide gel electrophoresis (urea-PAGE) purification. Moreover, the review summarizes the shortcomings of urea-PAGE purification method and details the chromatographic purification such as affinity, ion-exchange (IE) or size-exclusion (SE) chromatography. Specifically, we discuss denaturing and native RNA purification schemes with newest developments. In short, the review evaluates nucleic acid purification schemes required for various structural analyses.
Collapse
|
8
|
Bouvette J, Korkut DN, Fouillen A, Amellah S, Nanci A, Durocher Y, Omichinski JG, Legault P. High-yield production of human Dicer by transfection of human HEK293-EBNA1 cells grown in suspension. BMC Biotechnol 2018; 18:76. [PMID: 30522464 PMCID: PMC6282390 DOI: 10.1186/s12896-018-0485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure. Results Transfection conditions were first optimized to achieve expression levels between 10 and 18 mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4–9 mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5 nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2 ± 0.5 min− 1) and KM (1.2 ± 0.3 μM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption. Conclusions The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway. Electronic supplementary material The online version of this article (10.1186/s12896-018-0485-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Bouvette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Dursun Nizam Korkut
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Aurélien Fouillen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Soumiya Amellah
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Antonio Nanci
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Yves Durocher
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.
| |
Collapse
|
9
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|
10
|
Knappenberger AJ, Reiss CW, Strobel SA. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. eLife 2018; 7:36381. [PMID: 29877798 PMCID: PMC6031431 DOI: 10.7554/elife.36381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.
Collapse
Affiliation(s)
- Andrew John Knappenberger
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Caroline Wetherington Reiss
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Scott A Strobel
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| |
Collapse
|
11
|
Jalilian S, Teimoori A, Makvandi M, Zandi M. An in-vitro transcription assay for development of Rotavirus VP7. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:186-194. [PMID: 29225758 PMCID: PMC5719513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Human rotavirus (RV) is responsible for most cases of acute gastroenteritis in infants, worldwide. Today, in vitro transcription (IVT) assay is widely used to develop efficient RNA for the biological experiments such as gene function analysis and reverse genetics. The aim of this study was to develop optimal full-length transcripts of the VP7 segment, using in vitro transcription assay. MATERIALS AND METHODS Special primers were designed in order to synthesize VP7 sequence of sense RNA in the process of IVT using T7 RNA polymerase. RT-PCR was performed using forward and reverse primers, containing T7 promoter sequence and BstUI restriction enzyme site, respectively. In order to synthesize ssRNA VP7, in accordance with the IVT technique, RV4-VP7 fragment was subcloned into PTZ57 R/T plasmid and digested by BstUI enzyme. RESULTS The sequencing of the VP7 gene showed 99% identity withVP7 gene of rotavirus RV4 strain (Sequence ID: M64666.1). The analysis of purity of DNA fragment and ssRNA VP7 segment revealed that OD ratio of A260/A280 and quantity of nucleic acids were (1.9, 0.036 μg/μL) and (2.02, 0.98 μg/μL), respectively. CONCLUSION In the present study, a modified methodology of RNA synthetase was described by IVT assay, using T7RNA polymerase in order to transcribe the full-length transcripts of human VP7-RV4 strain. This method is applicable for reverse genetic approaches, especially for the production of reassortant RV vaccine.
Collapse
Affiliation(s)
- Shahram Jalilian
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Manoochehr Makvandi, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-9166181683,
| | - Milad Zandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Di Tomasso G, Miller Jenkins LM, Legault P. ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry. RNA (NEW YORK, N.Y.) 2016; 22:1760-1770. [PMID: 27659051 PMCID: PMC5066628 DOI: 10.1261/rna.057513.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
As part of their normal life cycle, most RNA molecules associate with several proteins that direct their fate and regulate their function. Here, we describe a novel method for identifying proteins that associate with a target RNA. The procedure is based on the ARiBo method for affinity purification of RNA, which was originally developed to quickly purify RNA with high yields and purity under native conditions. The ARiBo method was further optimized using in vitro transcribed RNA to capture RNA-associating proteins from cellular extracts with high yields and low background protein contamination. For these RNA pull-downs, stem-loops present in the immature forms of let-7 miRNAs (miRNA stem-loops) were used as the target RNAs. Label-free quantitative mass spectrometry analysis allowed for the reliable identification of proteins that are specific to the stem-loops present in the immature forms of two miRNAs, let-7a-1 and let-7g. Several proteins known to bind immature forms of these let-7 miRNAs were identified, but with an improved coverage compared to previous studies. In addition, several novel proteins were identified that better define the protein interactome of the let-7 miRNA stem-loops and further link let-7 biogenesis to important biological processes such as development and tumorigenesis. Thus, combining the ARiBo pull-down method with label-free quantitative mass spectrometry provides an effective proteomic approach for identification of proteins that associate with a target RNA.
Collapse
Affiliation(s)
- Geneviève Di Tomasso
- Département de biochimie et médecine moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
Wright AV, Nuñez JK, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 2016; 164:29-44. [PMID: 26771484 DOI: 10.1016/j.cell.2015.12.035] [Citation(s) in RCA: 715] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Bacteria and archaea possess a range of defense mechanisms to combat plasmids and viral infections. Unique among these are the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems, which provide adaptive immunity against foreign nucleic acids. CRISPR systems function by acquiring genetic records of invaders to facilitate robust interference upon reinfection. In this Review, we discuss recent advances in understanding the diverse mechanisms by which Cas proteins respond to foreign nucleic acids and how these systems have been harnessed for precision genome manipulation in a wide array of organisms.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James K Nuñez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute HHMI, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:45-56. [DOI: 10.1016/j.jchromb.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
|
15
|
Helmling C, Keyhani S, Sochor F, Fürtig B, Hengesbach M, Schwalbe H. Rapid NMR screening of RNA secondary structure and binding. JOURNAL OF BIOMOLECULAR NMR 2015; 63:67-76. [PMID: 26188386 DOI: 10.1007/s10858-015-9967-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/13/2015] [Indexed: 05/10/2023]
Abstract
Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3' end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA.
Collapse
Affiliation(s)
- Christina Helmling
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Sara Keyhani
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Florian Sochor
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Di Tomasso G, Salvail-Lacoste A, Bouvette J, Omichinski JG, Legault P. Affinity purification of in vitro transcribed RNA with homogeneous ends using a 3'-ARiBo tag. Methods Enzymol 2015; 549:49-84. [PMID: 25432744 DOI: 10.1016/b978-0-12-801122-5.00003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Common approaches for purification of RNAs synthesized in vitro by the T7 RNA polymerase often denature the RNA and produce RNAs with chemically heterogeneous 5'- and 3'-ends. Thus, native affinity purification strategies that incorporate 5' and 3' trimming technologies provide a solution to two main disadvantages that arise from standard approaches for RNA purification. This chapter describes procedures for nondenaturing affinity purification of in vitro transcribed RNA using a 3'-ARiBo tag, which yield RNAs with a homogeneous 3'-end. The applicability of the method to RNAs of different sequences, secondary structures, and sizes (29-614 nucleotides) is described, including suggestions for troubleshooting common problems. In addition, this chapter presents three complementary approaches to producing 5'-homogeneity of the affinity-purified RNA: (1) selection of the starting sequence; (2) Cse3 endoribonuclease cleavage of a 5'-CRISPR tag; or (3) self-cleavage of a 5'-hammerhead ribozyme tag. The additional steps to express and purify the Cse3 endonuclease are detailed. In light of recent results, the advantages and limitations of current approaches to achieve 5'-homogeneity of affinity-purified RNA are discussed, such that one can select a suitable strategy to purify the RNA of interest.
Collapse
Affiliation(s)
- Geneviève Di Tomasso
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Alix Salvail-Lacoste
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Bouvette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Quebec, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Cantara WA, Olson ED, Musier-Forsyth K. Progress and outlook in structural biology of large viral RNAs. Virus Res 2014; 193:24-38. [PMID: 24956407 PMCID: PMC4252365 DOI: 10.1016/j.virusres.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/05/2023]
Abstract
The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5'-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.
Collapse
Affiliation(s)
| | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
18
|
Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 2014; 40:58-66. [PMID: 25468820 DOI: 10.1016/j.tibs.2014.10.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 12/26/2022]
Abstract
Many bacteria and archaea possess an adaptive immune system consisting of repetitive genetic elements known as clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Similar to RNAi pathways in eukaryotes, CRISPR-Cas systems require small RNAs for sequence-specific detection and degradation of complementary nucleic acids. Cas5 and Cas6 enzymes have evolved to specifically recognize and process CRISPR-derived transcripts into functional small RNAs used as guides by interference complexes. Our detailed understanding of these proteins has led to the development of several useful Cas6-based biotechnological methods. Here, we review the structures, functions, mechanisms, and applications of the enzymes responsible for CRISPR RNA (crRNA) processing, highlighting a fascinating family of endonucleases with exquisite RNA recognition and cleavage activities.
Collapse
Affiliation(s)
- Megan L Hochstrasser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Bonneau E, Legault P. Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement. Biochemistry 2014; 53:6264-75. [PMID: 25238589 DOI: 10.1021/bi500826n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The VS ribozyme is a catalytic RNA found within some natural isolates of Neurospora that is being used as a model system to improve our understanding of RNA structure, catalysis, and engineering. The catalytic domain contains five helical domains (SLII-SLVI) that are organized by two three-way junctions. The III-IV-V junction is required for high-affinity binding of the substrate domain (SLI) through formation of a kissing loop interaction with SLV. Here, we determine the high-resolution nuclear magnetic resonance (NMR) structure of a 47-nucleotide RNA containing the III-IV-V junction (J345). The J345 RNA adopts a Y-shaped fold typical of the family C three-way junctions, with coaxial stacking between stems III and IV and an acute angle between stems III and V. The NMR structure reveals that the core of the III-IV-V junction contains four stacked base triples, a U-turn motif, a cross-strand stacking interaction, an A-minor interaction, and a ribose zipper. In addition, the NMR structure shows that the cCUUGg tetraloop used to stabilize stem IV adopts a novel RNA tetraloop fold, different from the known gCUUGc tetraloop structure. Using Mn(2+)-induced paramagnetic relaxation enhancement, we identify six Mg(2+)-binding sites within J345, including one associated with the cCUUGg tetraloop and two with the junction core. The NMR structure of J345 likely represents the conformation of the III-IV-V junction in the context of the active VS ribozyme and suggests that this junction functions as a dynamic hinge that contributes to substrate recognition and catalysis. Moreover, this study highlights a new role for family C three-way junctions in long-range tertiary interactions.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
| | | |
Collapse
|
20
|
Advances in methods for native expression and purification of RNA for structural studies. Curr Opin Struct Biol 2014; 26:1-8. [PMID: 24607442 DOI: 10.1016/j.sbi.2014.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 11/23/2022]
Abstract
Many RNAs present unique challenges in obtaining material suitable for structural or biophysical characterization. These issues include synthesis of chemically and conformationally homogeneous RNAs, refolding RNA purified using denaturing preparation techniques, and avoiding chemical damage. To address these challenges, new methodologies in RNA expression and purification have been developed seeking to emulate those commonly used for proteins. In this review, recent developments in the preparation of high-quality RNA for structural biology and biophysical applications are discussed, with an emphasis on native methods.
Collapse
|
21
|
CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 2014; 30:111-8. [PMID: 24555991 DOI: 10.1016/j.tig.2014.01.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/18/2022]
Abstract
To combat potentially deadly viral infections, prokaryotic microbes enlist small RNA-based adaptive immune systems (CRISPR-Cas systems) that protect through sequence-specific recognition and targeted destruction of viral nucleic acids (either DNA or RNA depending on the system). Here, we summarize rapid progress made in redirecting the nuclease activities of these microbial immune systems to bind and cleave DNA or RNA targets of choice, by reprogramming the small guide RNAs of the various CRISPR-Cas complexes. These studies have demonstrated the potential of Type II CRISPR-Cas systems both as efficient and versatile genome-editing tools and as potent and specific regulators of gene expression in a broad range of cell types (including human) and organisms. Progress is also being made in developing a Type III RNA-targeting CRISPR-Cas system as a novel gene knockdown platform to investigate gene function and modulate gene expression for metabolic engineering in microbes.
Collapse
|
22
|
Desjardins A, Bouvette J, Legault P. Stepwise assembly of multiple Lin28 proteins on the terminal loop of let-7 miRNA precursors. Nucleic Acids Res 2014; 42:4615-28. [PMID: 24452802 PMCID: PMC3985620 DOI: 10.1093/nar/gkt1391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lin28 inhibits the biogenesis of let-7 miRNAs through direct interactions with let-7 precursors. Previous studies have described seemingly inconsistent Lin28 binding sites on pre-let-7 RNAs. Here, we reconcile these data by examining the binding mechanism of Lin28 to the terminal loop of pre-let-7g (TL-let-7g) using biochemical and biophysical methods. First, we investigate Lin28 binding to TL-let-7g variants and short RNA fragments and identify three independent binding sites for Lin28 on TL-let-7g. We then determine that Lin28 assembles in a stepwise manner on TL-let-7g to form a stable 1:3 complex. We show that the cold-shock domain (CSD) of Lin28 is responsible for remodelling the terminal loop of TL-let-7g, whereas the NCp7-like domain facilitates the initial binding of Lin28 to TL-let-7g. This stable binding of multiple Lin28 molecules to the terminal loop of pre-let-7g extends to other precursors of the let-7 family, but not to other pre-miRNAs tested. We propose a model for stepwise assembly of the 1:1, 1:2 and 1:3 pre-let-7g/Lin28 complexes. Stepwise multimerization of Lin28 on pre-let-7 is required for maximum inhibition of Dicer cleavage for a least one member of the let-7 family and may be important for orchestrating the activity of the several factors that regulate let-7 biogenesis.
Collapse
Affiliation(s)
- Alexandre Desjardins
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
23
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems that protect bacteria and archaea from infection by viruses are now being routinely repurposed for genome engineering in a wide variety of cell types and multicellular organisms.
Collapse
Affiliation(s)
- Royce Wilkinson
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| | - Blake Wiedenheft
- Department of Immunology and Infectious Diseases, Montana State UniversityBozeman, MT 59717USA
| |
Collapse
|
24
|
Flores JK, Walshe JL, Ataide SF. RNA and RNA–Protein Complex Crystallography and its Challenges. Aust J Chem 2014. [DOI: 10.1071/ch14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA biology has changed completely in the past decade with the discovery of non-coding RNAs. Unfortunately, obtaining mechanistic information about these RNAs alone or in cellular complexes with proteins has been a major problem. X-ray crystallography of RNA and RNA–protein complexes has suffered from the major problems encountered in preparing and purifying them in large quantity. Here, we review the available techniques and methods in vitro and in vivo used to prepare and purify RNA and RNA–protein complex for crystallographic studies. We also discuss the future directions necessary to explore the vast number of RNA species waiting for their atomic-resolution structure to be determined.
Collapse
|
25
|
Zhu B, Tabor S, Richardson CC. Syn5 RNA polymerase synthesizes precise run-off RNA products. Nucleic Acids Res 2013; 42:e33. [PMID: 24285303 PMCID: PMC3950665 DOI: 10.1093/nar/gkt1193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The enzyme predominantly used for in vitro run-off RNA synthesis is bacteriophage T7 RNA polymerase. T7 RNA polymerase synthesizes, in addition to run-off products of precise length, transcripts with an additional non-base-paired nucleotide at the 3′-terminus (N + 1 product). This contaminating product is extremely difficult to remove. We recently characterized the single-subunit RNA polymerase from marine cyanophage Syn5 and identified its promoter sequence. This marine enzyme catalyses RNA synthesis over a wider range of temperature and salinity than does T7 RNA polymerase. Its processivity is >30 000 nt without significant intermediate products. The requirement for the initiating nucleotide at the promoter is less stringent for Syn5 RNA polymerase as compared to T7 RNA polymerase. A major difference is the precise run-off transcripts with homogeneous 3′-termini synthesized by Syn5 RNA polymerase. Therefore, the enzyme is advantageous for the production of RNAs that require precise 3′-termini, such as tRNAs and RNA fragments that are used for subsequent assembly.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Production of pure and functional RNA for in vitro reconstitution experiments. Methods 2013; 65:333-41. [PMID: 24021718 DOI: 10.1016/j.ymeth.2013.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022] Open
Abstract
Reconstitution of protein complexes has been a valuable tool to test molecular functions and to interpret in vivo observations. In recent years, a large number of RNA-protein complexes has been identified to regulate gene expression and to be important for a range of cellular functions. In contrast to protein complexes, in vitro analyses of RNA-protein complexes are hampered by the fact that recombinant expression and purification of RNA molecules is more difficult and less well established than for proteins. Here we review the current state of technology available for in vitro experiments with RNAs. We outline the possibilities to produce and purify large amounts of homogenous RNA and to perform the required quality controls. RNA-specific problems such as degradation, 5' and 3' end heterogeneity, co-existence of different folding states, and prerequisites for reconstituting RNAs with recombinantly expressed proteins are discussed. Additionally a number of techniques for the characterization of direct and indirect RNA-protein interactions are explained.
Collapse
|