1
|
Comparative parallel analysis of RNA ends identifies mRNA substrates of a tRNA splicing endonuclease-initiated mRNA decay pathway. Proc Natl Acad Sci U S A 2021; 118:2020429118. [PMID: 33649230 DOI: 10.1073/pnas.2020429118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotes share a conserved messenger RNA (mRNA) decay pathway in which bulk mRNA is degraded by exoribonucleases. In addition, it has become clear that more specialized mRNA decay pathways are initiated by endonucleolytic cleavage at particular sites. The transfer RNA (tRNA) splicing endonuclease (TSEN) has been studied for its ability to remove introns from pre-tRNAs. More recently it has been shown that single amino acid mutations in TSEN cause pontocerebellar hypoplasia. Other recent studies indicate that TSEN has other functions, but the nature of these functions has remained obscure. Here we show that yeast TSEN cleaves a specific subset of mRNAs that encode mitochondrial proteins, and that the cleavage sites are in part determined by their sequence. This provides an explanation for the counterintuitive mitochondrial localization of yeast TSEN. To identify these mRNA target sites, we developed a "comPARE" (comparative parallel analysis of RNA ends) bioinformatic approach that should be easily implemented and widely applicable to the study of endoribonucleases. The similarity of tRNA endonuclease-initiated decay to regulated IRE1-dependent decay of mRNA suggests that mRNA specificity by colocalization may be an important determinant for the degradation of localized mRNAs in a variety of eukaryotic cells.
Collapse
|
2
|
Milbury KL, Paul B, Lari A, Fowler C, Montpetit B, Stirling PC. Exonuclease domain mutants of yeast DIS3 display genome instability. Nucleus 2020; 10:21-32. [PMID: 30724665 PMCID: PMC6380420 DOI: 10.1080/19491034.2019.1578600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The exosome functions to regulate the cellular transcriptome through RNA biogenesis, surveillance, and decay. Mutations in Dis3, a catalytic subunit of the RNA exosome with separable endonuclease and exonuclease activities, are linked to multiple myeloma. Here we report that a cancer-associated DIS3 allele, dis3E729K, provides evidence for DIS3 functioning in mitotic fidelity in yeast. This dis3E729K allele does not induce defects in 7S→5.8S rRNA processing, although it elicits a requirement for P-body function. While it does not significantly influence cell cycle progression alone, the allele reduces the efficiency of cell cycle arrest in strains with defects in kinetochore assembly. Finally, point mutations in the exonuclease domains of yeast Dis3 elicit genome instability phenotypes; however, these DIS3 mutations do not increase DNA damage or RNA processing defects that lead to the accumulation of polyadenylated RNA in the nucleus. These data suggest that specific DIS3 activities support mitotic fidelity in yeast.
Collapse
Affiliation(s)
- Karissa L Milbury
- a Terry Fox Laboratory , British Columbia Cancer Agency , Vancouver , Canada
| | - Biplab Paul
- b Department of Cell Biology , University of Alberta , Edmonton , Canada
| | - Azra Lari
- b Department of Cell Biology , University of Alberta , Edmonton , Canada
| | - Claire Fowler
- a Terry Fox Laboratory , British Columbia Cancer Agency , Vancouver , Canada
| | - Ben Montpetit
- b Department of Cell Biology , University of Alberta , Edmonton , Canada.,c Department of Viticulture and Enology , University of California , Davis , CA , USA
| | - Peter C Stirling
- a Terry Fox Laboratory , British Columbia Cancer Agency , Vancouver , Canada.,d Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
3
|
Sarkar D, Paira S, Das B. Nuclear mRNA degradation tunes the gain of the unfolded protein response in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:1139-1156. [PMID: 29165698 PMCID: PMC5814838 DOI: 10.1093/nar/gkx1160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
Unfolded protein response (UPR) is triggered by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), which is accomplished by a dramatic induction of genes encoding ER chaperones. Activation of these genes involves their rapid transcription by Hac1p, encoded by the HAC1 precursor transcript harboring an intron and a bipartite element (3′-BE) in the 3′-UTR. ER stress facilitates intracellular targeting and recruitment of HAC1 pre-mRNA to Ire1p foci (requiring 3′-BE), leading to its non-spliceosomal splicing mediated by Ire1p/Rlg1p. A critical concentration of the pre-HAC1 harboring a functional 3′-BE element is governed by its 3′→5′ decay by the nuclear exosome/DRN. In the absence of stress, pre-HAC1 mRNA undergoes a rapid and kinetic 3′→5′ decay leading to a precursor pool, the majority of which lack the BE element. Stress, in contrast, causes a diminished decay, thus resulting in the production of a population with an increased abundance of pre-HAC1 mRNA carrying an intact BE, which facilitates its more efficient recruitment to Ire1p foci. This mechanism plays a crucial role in the timely activation of UPR and its prompt attenuation following the accomplishment of homeostasis. Thus, a kinetic mRNA decay provides a novel paradigm for mRNA targeting and regulation of gene expression.
Collapse
Affiliation(s)
- Debasish Sarkar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, West Bengal, India
| |
Collapse
|
4
|
Abstract
Extracellular exosomes are formed inside the cytoplasm of cells in compartments known as multivesicular bodies. Thus, exosomes contain cytoplasmic content. Multivesicular bodies fuse with the plasma membrane and release exosomes into the extracellular environment. Comprehensive research suggests that exosomes act as both inflammatory intermediaries and critical inducers of oxidative stress to drive progression of Alzheimer's disease. An important role of exosomes in Alzheimer's disease includes the formation of neurofibrillary tangles and beta-amyloid production, clearance, and accumulation. In addition, exosomes are involved in neuroinflammation and oxidative stress, which both act as triggers for beta-amyloid pathogenesis and tau hyperphosphorylation. Further, it has been shown that exosomes are strongly associated with beta-amyloid clearance. Thus, effective measures for regulating exosome metabolism may be novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi-You Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sohel H Quazi
- Department of Biological and Health Sciences, Texas A & M University-Kingsville, Kingsville, TX, USA
| | - Zun-Yu Ke
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
5
|
Jamar NH, Kritsiligkou P, Grant CM. The non-stop decay mRNA surveillance pathway is required for oxidative stress tolerance. Nucleic Acids Res 2017; 45:6881-6893. [PMID: 28472342 PMCID: PMC5499853 DOI: 10.1093/nar/gkx306] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) are toxic by-products of normal aerobic metabolism. ROS can damage mRNAs and the translational apparatus resulting in translational defects and aberrant protein production. Three mRNA quality control systems monitor mRNAs for translational errors: nonsense-mediated decay, non-stop decay (NSD) and no-go decay (NGD) pathways. Here, we show that factors required for the recognition of NSD substrates and components of the SKI complex are required for oxidant tolerance. We found an overlapping requirement for Ski7, which bridges the interaction between the SKI complex and the exosome, and NGD components (Dom34/Hbs1) which have been shown to function in both NSD and NGD. We show that ski7 dom34 and ski7 hbs1 mutants are sensitive to hydrogen peroxide stress and accumulate an NSD substrate. We further show that NSD substrates are generated during ROS exposure as a result of aggregation of the Sup35 translation termination factor, which increases stop codon read-through allowing ribosomes to translate into the 3΄-end of mRNAs. Overexpression of Sup35 decreases stop codon read-through and rescues oxidant tolerance consistent with this model. Our data reveal an unanticipated requirement for the NSD pathway during oxidative stress conditions which prevents the production of aberrant proteins from NSD mRNAs.
Collapse
Affiliation(s)
- Nur H Jamar
- The University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Paraskevi Kritsiligkou
- The University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Chris M Grant
- The University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Simpkins JA, Rickel KE, Madeo M, Ahlers BA, Carlisle GB, Nelson HJ, Cardillo AL, Weber EA, Vitiello PF, Pearce DA, Vitiello SP. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration. Biol Open 2016; 5:689-97. [PMID: 27142334 PMCID: PMC4920189 DOI: 10.1242/bio.017517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. Summary: We identify genes that are differentially expressed in yeast lacking vacuolar cystine transporter Ers1p in order to find pathways, such as respiration and sulfur regulation, that are associated with cystine homeostasis.
Collapse
Affiliation(s)
| | - Kirby E Rickel
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | - Marianna Madeo
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | - Bethany A Ahlers
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | | | - Heidi J Nelson
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | - Andrew L Cardillo
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | - Emily A Weber
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | - Peter F Vitiello
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | - David A Pearce
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | | |
Collapse
|
7
|
The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Sci Rep 2015; 5:13403. [PMID: 26306464 PMCID: PMC4549623 DOI: 10.1038/srep13403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/24/2015] [Indexed: 01/10/2023] Open
Abstract
The exosome is a complex with exoribonuclease activity that regulates RNA surveillance and turnover. The exosome also plays a role in regulating the degradation of precursor mRNAs to maintain the expression of splicing variants. In Neurospora, the silencing of rrp44, which encodes the catalytic subunit of the exosome, changed the expression of a set of spliceosomal snRNA, snRNP genes and SR protein related genes. The knockdown of rrp44 also affected the assembly of the spliceosome. RNA-seq analysis revealed a global change in bulk splicing events. Exosome-mediated splicing may regulate alternative splicing of NCU05290, NCU07421 and the circadian clock gene frequency (frq). The knockdown of rrp44 led to an increased ratio of splicing variants without intron 6 (I-6) and shorter protein isoform small FRQ (s-FRQ) as a consequence. These findings suggest that the exosome controls splicing events by regulating the degradation of precursor mRNAs and the gene expression, assembly and function of the spliceosome.
Collapse
|