1
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Rojas-Sánchez S, Kolev NG, Tschudi C. Deep mutational scanning of the Trypanosoma brucei developmental regulator RBP6 reveals an essential disordered region influenced by positive residues. Nat Commun 2025; 16:1168. [PMID: 39885181 PMCID: PMC11782513 DOI: 10.1038/s41467-025-56553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure. Expression of libraries containing all single-point variants of RBP6 in non-infectious procyclic forms and subsequent purification of infectious metacyclics supports the existence of an RNA-recognition motif (RRM) and reveal an N-terminal intrinsically disordered region (N-IDR). In contrast to the RRM, the N-IDR is more tolerant to substitutions; however, a handful of positions contain a third of all deleterious mutations found in the N-IDR. Introduction of positively charged residues in the N-IDR dramatically alters the normal metacyclogenesis pattern. Our results reveal an essential N-IDR, possibly playing a regulatory role, and an RRM likely involved in protein-RNA interactions.
Collapse
Affiliation(s)
- Saúl Rojas-Sánchez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
| |
Collapse
|
3
|
Clark M, Farinha A, Morrison A, Lisi G. Structural, biological, and biomedical implications of mRNA interactions with the master regulator HuR. NAR MOLECULAR MEDICINE 2025; 2:ugaf002. [PMID: 39980665 PMCID: PMC11838611 DOI: 10.1093/narmme/ugaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein (RBP) that has been implicated in a vast range of biological processes including stress response, angiogenesis, cell proliferation, and differentiation. Dysregulation of HuR has been linked to a number of pathological disorders including vascular disease, inflammation, and cancers such as those of the breast and colon. Like many RBPs, HuR is composed of multiple RNA-recognition motif (RRM) domains; however, HuR and the three other members of the Hu family (HuB, HuC, and HuD) possess a unique structural composition with two RRMs separated from a third C-terminal RRM by a long, unstructured hinge region. While there has been extensive research on the role of HuR in cellular, molecular, and developmental biology, there are fewer structural and biochemical studies of HuR and many questions still remain about the molecular mechanisms of HuR. In this review, we endeavor to synthesize existing HuR research spanning the last three decades in order to define known mechanistic roles of each domain, highlight remaining uncertainties, and provide a backdrop for ongoing research into the chemistry and biology of HuR and similar multi-RRM containing proteins.
Collapse
Affiliation(s)
- Madeline E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, United States
| | - Andrew Farinha
- Departments of Research and Medicine, Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, United States
| | - Alan R Morrison
- Departments of Research and Medicine, Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, United States
- Ocean State Research Institute, Inc., Providence, RI 02908, United States
- Department of Medicine, Section of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, United States
- Brown University RNA Center, Providence, RI 02903, United States
| |
Collapse
|
4
|
Kravchenko A, de Vries SJ, Smaïl-Tabbone M, Chauvot de Beauchene I. HIPPO: HIstogram-based Pseudo-POtential for scoring protein-ssRNA fragment-based docking poses. BMC Bioinformatics 2024; 25:129. [PMID: 38532339 DOI: 10.1186/s12859-024-05733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Anna Kravchenko
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
| | | | | | | |
Collapse
|
5
|
Roca-Martínez J, Kang HS, Sattler M, Vranken W. Analysis of the inter-domain orientation of tandem RRM domains with diverse linkers: connecting experimental with AlphaFold2 predicted models. NAR Genom Bioinform 2024; 6:lqae002. [PMID: 38288375 PMCID: PMC10823583 DOI: 10.1093/nargab/lqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
The RNA recognition motif (RRM) is the most prevalent RNA binding domain in eukaryotes and is involved in most RNA metabolism processes. Single RRM domains have a limited RNA specificity and affinity and tend to be accompanied by other RNA binding domains, frequently additional RRMs that contribute to an avidity effect. Within multi-RRM proteins, the most common arrangement are tandem RRMs, with two domains connected by a variable linker. Despite their prevalence, little is known about the features that lead to specific arrangements, and especially the role of the connecting linker. In this work, we present a novel and robust way to investigate the relative domain orientation in multi-domain proteins using inter-domain vectors referenced to a stable secondary structure element. We apply this method to tandem RRM domains and cluster experimental tandem RRM structures according to their inter-domain and linker-domain contacts, and report how this correlates with their orientation. By extending our analysis to AlphaFold2 predicted structures, with particular attention to the inter-domain predicted aligned error, we identify new orientations not reported experimentally. Our analysis provides novel insights across a range of tandem RRM orientations that may help for the design of proteins with a specific RNA binding mode.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Hyun-Seo Kang
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
6
|
Roca-Martínez J, Dhondge H, Sattler M, Vranken WF. Deciphering the RRM-RNA recognition code: A computational analysis. PLoS Comput Biol 2023; 19:e1010859. [PMID: 36689472 PMCID: PMC9894542 DOI: 10.1371/journal.pcbi.1010859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/02/2023] [Accepted: 01/07/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recognition motifs (RRM) are the most prevalent class of RNA binding domains in eucaryotes. Their RNA binding preferences have been investigated for almost two decades, and even though some RRM domains are now very well described, their RNA recognition code has remained elusive. An increasing number of experimental structures of RRM-RNA complexes has become available in recent years. Here, we perform an in-depth computational analysis to derive an RNA recognition code for canonical RRMs. We present and validate a computational scoring method to estimate the binding between an RRM and a single stranded RNA, based on structural data from a carefully curated multiple sequence alignment, which can predict RRM binding RNA sequence motifs based on the RRM protein sequence. Given the importance and prevalence of RRMs in humans and other species, this tool could help design RNA binding motifs with uses in medical or synthetic biology applications, leading towards the de novo design of RRMs with specific RNA recognition.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels, Belgium
- Structural biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Wim F. Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels, Belgium
- Structural biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Yang L, Wang ZA, Zuo H, Geng R, Guo Z, Niu S, Weng S, He J, Xu X. The LARK protein is involved in antiviral and antibacterial responses in shrimp by regulating humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103826. [PMID: 32784011 DOI: 10.1016/j.dci.2020.103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The LARK proteins containing a C2HC-type zinc finger motif and two RNA recognition motifs are conserved across vertebrates and invertebrates. Previous studies have suggested that invertebrate LARKs and their mammalian counterparts, the RBM4 proteins, regulate gene expression by affecting RNA stability and post-transcriptional processing, participating in multiple life processes. In the current study, the LARK gene from Pacific white shrimp Litopenaeus vannamei was identified and functionally explored in the context of immunity. The LARK protein was mainly present in the nucleus of its expression vector-transfected S2 cells, and the LARK mRNA was detectable in all the tested shrimp tissues. Expression of LARK in gill was up-regulated by immune stimulation with various pathogens. In vivo experiments demonstrated that LARK played positive roles in both antiviral and antibacterial responses and silencing of LARK could make shrimp more susceptible to infection with Vibrio parahaemolyticus and white spot syndrome virus (WSSV). Although silencing of LARK did not affect the phagocytic activity of hemocytes, it regulated expression of many components of the NF-κB and JAK-STAT pathways and a series of immune function proteins. These suggested that LARK could be mainly involved in regulation of humoral immunity. The current study could help reveal the roles of LARK/RBM4 in immunity and further explore the regulatory mechanisms of shrimp immunity.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
8
|
Mahalingam R, Walling JG. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare). Genomics 2019; 112:1829-1839. [PMID: 31669702 DOI: 10.1016/j.ygeno.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/29/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023]
Abstract
One of the major mechanisms of post-transcriptional gene regulation is achieved by proteins bearing well-defined sequence motifs involved in 'RNA binding'. In eukaryotes, RNA binding proteins (RBPs) are key players of RNA metabolism that includes synthesis, processing, editing, modifying, transport, storage and stability of RNA. In plants, the family of RBPs is vastly expanded compared to other eukaryotes including humans. In this study we identified 363 RBPs in the barley genome. Gene ontology enrichment analysis of barley RBPs indicated these proteins were in all the major cellular compartments and associated with key biological processes including translation, splicing, seed development and stress signaling. Members with the classical RNA binding motifs such as the RNA recognition motif (RRM), KH domain, Helicase, CRM, dsRNA and Pumilio were identified in the repertoire of barley RBPs. Similar to Arabidopsis, the RRM containing RBPs were the most abundant in barley genome. In-depth analysis of the RRM containing proteins - polyA binding proteins, Ser/Arg rich proteins and Glycine-rich RBPs were undertaken. Reanalysis of the proteome dataset of various stages during barley malting identified 38 RBPs suggesting an important role for these proteins during the malting process. This survey provides a systematic analysis of barley RBPs and serves as the basis for the further functional characterization of this important family of proteins.
Collapse
Affiliation(s)
| | - Jason G Walling
- 502 Walnut Street, Cereal Crops Research Unit, USDA-ARS, Madison, WI 53726, USA.
| |
Collapse
|
9
|
Segregation and potential functional impact of a rare stop-gain PABPC4L variant in familial atypical Parkinsonism. Sci Rep 2019; 9:13576. [PMID: 31537871 PMCID: PMC6753086 DOI: 10.1038/s41598-019-50102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 01/23/2023] Open
Abstract
Atypical parkinsonian disorders (APDs) comprise a group of neurodegenerative diseases with heterogeneous clinical and pathological features. Most APDs are sporadic, but rare familial forms have also been reported. Epidemiological and post-mortem studies associated APDs with oxidative stress and cellular protein aggregates. Identifying molecular mechanisms that translate stress into toxic protein aggregation and neurodegeneration in APDs is an active area of research. Recently, ribonucleic acid (RNA) stress granule (SG) pathways were discussed to be pathogenically relevant in several neurodegenerative disorders including APDs. Using whole genome sequencing, mRNA expression analysis, transfection assays and cell imaging, we investigated the genetic and molecular basis of a familial neurodegenerative atypical parkinsonian disorder. We investigated a family with six living members in two generations exhibiting clinical symptoms consistent with atypical parkinsonism. Two affected family members suffered from parkinsonism that was associated with ataxia. Magnetic resonance imaging (MRI) of these patients showed brainstem and cerebellar atrophy. Whole genome sequencing identified a heterozygous stop-gain variant (c.C811T; p.R271X) in the Poly(A) binding protein, cytoplasmic 4-like (PABPC4L) gene, which co-segregated with the disease in the family. In situ hybridization showed that the murine pabpc4l is expressed in several brain regions and in particular in the cerebellum and brainstem. To determine the functional impact of the stop-gain variant in the PABPC4L gene, we investigated the subcellular localization of PABPC4L in heterologous cells. Wild-type PABPC4L protein localized predominantly to the cell nucleus, in contrast to the truncated protein encoded by the stop-gain variant p.R271X, which was found homogeneously throughout the cell. Interestingly, the wild-type, but not the truncated protein localized to RasGAP SH3 domain Binding Protein (G3BP)-labeled cytoplasmic granules in response to oxidative stress induction. This suggests that the PABPC4L variant alters intracellular distribution and possibly the stress granule associated function of the protein, which may underlie APD in this family. In conclusion, we present genetic and molecular evidence supporting the role of a stop-gain PABPC4L variant in a rare familial APD. Our data shows that the variant results in cellular mislocalization and inability of the protein to associate with stress granules.
Collapse
|
10
|
Mao M, Hu Y, Yang Y, Qian Y, Wei H, Fan W, Yang Y, Li X, Wang Z. Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Syst 2018; 7:510-520.e4. [PMID: 30414922 DOI: 10.1016/j.cels.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) is generally regulated by trans-splicing factors that specifically bind to cis-elements in pre-mRNAs. The human genome encodes ∼1,500 RNA binding proteins (RBPs) that potentially regulate AS, yet their functions remain largely unknown. To explore their potential activities, we fused the putative functional domains of RBPs to a sequence-specific RNA-binding domain and systemically analyzed how these engineered factors affect splicing. We discovered that ∼80% of low-complexity domains in endogenous RBPs displayed distinct context-dependent activities in regulating splicing, indicating that AS is under more extensive regulation than previously expected. We developed a machine learning approach to classify and predict the activities of RBPs based on their sequence compositions and further validated this model using endogenous RBPs and synthetic polypeptides. These results represent a systematic inspection, modeling, prediction, and validation of how RBP sequences affect their activities in controlling splicing, paving the way for de novo engineering of artificial splicing factors.
Collapse
Affiliation(s)
- Miaowei Mao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yue Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Qian
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huanhuan Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Burge CB. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins. Mol Cell 2018; 70:854-867.e9. [PMID: 29883606 PMCID: PMC6062212 DOI: 10.1016/j.molcel.2018.05.001] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023]
Abstract
RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif.
Collapse
Affiliation(s)
| | - Peter Freese
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Maria S Alexis
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Amanda Su
- Department of Biology, MIT, Cambridge, MA, USA
| | | | | | | | | | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher B Burge
- Department of Biology, MIT, Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Rotem N, Magen I, Ionescu A, Gershoni-Emek N, Altman T, Costa CJ, Gradus T, Pasmanik-Chor M, Willis DE, Ben-Dov IZ, Hornstein E, Perlson E. ALS Along the Axons - Expression of Coding and Noncoding RNA Differs in Axons of ALS models. Sci Rep 2017; 7:44500. [PMID: 28300211 PMCID: PMC5353576 DOI: 10.1038/srep44500] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/08/2017] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1G93A and TDP43A315T, established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment.
Collapse
Affiliation(s)
- Nimrod Rotem
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noga Gershoni-Emek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christopher J Costa
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Medical Research Institute, White Plains, NY, USA
| | - Tal Gradus
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Dianna E Willis
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Medical Research Institute, White Plains, NY, USA
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Wei H, Wang Z. Engineering RNA-binding proteins with diverse activities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:597-613. [DOI: 10.1002/wrna.1296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Huanhuan Wei
- Key Laboratory of Computational Biology; MPG-CAS Partner Institute of Computational Biology; Shanghai China
| | - Zefeng Wang
- Key Laboratory of Computational Biology; MPG-CAS Partner Institute of Computational Biology; Shanghai China
- Department of Pharmacology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|