1
|
Remines M, Schoonover MG, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling the compendium of changes in Saccharomyces cerevisiae due to mutations that alter availability of the main methyl donor S-Adenosylmethionine. G3 (BETHESDA, MD.) 2024; 14:jkae002. [PMID: 38184845 PMCID: PMC10989883 DOI: 10.1093/g3journal/jkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Makailyn G Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| |
Collapse
|
2
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
3
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
4
|
Black JJ, Johnson AW. Release of the ribosome biogenesis factor Bud23 from small subunit precursors in yeast. RNA (NEW YORK, N.Y.) 2022; 28:371-389. [PMID: 34934010 PMCID: PMC8848936 DOI: 10.1261/rna.079025.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The two subunits of the eukaryotic ribosome are produced through quasi-independent pathways involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. One of the earliest intermediates of the small subunit (SSU or 40S) is the SSU processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors could induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Abstract
Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ, USA.
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt/M., Germany.
| |
Collapse
|
6
|
Black JJ, Johnson AW. Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis. Curr Genet 2021; 67:729-738. [PMID: 33844044 PMCID: PMC11979895 DOI: 10.1007/s00294-021-01187-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Fan Y, Han Z, Lu X, Arbab AAI, Nazar M, Yang Y, Yang Z. Short Time-Series Expression Transcriptome Data Reveal the Gene Expression Patterns of Dairy Cow Mammary Gland as Milk Yield Decreased Process. Genes (Basel) 2021; 12:genes12060942. [PMID: 34203058 PMCID: PMC8235497 DOI: 10.3390/genes12060942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
The existing research on dairy cow mammary gland genes is extensive, but there have been few reports about dynamic changes in dairy cow mammary gland genes as milk yield decrease. For the first time, transcriptome analysis based on short time-series expression miner (STEM) and histological observations were performed using the Holstein dairy cow mammary gland to explore gene expression patterns in this process of decrease (at peak, mid-, and late lactation). Histological observations suggested that the number of mammary acinous cells at peak/mid-lactation was significantly higher than that at mid-/late lactation, and the lipid droplets area secreted by dairy cows was almost unaltered across the three stages of lactation (p > 0.05). Totals of 882 and 1439 genes were differentially expressed at mid- and late lactation, respectively, compared to peak lactation. Function analysis showed that differentially expressed genes (DEGs) were mainly related to apoptosis and energy metabolism (fold change ≥ 2 or fold change ≤ 0.5, p-value ≤ 0.05). Transcriptome analysis based on STEM identified 16 profiles of differential gene expression patterns, including 5 significant profiles (false discovery rate, FDR ≤ 0.05). Function analysis revealed DEGs involved in milk fat synthesis were downregulated in Profile 0 and DEGs in Profile 12 associated with protein synthesis. These findings provide a foundation for future studies on the molecular mechanisms underlying mammary gland development in dairy cows.
Collapse
Affiliation(s)
- Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87979269
| |
Collapse
|
8
|
Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae. PLoS Genet 2020; 16:e1009215. [PMID: 33306676 PMCID: PMC7758049 DOI: 10.1371/journal.pgen.1009215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/23/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023] Open
Abstract
The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression. Ribosomes are the molecular machines that synthesize proteins and are composed of a large and a small subunit which carry out the essential functions of polypeptide synthesis and mRNA decoding, respectively. Ribosome production is tightly linked to cellular growth as cells must produce enough ribosomes to meet their protein needs. However, ribosome assembly is a metabolically expensive pathway that must be balanced with other cellular energy needs and regulated accordingly. In eukaryotes, the small subunit (SSU) Processome is a metastable intermediate that ultimately progresses towards a mature SSU through the release of biogenesis factors. The decision to progress the SSU Processome is thought to be an early checkpoint in the SSU assembly pathway, but insight into the mechanisms of progression is needed. Previous studies suggest that Bud23 plays an uncharacterized role during SSU Processome progression. Here, we used a genetic approach to understand its function and found that Bud23 is connected to a network of SSU Processome factors that stabilize the particle. Interestingly, two of these factors are enzymes that are needed for progression. We conclude that Bud23 promotes the release of factors surrounding its binding site to induce structural rearrangements during the progression of the SSU Processome.
Collapse
|
9
|
Iwakawa H, Takahashi H, Machida Y, Machida C. Roles of ASYMMETRIC LEAVES2 (AS2) and Nucleolar Proteins in the Adaxial-Abaxial Polarity Specification at the Perinucleolar Region in Arabidopsis. Int J Mol Sci 2020; 21:E7314. [PMID: 33022996 PMCID: PMC7582388 DOI: 10.3390/ijms21197314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan;
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| |
Collapse
|
10
|
Gregory B, Rahman N, Bommakanti A, Shamsuzzaman M, Thapa M, Lescure A, Zengel JM, Lindahl L. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci Alliance 2019; 2:e201800150. [PMID: 30837296 PMCID: PMC6402506 DOI: 10.26508/lsa.201800150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The 1:1 balance between the numbers of large and small ribosomal subunits can be disturbed by mutations that inhibit the assembly of only one of the subunits. Here, we have investigated if the cell can counteract an imbalance of the number of the two subunits. We show that abrogating 60S assembly blocks 40S subunit accumulation. In contrast, cessation of the 40S pathways does not prevent 60S accumulation, but does, however, lead to fragmentation of the 25S rRNA in 60S subunits and formation of a 55S ribosomal particle derived from the 60S. We also present evidence suggesting that these events occur post assembly and discuss the possibility that the turnover of subunits is due to vulnerability of free subunits not paired with the other subunit to form 80S ribosomes.
Collapse
MESH Headings
- Cell Survival/physiology
- Galactokinase/genetics
- Gene Expression Regulation, Fungal
- Promoter Regions, Genetic
- Protein Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Brian Gregory
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Mamata Thapa
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Alana Lescure
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
11
|
van Tran N, Muller L, Ross RL, Lestini R, Létoquart J, Ulryck N, Limbach PA, de Crécy-Lagard V, Cianférani S, Graille M. Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucleic Acids Res 2018; 46:8483-8499. [PMID: 30010922 PMCID: PMC6144793 DOI: 10.1093/nar/gky638] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis is a complex and highly coordinated process requiring many different protein factors as well as various types of nucleic acids. All translation machinery components require multiple maturation events to be functional. These include post-transcriptional and post-translational modification steps and methylations are the most frequent among these events. In eukaryotes, Trm112, a small protein (COG2835) conserved in all three domains of life, interacts and activates four methyltransferases (Bud23, Trm9, Trm11 and Mtq2) that target different components of the translation machinery (rRNA, tRNAs, release factors). To clarify the function of Trm112 in archaea, we have characterized functionally and structurally its interaction network using Haloferax volcanii as model system. This led us to unravel that methyltransferases are also privileged Trm112 partners in archaea and that this Trm112 network is much more complex than anticipated from eukaryotic studies. Interestingly, among the identified enzymes, some are functionally orthologous to eukaryotic Trm112 partners, emphasizing again the similarity between eukaryotic and archaeal translation machineries. Other partners display some similarities with bacterial methyltransferases, suggesting that Trm112 is a general partner for methyltransferases in all living organisms.
Collapse
Affiliation(s)
- Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Leslie Muller
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182 91128, Palaiseau Cedex, France
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Nathalie Ulryck
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
12
|
Black JJ, Wang Z, Goering LM, Johnson AW. Utp14 interaction with the small subunit processome. RNA (NEW YORK, N.Y.) 2018; 24:1214-1228. [PMID: 29925570 PMCID: PMC6097655 DOI: 10.1261/rna.066373.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
The SSU processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU processome. Thus, release of U3 is a prerequisite for the transition to pre-40S. Our laboratory proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the preribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU processome to Dhr1 and possibly to the exosome as well.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Zhaohui Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lisa M Goering
- Department of Biological Sciences, St. Edward's University, Austin, Texas 78704, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
13
|
Lackmann F, Belikov S, Burlacu E, Granneman S, Wieslander L. Maturation of the 90S pre-ribosome requires Mrd1 dependent U3 snoRNA and 35S pre-rRNA structural rearrangements. Nucleic Acids Res 2018; 46:3692-3706. [PMID: 29373706 PMCID: PMC5909432 DOI: 10.1093/nar/gky036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, ribosome biogenesis requires folding and assembly of the precursor rRNA (pre-rRNA) with a large number of proteins and snoRNPs into huge RNA-protein complexes. In spite of intense genetic, biochemical and high-resolution cryo-EM studies in Saccharomyces cerevisiae, information about the structure of the 35S pre-rRNA is limited. To overcome this, we performed high-throughput SHAPE chemical probing on the 35S pre-rRNA within 90S pre-ribosomes. We focused our analyses on external (5'ETS) and internal (ITS1) transcribed spacers as well as the 18S rRNA region. We show that in the 35S pre-rRNA, the central pseudoknot is not formed and the central core of the 18S rRNA is in an open configuration but becomes more constrained in 20S pre-rRNA. The essential ribosome biogenesis protein Mrd1 influences the structure of the 18S rRNA region locally and is involved in organizing the central pseudoknot and surrounding structures. We demonstrate that U3 snoRNA dynamically interacts with the 35S pre-rRNA and that Mrd1 is required for disrupting U3 snoRNA base pairing interactions in the 5'ETS. We propose that the dynamic U3 snoRNA interactions and Mrd1 are essential for establishing the structure of the central core of 18S rRNA that is required for processing and 40S subunit function.
Collapse
Affiliation(s)
- Fredrik Lackmann
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Burlacu
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Kojima K, Tamura J, Chiba H, Fukada K, Tsukaya H, Horiguchi G. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial-Abaxial Patterning in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 8:2240. [PMID: 29375609 PMCID: PMC5767255 DOI: 10.3389/fpls.2017.02240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 05/25/2023]
Abstract
Leaf abaxial-adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2). Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2) which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1), has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial-abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2 triple mutants although they showed severe growth defects. These results suggest that the leaf abaxialization phenotype induced by ribosome-related mutations is not merely the result of a general growth defect and that there may be a sensitive process in the ribosome biogenesis pathway that affects adaxial-abaxial patterning when compromised by a mutation.
Collapse
Affiliation(s)
- Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Junya Tamura
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroto Chiba
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kanae Fukada
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| |
Collapse
|
15
|
Moisá SJ, Ji P, Drackley JK, Rodriguez-Zas SL, Loor JJ. Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy. J Anim Sci Biotechnol 2017; 8:85. [PMID: 29214018 PMCID: PMC5713657 DOI: 10.1186/s40104-017-0215-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Dairy cows can readily overconsume dietary energy during most of the prepartum period, often leading to higher prepartal concentrations of insulin and glucose and excessive body fat deposition. The end result of these physiologic changes is greater adipose tissue lipolysis post-partum coupled with excessive hepatic lipid accumulation and compromised health. Although transcriptional regulation of the adipose response to energy availability is well established in non-ruminants, such regulation in cow adipose tissue depots remains poorly characterized. Results Effects of ad-libitum access to high [HIGH; 1.62 Mcal/kg of dry matter (DM)] or adequate (CON; 1.35 Mcal/kg of DM) dietary energy for 8 wk on mesenteric (MAT) and subcutaneous (SAT) adipose tissue transcript profiles were assessed in non-pregnant non-lactating Holstein dairy cows using a 13,000-sequence annotated bovine oligonucleotide microarray. Statistical analysis revealed 409 and 310 differentially expressed genes (DEG) due to tissue and diet. Bioinformatics analysis was conducted using the Dynamic Impact Approach (DIA) with the KEGG pathway database. Compared with SAT, MAT had more active biological processes related to adipose tissue accumulation (adiponectin secretion) and signs of pro-inflammatory processes due to adipose tissue expansion and macrophage infiltration (generation of ceramides). Feeding the HIGH diet led to changes in mRNA expression of genes associated with cell hypertrophy (regucalcin), activation of adipogenesis (phospholipid phosphatase 1), insulin signaling activation (neuraminidase 1) and angiogenesis (semaphorin 4G, plexin B1). Further, inflammation due to HIGH was underscored by mRNA expression changes associated with oxidative stress response (coenzyme Q3, methyltransferase), ceramide synthesis (N-acylsphingosine amidohydrolase 1), and insulin signaling (interferon regulatory factor 1, phosphoinositide-3-kinase regulatory subunit 1, retinoic acid receptor alpha). Activation of ribosome in cows fed HIGH indicated the existence of greater adipocyte growth rate (M-phase phosphoprotein 10, NMD3 ribosome export adaptor). Conclusions The data indicate that long-term ad-libitum access to a higher-energy diet led to transcriptional changes in adipose tissue that stimulated hypertrophy and the activity of pathways associated with a slight but chronic inflammatory response. Further studies would be helpful in determining the extent to which mRNA results also occur at the protein level.
Collapse
Affiliation(s)
- S J Moisá
- Department of Animal Sciences, Auburn University, 231 Upchurch Hall, 361 Mell Street, Auburn, AL 36849-5426 USA
| | - P Ji
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| | - S L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
| |
Collapse
|
16
|
Ohbayashi I, Lin CY, Shinohara N, Matsumura Y, Machida Y, Horiguchi G, Tsukaya H, Sugiyama M. Evidence for a Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. THE PLANT CELL 2017; 29:2644-2660. [PMID: 28899981 PMCID: PMC5774571 DOI: 10.1105/tpc.17.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 05/20/2023]
Abstract
Ribosome-related mutants in Arabidopsis thaliana share several notable characteristics regarding growth and development, which implies the existence of a common pathway that responds to disorders in ribosome biogenesis. As a first step to explore this pathway genetically, we screened a mutagenized population of root initiation defective2 (rid2), a temperature-sensitive mutant that is impaired in pre-rRNA processing, and isolated suppressor of root initiation defective two1 (sriw1), a suppressor mutant in which the defects of cell proliferation observed in rid2 at the restrictive temperature was markedly rescued. sriw1 was identified as a missense mutation of the NAC transcription factor gene ANAC082 The sriw1 mutation greatly alleviated the developmental abnormalities of rid2 and four other tested ribosome-related mutants, including rid3 However, the impaired pre-rRNA processing in rid2 and rid3 was not relieved by sriw1 Expression of ANAC082 was localized to regions where phenotypic effects of ribosome-related mutations are readily evident and was elevated in rid2 and rid3 compared with the wild type. These findings suggest that ANAC082 acts downstream of perturbation of biogenesis of the ribosome and may mediate a set of stress responses leading to developmental alterations and cell proliferation defects.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| | - Chung-Yi Lin
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| | - Naoki Shinohara
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| | - Yoko Matsumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki 444-8787, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| |
Collapse
|
17
|
Bourgeois G, Létoquart J, van Tran N, Graille M. Trm112, a Protein Activator of Methyltransferases Modifying Actors of the Eukaryotic Translational Apparatus. Biomolecules 2017; 7:biom7010007. [PMID: 28134793 PMCID: PMC5372719 DOI: 10.3390/biom7010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional and post-translational modifications are very important for the control and optimal efficiency of messenger RNA (mRNA) translation. Among these, methylation is the most widespread modification, as it is found in all domains of life. These methyl groups can be grafted either on nucleic acids (transfer RNA (tRNA), ribosomal RNA (rRNA), mRNA, etc.) or on protein translation factors. This review focuses on Trm112, a small protein interacting with and activating at least four different eukaryotic methyltransferase (MTase) enzymes modifying factors involved in translation. The Trm112-Trm9 and Trm112-Trm11 complexes modify tRNAs, while the Trm112-Mtq2 complex targets translation termination factor eRF1, which is a tRNA mimic. The last complex formed between Trm112 and Bud23 proteins modifies 18S rRNA and participates in the 40S biogenesis pathway. In this review, we present the functions of these eukaryotic Trm112-MTase complexes, the molecular bases responsible for complex formation and substrate recognition, as well as their implications in human diseases. Moreover, as Trm112 orthologs are found in bacterial and archaeal genomes, the conservation of this Trm112 network beyond eukaryotic organisms is also discussed.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
- De Duve Institute, Université Catholique de Louvain, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| |
Collapse
|
18
|
Matsumura Y, Ohbayashi I, Takahashi H, Kojima S, Ishibashi N, Keta S, Nakagawa A, Hayashi R, Saéz-Vásquez J, Echeverria M, Sugiyama M, Nakamura K, Machida C, Machida Y. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis. Biol Open 2016; 5:942-54. [PMID: 27334696 PMCID: PMC4958277 DOI: 10.1242/bio.019109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. Summary: This paper reports the importance of cooperative action between the nucleus-localized epigenetic repressor and the nucleolus-localized proteins involved in ribosomal RNA processing for polarity establishment of Arabidopsis leaves.
Collapse
Affiliation(s)
- Yoko Matsumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Iwai Ohbayashi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan 3-7-1, Bunkyo-ku, Tokyo 112-0001, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba 271-8510, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Rika Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Julio Saéz-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan 66860, France Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan F-66860, France
| | - Manuel Echeverria
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan 66860, France Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan F-66860, France
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan 3-7-1, Bunkyo-ku, Tokyo 112-0001, Japan
| | - Kenzo Nakamura
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
Sharma S, Lafontaine DLJ. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci 2016; 40:560-575. [PMID: 26410597 DOI: 10.1016/j.tibs.2015.07.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023]
Abstract
Eukaryotic rRNA are modified frequently, although the diversity of modifications is low: in yeast rRNA, there are only 12 different types out of a possible natural repertoire exceeding 112. All nine rRNA base methyltransferases (MTases) and one acetyltransferase have recently been identified in budding yeast, and several instances of crosstalk between rRNA, tRNA, and mRNA modifications are emerging. Although the machinery has largely been identified, the functions of most rRNA modifications remain to be established. Remarkably, a eukaryote-specific bridge, comprising a single ribosomal protein (RP) from the large subunit (LSU), contacts four rRNA base modifications across the ribosomal subunit interface, potentially probing for their presence. We hypothesize in this article that long-range allosteric communication involving rRNA modifications is taking place between the two subunits during translation or, perhaps, the late stages of ribosome assembly.
Collapse
Affiliation(s)
- Sunny Sharma
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, FRS/FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium; Center for Microscopy and Molecular Imaging, BioPark campus, B-6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
20
|
Utp14 Recruits and Activates the RNA Helicase Dhr1 To Undock U3 snoRNA from the Preribosome. Mol Cell Biol 2016; 36:965-78. [PMID: 26729466 DOI: 10.1128/mcb.00773-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/28/2015] [Indexed: 01/24/2023] Open
Abstract
In eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA. DHR1 can be linked to UTP14, encoding an essential protein of the preribosome, through genetic interactions with the rRNA methyltransferase Bud23. Here, we report that Utp14 regulates Dhr1. Mutations within a discrete region of Utp14 reduced interaction with Dhr1 that correlated with reduced function of Utp14. These mutants accumulated Dhr1 and U3 in a pre-40S particle, mimicking a helicase-inactive Dhr1 mutant. This similarity in the phenotypes led us to propose that Utp14 activates Dhr1. Indeed, Utp14 formed a complex with Dhr1 and stimulated its unwinding activity in vitro. Moreover, the utp14 mutants that mimicked a catalytically inactive dhr1 mutant in vivo showed reduced stimulation of unwinding activity in vitro. Dhr1 binding to the preribosome was substantially reduced only when both Utp14 and Bud23 were depleted. Thus, Utp14 is bifunctional; together with Bud23, it is needed for stable interaction of Dhr1 with the preribosome, and Utp14 activates Dhr1 to dislodge U3.
Collapse
|
21
|
The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLoS Biol 2015; 13:e1002083. [PMID: 25710520 PMCID: PMC4340053 DOI: 10.1371/journal.pbio.1002083] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins. U3 snoRNA binds to pre-rRNA, helping to orchestrate key steps in ribosome assembly. This study identifies Dhr1 as the essential RNA helicase that releases U3 snoRNA and allows ribosome maturation to continue. Ribosomes are intricate assemblies of RNA and protein that are responsible for decoding a cell’s genetic information. Their assembly is a very rapid and dynamic process, requiring many ancillary factors in eukaryotic cells. One critical factor is the U3 snoRNA, which binds to the immature ribosomal RNA to direct early processing and folding of the RNA of the small subunit. Although U3 is essential to promote assembly, it must be actively removed to allow completion of RNA folding. Such RNA dynamics are often driven by RNA helicases, and here we use a broad range of experimental approaches to identify the RNA helicase Dhr1 as the enzyme responsible for removing U3 in yeast. A combination of techniques allows us to assess what goes wrong when Dhr1 is mutated, which parts of the RNA molecules the enzyme binds to, and how Dhr1 unwinds its substrates.
Collapse
|
22
|
Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA (NEW YORK, N.Y.) 2015; 21:180-7. [PMID: 25525153 PMCID: PMC4338346 DOI: 10.1261/rna.047910.114] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/11/2014] [Indexed: 05/10/2023]
Abstract
Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2'-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams-Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3'-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3' ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3'-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N(7)-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.
Collapse
Affiliation(s)
- Sara Haag
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Jens Kretschmer
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
23
|
Létoquart J, Huvelle E, Wacheul L, Bourgeois G, Zorbas C, Graille M, Heurgué-Hamard V, Lafontaine DLJ. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc Natl Acad Sci U S A 2014; 111:E5518-26. [PMID: 25489090 PMCID: PMC4280632 DOI: 10.1073/pnas.1413089111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.
Collapse
Affiliation(s)
- Juliette Létoquart
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Emmeline Huvelle
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Ludivine Wacheul
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Gabrielle Bourgeois
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Christiane Zorbas
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Marc Graille
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France;
| | - Valérie Heurgué-Hamard
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France;
| | - Denis L J Lafontaine
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and RNA Molecular Biology, Fonds de la Recherche Scientifique, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
24
|
Turowski TW, Tollervey D. Cotranscriptional events in eukaryotic ribosome synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:129-39. [PMID: 25176256 DOI: 10.1002/wrna.1263] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Eukaryotic ribosomes are synthesized in a complex, multistep pathway. This begins with transcription of the rDNA genes by a specialized RNA polymerase, accompanied by the cotranscriptional binding of large numbers of ribosome synthesis factors, small nucleolar RNAs and ribosomal proteins. Cleavage of the nascent transcript releases the early pre-40S and pre-60S particles, which acquire export competence in the nucleoplasm prior to translocation through the nuclear pore complexes and final maturation to functional ribosomal subunits in the cytoplasm. This review will focus on the many and complex interactions occurring during pre-rRNA synthesis, particularly in budding yeast in which the pathway is best understood.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
25
|
Sondalle SB, Baserga SJ. Human diseases of the SSU processome. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:758-64. [PMID: 24240090 PMCID: PMC4058823 DOI: 10.1016/j.bbadis.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
Ribosomes are the cellular machines responsible for protein synthesis. Ribosome biogenesis, the production of ribosomes, is a complex process involving pre-ribosomal RNA (rRNA) cleavages and modifications as well as ribosomal protein assembly around the rRNAs to create the functional ribosome. The small subunit (SSU) processome is a large ribonucleoprotein (RNP) in eukaryotes required for the assembly of the SSU of the ribosome as well as for the maturation of the 18S rRNA. Despite the fundamental nature of the SSU processome to the survival of any eukaryotic cell, mutations in SSU processome components have been implicated in human diseases. Three SSU processome components and their related human diseases will be explored in this review: hUTP4/Cirhin, implicated in North American Indian childhood cirrhosis (NAIC); UTP14, implicated in infertility, ovarian cancer, and scleroderma; and EMG1, implicated in Bowen-Conradi syndrome (BCS). Diseases with suggestive, though inconclusive, evidence for the involvement of the SSU processome in their pathogenesis are also discussed, including a novel putative ribosomopathy. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-box RNA helicase Ecm16. Mol Cell Biol 2014; 34:2208-20. [PMID: 24710271 DOI: 10.1128/mcb.01656-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The small ribosomal subunit assembles cotranscriptionally on the nascent primary transcript. Cleavage at site A2 liberates the pre-40S subunit. We previously identified Bud23 as a conserved eukaryotic methyltransferase that is required for efficient cleavage at A2. Here, we report that Bud23 physically and functionally interacts with the DEAH-box RNA helicase Ecm16 (also known as Dhr1). Ecm16 is also required for cleavage at A2. We identified mutations in ECM16 that suppressed the growth and A2 cleavage defects of a bud23Δ mutant. RNA helicases often require protein cofactors to provide substrate specificity. We used yeast (Saccharomyces cerevisiae) two-hybrid analysis to map the binding site of Bud23 on Ecm16. Despite the physical and functional interaction between these factors, mutations that disrupted the interaction, as assayed by two-hybrid analysis, did not display a growth defect. We previously identified mutations in UTP2 and UTP14 that suppressed bud23Δ. We suggest that a network of protein interactions may mask the loss of interaction that we have defined by two-hybrid analysis. A mutation in motif I of Ecm16 that is predicted to impair its ability to hydrolyze ATP led to accumulation of Bud23 in an ∼45S particle containing Ecm16. Thus, Bud23 enters the pre-40S pathway at the time of Ecm16 function.
Collapse
|