1
|
Genther-Schroeder ON, Smerchek DT, Penner GB, Hansen SL. Examination of the role of the rumen in zinc metabolism. J Anim Sci 2025; 103:skaf052. [PMID: 39981644 PMCID: PMC11929949 DOI: 10.1093/jas/skaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/19/2025] [Indexed: 02/22/2025] Open
Abstract
Three experiments were conducted to characterize Zn appearance and disappearance in the rumen, rumen epithelial Zn importers and exporters, the directionality of Zn movement, and the effect of supplemental Zn on rumen epithelial structure. In experiments 1 and 2, ruminally fistulated steers (n = 4) weighing 736 ± 23.3 kg were used in a crossover experiment with 2 dietary Zn concentrations (ZINC; 0 [CON] or 120 mg supplemental Zn/kg DM [Zn120], from ZnSO4) in a 45% forage, 55% concentrate diet (experiment 1) or a 92.5% concentrate and 7.5% forage diet (experiment 2) to assess Zn appearance and disappearance in the rumen using the washed reticulo-rumen technique (WRR). Experiment 3 used 20 individually housed Hampshire crossbred wether lambs (35.1 ± 4.57 kg) fed for 60-d to evaluate the impact of dietary grain and Zn concentrations on ruminal epithelium Zn concentration, Zn transporters, and proteins integral to epithelial integrity. This experiment was a 2 × 2 factorial, with 2 diet types (DIET; 45% forage and 55% concentrate [HF] or 7.5% forage and 92.5% concentrate [HG]), and 2 supplemental Zn treatments (ZINC; 0 mg [CON] or 120 mg [ZN] supplemental Zn/kg diet DM) from ZnSO4. In experiments 1 and 2, ZINC did not affect the rate of disappearance (k) or plateau (B) digestive model parameters for buffer Zn (P ≥ 0.34) but ruminal Zn disappearance was numerically greater in experiment 2. In experiment 3, there was a DIET × ZINC effect (P = 0.05) where HG + ZN had the greatest rumen epithelial Zn, and HF + ZN had the least. There was an interaction between DIET and ZINC on papillae length (P = 0.05), where papillae length was shorter in HF than HG, and within HG, ZN animals had shorter papillae than CON (P = 0.01). A DIET × ZINC effect was noted for ZnT1 RNAscope score (P = 0.01) within the stratum spinosum layer where HG + CON wethers had greater mean ZnT1 RNAscope score than other treatments (P ≤ 0.006). Ruminal Claudin-7 protein expression was lesser in HF (P = 0.01) and tended to be lesser in ZN (P = 0.09). Overall, these experiments highlight the dynamic nature of ruminal Zn metabolism and are supporting evidence for the relationship between ruminal health and dietary grain and Zn concentrations.
Collapse
Affiliation(s)
| | | | - Gregory B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | | |
Collapse
|
2
|
Pan-claudin family interactome analysis reveals shared and specific interactions. Cell Rep 2022; 41:111588. [DOI: 10.1016/j.celrep.2022.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
3
|
Ivanov AI, Lechuga S, Marino‐Melendez A, Naydenov NG. Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Ann N Y Acad Sci 2022; 1515:61-74. [PMID: 35673768 PMCID: PMC9489603 DOI: 10.1111/nyas.14808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.
Collapse
Affiliation(s)
- Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Armando Marino‐Melendez
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
4
|
Jones TM, Marks PC, Cowan JM, Kainth DK, Petrie RJ. Cytoplasmic pressure maintains epithelial integrity and inhibits cell motility. Phys Biol 2021; 18:10.1088/1478-3975/ac267a. [PMID: 34521072 PMCID: PMC8591555 DOI: 10.1088/1478-3975/ac267a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022]
Abstract
Cytoplasmic pressure, a function of actomyosin contractility and water flow, can regulate cellular morphology and dynamics. In mesenchymal cells, cytoplasmic pressure powers cell protrusion through physiological three-dimensional extracellular matrices. However, the role of intracellular pressure in epithelial cells is relatively unclear. Here we find that high cytoplasmic pressure is necessary to maintain barrier function, one of the hallmarks of epithelial homeostasis. Further, our data show that decreased cytoplasmic pressure facilitates lamellipodia formation during the epithelial to mesenchymal transition (EMT). Critically, activation of the actin nucleating protein Arp2/3 is required for the reduction in cytoplasmic pressure and lamellipodia formation in response to treatment with hepatocyte growth factor (HGF) to induce EMT. Thus, elevated cytoplasmic pressure functions to maintain epithelial tissue integrity, while reduced cytoplasmic pressure triggers lamellipodia formation and motility during HGF-dependent EMT.
Collapse
Affiliation(s)
- Tia M. Jones
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Pragati C. Marks
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - James M. Cowan
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
5
|
Abstract
The protein-coding regions of mRNAs have the information to make proteins and hence have been at the center of attention for understanding altered protein functions in disease states, including cancer. Indeed, the discovery of genomic alterations and driver mutations that change protein levels and/or activity has been pivotal in our understanding of cancer biology. However, to better understand complex molecular mechanisms that are deregulated in cancers, we also need to look at non-coding parts of mRNAs, including 3'UTRs (untranslated regions), which control mRNA stability, localization, and translation efficiency. Recently, these rather overlooked regions of mRNAs are gaining attention as mounting evidence provides functional links between 3'UTRs, protein functions, and cancer-related molecular mechanisms. Here, roles of 3'UTRs in cancer biology and mechanisms that result in cancer-specific 3'-end isoform variants will be reviewed. An increased appreciation of 3'UTRs may help the discovery of new ways to explain as of yet unknown oncogene activation and tumor suppressor inactivation cases in cancers, and provide new avenues for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences and Cancer Systems Biology Laboratory, Middle East Technical University (METU, ODTU), Dumlupinar Blv No: 1, Universiteler Mah, 06800, Ankara, Turkey.
| |
Collapse
|
6
|
Lechuga S, Naydenov NG, Feygin A, Cruise M, Ervasti JM, Ivanov AI. Loss of β-Cytoplasmic Actin in the Intestinal Epithelium Increases Gut Barrier Permeability in vivo and Exaggerates the Severity of Experimental Colitis. Front Cell Dev Biol 2020; 8:588836. [PMID: 33195251 PMCID: PMC7644907 DOI: 10.3389/fcell.2020.588836] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a β-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether β-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out β-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of β-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, β-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from β-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that β-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA, United States
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - James M Ervasti
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
7
|
Rodriguez A, Kashina A. Posttranscriptional and Posttranslational Regulation of Actin. Anat Rec (Hoboken) 2018; 301:1991-1998. [PMID: 30312009 DOI: 10.1002/ar.23958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Actin is one of the most abundant intracellular proteins, essential in every eukaryotic cell type. Actin plays key roles in tissue morphogenesis, cell adhesion, muscle contraction, and developmental reprogramming. Most actin studies have focused on its regulation at the protein level, either directly or through differential interactions with over a hundred intracellular binding partners. However, numerous studies emerging in recent years demonstrate specific types of nucleotide-level regulation that strongly affect non-muscle actins during cell migration and adhesion and are potentially applicable to other members of the actin family. This regulation involves zipcode-mediated actin mRNA targeting to the cell periphery, proposed to mediate local synthesis of actin at the cell leading edge, as well as the recently discovered N-terminal arginylation that specifically targets non-muscle β-actin via a nucleotide-dependent mechanism. Moreover, a study published this year suggests that actin's essential roles at the organismal level may be entirely nucleotide-dependent. This review summarizes the emerging data on actin's nucleotide-level regulation. Anat Rec, 301:1991-1998, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Rodriguez
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Ryder PV, Lerit DA. RNA localization regulates diverse and dynamic cellular processes. Traffic 2018; 19:496-502. [PMID: 29653028 DOI: 10.1111/tra.12571] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
At the nexus of specialized cellular responses are localized enrichments of protein activity. The localization of messenger RNA (mRNA) coupled with translational control often plays a crucial role in the generation of protein concentrations at defined subcellular domains. Although mRNA localization is classically associated with large specialized cells, such as neurons and embryos, RNA localization is a highly conserved paradigm of post-transcriptional regulation observed in diverse cellular contexts. Functions of localized mRNAs extend far beyond the well-studied examples of neuronal polarization and developmental patterning. Since the initial discovery of the intracellular localization of cytoskeletal mRNAs within migrating cells, hundreds of mRNAs are now known to be enriched at specific organelles where they contribute to cell function. In this short review, we discuss basic principles regulating RNA localization and consider the contribution of localized mRNA to several essential cellular behaviors. We consider RNA localization as a mechanism with widespread implications for cellular function.
Collapse
Affiliation(s)
- Pearl V Ryder
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
9
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Kourtidis A, Anastasiadis PZ. Close encounters of the RNAi kind: the silencing life of the adherens junctions. Curr Opin Cell Biol 2018; 54:30-36. [PMID: 29587176 DOI: 10.1016/j.ceb.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022]
Abstract
The adherens junction has been historically considered an essential structural component of epithelial tissues. Although primarily discussed as targets of signaling pathways responsible for cell fate and tissue remodeling, they have also emerged as critical signaling regulators in developmental processes or in disease progression. The recent discovery of a functional localized RNA interference (RNAi) machinery at epithelial adherens junctions revealed a new layer of signaling regulation that is directly associated with the structure itself. This and other findings also indicate that our view of the subcellular localization of RNAi requires revisiting. A number of questions emerge regarding the physiological role and the modes of regulation of the junctional RNAi machinery, pointing towards new directions of investigation.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
11
|
Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, Thompson EA, Anastasiadis PZ. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling. J Cell Biol 2017; 216:3073-3085. [PMID: 28877994 PMCID: PMC5626537 DOI: 10.1083/jcb.201612125] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/15/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Brian Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | | | | |
Collapse
|
12
|
Vedula P, Cruz LA, Gutierrez N, Davis J, Ayee B, Abramczyk R, Rodriguez AJ. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis. Sci Rep 2016; 6:28822. [PMID: 27357130 PMCID: PMC4928050 DOI: 10.1038/srep28822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/09/2016] [Indexed: 12/27/2022] Open
Abstract
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Lissette A. Cruz
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Natasha Gutierrez
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Justin Davis
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Brian Ayee
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Rachel Abramczyk
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Alexis J. Rodriguez
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
13
|
Cruz LA, Vedula P, Gutierrez N, Shah N, Rodriguez S, Ayee B, Davis J, Rodriguez AJ. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers. Cytoskeleton (Hoboken) 2015; 72:597-608. [PMID: 26615964 PMCID: PMC4968411 DOI: 10.1002/cm.21265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin-mediated endocytosis regulates epithelial monolayer structure and barrier function.
Collapse
Affiliation(s)
- Lissette A. Cruz
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Pavan Vedula
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Natasha Gutierrez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Neel Shah
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Steven Rodriguez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Brian Ayee
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Justin Davis
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Alexis J. Rodriguez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| |
Collapse
|