1
|
Ahi EP, Singh P. Emerging Orchestrator of Ecological Adaptation: m 6A Regulation of Post-Transcriptional Mechanisms. Mol Ecol 2024:e17545. [PMID: 39367666 DOI: 10.1111/mec.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Genetic mechanisms have been at the forefront of our exploration into the substrate of adaptive evolution and phenotypic diversification. However, genetic variation only accounts for a fraction of phenotypic variation. In the last decade, the significance of RNA modification mechanisms has become more apparent in the context of organismal adaptation to rapidly changing environments. RNA m6A methylation, the most abundant form of RNA modification, is emerging as a potentially significant player in various biological processes. Despite its fundamental function to regulate other major post-transcriptional mechanisms such as microRNA and alternative splicing, its role in ecology and evolution has been understudied. This review highlights the potential importance of m6A RNA methylation in ecological adaptation, emphasising the need for further research, especially in natural systems. We focus on how m6A not only affects mRNA fate but also influences miRNA-mediated gene regulation and alternative splicing, potentially contributing to organismal adaptation. The aim of this review is to synthesise key background information to enhance our understanding of m6A mechanisms driving species survival in dynamic environments and motivate future research into the dynamics of adaptive RNA methylation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Pooja Singh
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
2
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The rapidly evolving X-linked MIR-506 family fine-tunes spermatogenesis to enhance sperm competition. eLife 2024; 13:RP90203. [PMID: 38639482 PMCID: PMC11031087 DOI: 10.7554/elife.90203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Jaaved Mohammed
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San AntonioSan AntonioUnited States
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Plazzi F, Le Cras Y, Formaggioni A, Passamonti M. Mitochondrially mediated RNA interference, a retrograde signaling system affecting nuclear gene expression. Heredity (Edinb) 2024; 132:156-161. [PMID: 37714959 PMCID: PMC10923801 DOI: 10.1038/s41437-023-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Several functional classes of short noncoding RNAs are involved in manifold regulatory processes in eukaryotes, including, among the best characterized, miRNAs. One of the most intriguing regulatory networks in the eukaryotic cell is the mito-nuclear crosstalk: recently, miRNA-like elements of mitochondrial origin, called smithRNAs, were detected in a bivalve species, Ruditapes philippinarum. These RNA molecules originate in the organelle but were shown in vivo to regulate nuclear genes. Since miRNA genes evolve easily de novo with respect to protein-coding genes, in the present work we estimate the probability with which a newly arisen smithRNA finds a suitable target in the nuclear transcriptome. Simulations with transcriptomes of 12 bivalve species suggest that this probability is high and not species specific: one in a hundred million (1 × 10-8) if five mismatches between the smithRNA and the 3' mRNA are allowed, yet many more are allowed in animals. We propose that novel smithRNAs may easily evolve as exaptation of the pre-existing mitochondrial RNAs. In turn, the ability of evolving novel smithRNAs may have played a pivotal role in mito-nuclear interactions during animal evolution, including the intriguing possibility of acting as speciation trigger.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy.
| | - Youn Le Cras
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
- Magistère Européen de Génétique, Université Paris Cité, 85 Boulevard Saint Germain, 75006, Paris, Italy
| | - Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
| |
Collapse
|
5
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The Rapidly Evolving X-linked miR-506 Family Finetunes Spermatogenesis to Enhance Sperm Competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544876. [PMID: 37398484 PMCID: PMC10312769 DOI: 10.1101/2023.06.14.544876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite rapid evolution across eutherian mammals, the X-linked miR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (Slitrk2 and Fmr1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked miR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernable defects, but simultaneous ablation of five clusters containing nineteen members of the miR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked miR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the miR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Vedanayagam J, Lin CJ, Papareddy R, Nodine M, Flynt AS, Wen J, Lai EC. Regulatory logic of endogenous RNAi in silencing de novo genomic conflicts. PLoS Genet 2023; 19:e1010787. [PMID: 37343034 PMCID: PMC10317233 DOI: 10.1371/journal.pgen.1010787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Although the biological utilities of endogenous RNAi (endo-RNAi) have been largely elusive, recent studies reveal its critical role in the non-model fruitfly Drosophila simulans to suppress selfish genes, whose unchecked activities can severely impair spermatogenesis. In particular, hairpin RNA (hpRNA) loci generate endo-siRNAs that suppress evolutionary novel, X-linked, meiotic drive loci. The consequences of deleting even a single hpRNA (Nmy) in males are profound, as such individuals are nearly incapable of siring male progeny. Here, comparative genomic analyses of D. simulans and D. melanogaster mutants of the core RNAi factor dcr-2 reveal a substantially expanded network of recently-emerged hpRNA-target interactions in the former species. The de novo hpRNA regulatory network in D. simulans provides insight into molecular strategies that underlie hpRNA emergence and their potential roles in sex chromosome conflict. In particular, our data support the existence of ongoing rapid evolution of Nmy/Dox-related networks, and recurrent targeting of testis HMG-box loci by hpRNAs. Importantly, the impact of the endo-RNAi network on gene expression flips the convention for regulatory networks, since we observe strong derepression of targets of the youngest hpRNAs, but only mild effects on the targets of the oldest hpRNAs. These data suggest that endo-RNAi are especially critical during incipient stages of intrinsic sex chromosome conflicts, and that continual cycles of distortion and resolution may contribute to speciation.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Ching-Jung Lin
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, New York, United States of America
| | - Ranjith Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Michael Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Alex S. Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research The Australian National University, Canberra, Australia
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| |
Collapse
|
7
|
Niu H, Pang Y, Xie L, Yu Q, Shen Y, Li J, Xu X. Clustering pattern and evolution characteristic of microRNAs in grass carp (Ctenopharyngodon idella). BMC Genomics 2023; 24:73. [PMID: 36782132 PMCID: PMC9926789 DOI: 10.1186/s12864-023-09159-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND A considerable fraction of microRNAs (miRNAs) are highly conserved, and certain miRNAs correspond to genomic clusters. The clustering of miRNAs can be advantageous, possibly by allowing coordinated expression. However, little is known about the evolutionary forces responsible for the loss and acquisition of miRNA and miRNA clusters. RESULTS The results demonstrated that several novel miRNAs arose throughout grass carp evolution. Duplication and de novo production were critical strategies for miRNA cluster formation. Duplicates accounted for a smaller fraction of the expansion in the grass carp miRNA than de novo creation. Clustered miRNAs are more conserved and change slower, whereas unique miRNAs usually have high evolution rates and low expression levels. The expression level of miRNA expression in clusters is strongly correlated. CONCLUSIONS This study examines the genomic distribution, evolutionary background, and expression regulation of grass carp miRNAs. Our findings provide novel insights into the genesis and development of miRNA clusters in teleost.
Collapse
Affiliation(s)
- Huiqin Niu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qiaozhen Yu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
Lee S, Chen YC, Gillen AE, Taliaferro JM, Deplancke B, Li H, Lai EC. Diverse cell-specific patterns of alternative polyadenylation in Drosophila. Nat Commun 2022; 13:5372. [PMID: 36100597 PMCID: PMC9470587 DOI: 10.1038/s41467-022-32305-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most genes in higher eukaryotes express isoforms with distinct 3' untranslated regions (3' UTRs), generated by alternative polyadenylation (APA). Since 3' UTRs are predominant locations of post-transcriptional regulation, APA can render such programs conditional, and can also alter protein sequences via alternative last exon (ALE) isoforms. We previously used 3'-sequencing from diverse Drosophila samples to define multiple tissue-specific APA landscapes. Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell Atlas) to elucidate cell-type expression of 3' UTRs across >250 adult Drosophila cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE programs, such as 3' UTR lengthening in differentiated neurons and 3' UTR shortening in spermatocytes and spermatids. We trace dynamic 3' UTR patterns across cell lineages, including in the male germline, and discover new APA patterns in the intestinal stem cell lineage. Finally, we correlate expression of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and polyadenylation (CPA) factors in several cell types that exhibit characteristic APA landscapes, yielding candidate regulators of transcriptome complexity. These analyses provide a comprehensive foundation for future investigations of mechanisms and biological impacts of alternative 3' isoforms across the major cell types of this widely-studied model organism.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, 10013, USA
| | | | - Austin E Gillen
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering & Global Health Institute, School of Life Sciences, EPFL, CH-1015, Lausanne, Switzerland
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Marco A. The chromosomal distribution of sex-biased microRNAs in Drosophila is non-adaptive. Genome Biol Evol 2022; 14:6637416. [PMID: 35809037 PMCID: PMC9290354 DOI: 10.1093/gbe/evac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 11/24/2022] Open
Abstract
Genes are often differentially expressed between males and females. In Drosophila melanogaster, the analysis of sex-biased microRNAs (short noncoding regulatory molecules) has revealed striking differences with protein-coding genes. Mainly, the X chromosome is enriched in male-biased microRNA genes, although it is depleted of male-biased protein-coding genes. The paucity of male-biased genes in the X chromosome is generally explained by an evolutionary process called demasculinization. I suggest that the excess of male-biased microRNAs in the X chromosome is due to high rates of de novo emergence of microRNAs (mostly in other neighboring microRNAs), a tendency of novel microRNAs in the X chromosome to be expressed in testis, and to a lack of a demasculinization process. To test this hypothesis, I analyzed the expression profile of microRNAs in males, females, and gonads in D. pseudoobscura, in which an autosome translocated into the X chromosome effectively becoming part of a sex chromosome (neo-X). I found that the pattern of sex-biased expression is generally conserved between D. melanogaster and D. pseudoobscura. Also, orthologous microRNAs in both species conserve their chromosomal location, indicating that there is no evidence of demasculinization or other interchromosomal movement of microRNAs. Drosophila pseudoobscura-specific microRNAs in the neo-X chromosome tend to be male-biased and particularly expressed in testis. In summary, the apparent paradox resulting from male-biased protein-coding genes depleted in the X chromosome and an enrichment in male-biased microRNAs is consistent with different evolutionary dynamics between coding genes and short RNAs.
Collapse
Affiliation(s)
- Antonio Marco
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
10
|
Chenevert M, Miller B, Karkoutli A, Rusnak A, Lott SE, Atallah J. The early embryonic transcriptome of a Hawaiian Drosophila picture-wing fly shows evidence of altered gene expression and novel gene evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:277-291. [PMID: 35322942 DOI: 10.1002/jez.b.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
A massive adaptive radiation on the Hawaiian archipelago has produced approximately one-quarter of the fly species in the family Drosophilidae. The Hawaiian Drosophila clade has long been recognized as a model system for the study of both the ecology of island endemics and the evolution of developmental mechanisms, but relatively few genomic and transcriptomic datasets are available for this group. We present here a differential expression analysis of the transcriptional profiles of two highly conserved embryonic stages in the Hawaiian picture-wing fly Drosophila grimshawi. When we compared our results to previously published datasets across the family Drosophilidae, we identified cases of both gains and losses of gene representation in D. grimshawi, including an apparent delay in Hox gene activation. We also found a high expression of unannotated genes. Most transcripts of unannotated genes with open reading frames do not have identified homologs in non-Hawaiian Drosophila species, although the vast majority have sequence matches in genomes of other Hawaiian picture-wing flies. Some of these unannotated genes may have arisen from noncoding sequence in the ancestor of Hawaiian flies or during the evolution of the clade. Our results suggest that both the modified use of ancestral genes and the evolution of new ones may occur in rapid radiations.
Collapse
Affiliation(s)
- Madeline Chenevert
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bronwyn Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Ahmad Karkoutli
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Anna Rusnak
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Center for Biomedical Engineering, Brown University, Box A-2, Arnold Lab, Providence, Rhode Island, USA
| | - Susan E Lott
- Department of Evolution & Ecology, University of California-Davis, Davis, California, USA
| | - Joel Atallah
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Huang Y, Shang R, Lu GA, Zeng W, Huang C, Zou C, Tang T. Spatiotemporal Regulation of a Single Adaptively Evolving Trans-Regulatory Element Contributes to Spermatogenetic Expression Divergence in Drosophila. Mol Biol Evol 2022; 39:6605656. [PMID: 35687719 PMCID: PMC9254010 DOI: 10.1093/molbev/msac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Due to extensive pleiotropy, trans-acting elements are often thought to be evolutionarily constrained. While the impact of trans-acting elements on gene expression evolution has been extensively studied, relatively little is understood about the contribution of a single trans regulator to interspecific expression and phenotypic divergence. Here, we disentangle the effects of genomic context and miR-983, an adaptively evolving young microRNA, on expression divergence between Drosophila melanogaster and D. simulans. We show miR-983 effects promote interspecific expression divergence in testis despite its antagonism with the often-predominant context effects. Single-cyst RNA-seq reveals that distinct sets of genes gain and lose miR-983 influence under disruptive or diversifying selection at different stages of spermatogenesis, potentially helping minimize antagonistic pleiotropy. At the round spermatid stage, the effects of miR-983 are weak and distributed, coincident with the transcriptome undergoing drastic expression changes. Knocking out miR-983 causes reduced sperm length with increased within-individual variation in D. melanogaster but not in D. simulans, and the D. melanogaster knockout also exhibits compromised sperm defense ability. Our results provide empirical evidence for the resolution of antagonistic pleiotropy and also have broad implications for the function and evolution of new trans regulators.
Collapse
Affiliation(s)
- Yumei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Rui Shang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Khanal S, Zancanela BS, Peter JO, Flynt AS. The Small RNA Universe of Capitella teleta. Front Mol Biosci 2022; 9:802814. [PMID: 35281272 PMCID: PMC8915122 DOI: 10.3389/fmolb.2022.802814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
RNAi is an evolutionarily fluid mechanism with dramatically different activities across animal phyla. One major group where there has been little investigation is annelid worms. Here, the small RNAs of the polychaete developmental model Capitella teleta are profiled across development. As is seen with nearly all animals, nearly 200 microRNAs were found with 58 high-confidence novel species. Greater miRNA diversity was associated with later stages consistent with differentiation of tissues. Outside miRNA, a distinct composition of other small RNA pathways was found. Unlike many invertebrates, an endogenous siRNA pathway was not observed, indicating pathway loss relative to basal planarians. No processively generated siRNA-class RNAs could be found arising from dsRNA precursors. This has a significant impact on RNAi technology development for this group of animals. Unlike the apparent absence of siRNAs, a significant population of piRNAs was observed. For many piRNAs, phasing and ping-pong biogenesis pathways were identified. Interestingly, piRNAs were found to be highly expressed during early development, suggesting a potential role in regulation in metamorphosis. Critically, the configuration of RNAi factors in C. teleta is found in other annelids and mollusks, suggesting that similar biology is likely to be present in the wider clade. This study is the first in providing comprehensive analysis of small RNAs in annelids.
Collapse
|
13
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Medvedeva AV, Tokmatcheva EV, Kaminskaya AN, Vasileva SA, Nikitina EA, Zhuravlev SA, Zakharov GA, Zatsepina OG, Savvateeva-Popova EV. Parent-of-origin effects on nuclear chromatin organization and behavior in a Drosophila model for Williams-Beuren Syndrome. Vavilovskii Zhurnal Genet Selektsii 2021; 25:472-485. [PMID: 34595370 PMCID: PMC8460428 DOI: 10.18699/vj21.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Prognosis of neuropsychiatric disorders in progeny requires consideration of individual (1) parent-of-origin effects (POEs) relying on (2) the nerve cell nuclear 3D chromatin architecture and (3) impact of parent-specific miRNAs. Additionally, the shaping of cognitive phenotypes in parents depends on both learning acquisition and forgetting, or memory erasure. These processes are independent and controlled by different signal cascades: the first is cAMPdependent, the second relies on actin remodeling by small GTPase Rac1 - LIMK1 (LIM-kinase 1). Simple experimental model systems such as Drosophila help probe the causes and consequences leading to human neurocognitive pathologies. Recently, we have developed a Drosophila model for Williams-Beuren Syndrome (WBS): a mutant agnts3 of the agnostic locus (X:11AB) harboring the dlimk1 gene. The agnts3 mutation drastically increases the frequency of ectopic contacts (FEC) in specific regions of intercalary heterochromatin, suppresses learning/memory and affects locomotion. As is shown in this study, the polytene X chromosome bands in reciprocal hybrids between agnts3 and the wild type strain Berlin are heterogeneous in modes of FEC regulation depending either on maternal or paternal gene origin. Bioinformatic analysis reveals that FEC between X:11AB and the other X chromosome bands correlates with the occurrence of short (~30 bp) identical DNA fragments partly homologous to Drosophila 372-bp satellite DNA repeat. Although learning acquisition in a conditioned courtship suppression paradigm is similar in hybrids, the middle-term memory formation shows patroclinic inheritance. Seemingly, this depends on changes in miR-974 expression. Several parameters of locomotion demonstrate heterosis. Our data indicate that the agnts3 locus is capable of trans-regulating gene activity via POEs on the chromatin nuclear organization, thereby affecting behavior.
Collapse
Affiliation(s)
- A V Medvedeva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - E V Tokmatcheva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A N Kaminskaya
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - S A Vasileva
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Nikitina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - S A Zhuravlev
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - G A Zakharov
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - E V Savvateeva-Popova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
15
|
Zhao Y, Lu GA, Yang H, Lin P, Liufu Z, Tang T, Xu J. Run or Die in the Evolution of New MicroRNAs-Testing the Red Queen Hypothesis on De Novo New Genes. Mol Biol Evol 2021; 38:1544-1553. [PMID: 33306129 PMCID: PMC8042761 DOI: 10.1093/molbev/msaa317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Red Queen hypothesis depicts evolution as the continual struggle to adapt. According to this hypothesis, new genes, especially those originating from nongenic sequences (i.e., de novo genes), are eliminated unless they evolve continually in adaptation to a changing environment. Here, we analyze two Drosophila de novo miRNAs that are expressed in a testis-specific manner with very high rates of evolution in their DNA sequence. We knocked out these miRNAs in two sibling species and investigated their contributions to different fitness components. We observed that the fitness contributions of miR-975 in Drosophila simulans seem positive, in contrast to its neutral contributions in D. melanogaster, whereas miR-983 appears to have negative contributions in both species, as the fitness of the knockout mutant increases. As predicted by the Red Queen hypothesis, the fitness difference of these de novo miRNAs indicates their different fates.
Collapse
Affiliation(s)
- Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pei Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Iki T, Takami M, Kai T. Modulation of Ago2 Loading by Cyclophilin 40 Endows a Unique Repertoire of Functional miRNAs during Sperm Maturation in Drosophila. Cell Rep 2020; 33:108380. [PMID: 33176138 DOI: 10.1016/j.celrep.2020.108380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
In gene silencing, Hsp90 chaperone machinery assists Argonaute (Ago) binding and unwinding of silencing small RNA (sRNA) duplexes. This enables the formation of effector RNA-induced silencing complex (RISC) that often displays cargo preferences. Hence, in Drosophila, microRNAs (miRNAs) and small-interfering RNAs (siRNAs) are differentially sorted into Ago1-RISC and Ago2-RISC, respectively. Here, we identify fly Cyclophilin 40 (Cyp40) as a testis-specialized Hsp90 co-chaperone essential for spermatogenesis and for modulating Ago2-RISC formation. We show that testis-distinctive Ago-sorting and strand-selection mechanisms accumulate a unique set of miRNAs on Ago2. Cyp40 interacts with duplex-incorporating Ago2 through Hsp90 in vitro and selectively promotes the build-up of Ago2-bound miRNAs, but not endogenous siRNAs, in vivo. Moreover, one of Cyp40-dependent Ago2-sorted miRNAs is required for late spermatogenesis, unraveling the physiological relevance of the unconventional yet conserved Drosophila miRNA-Ago2 sorting pathway. Collectively, these results identify RISC-regulatory roles for Hsp90 machinery and, more generally, highlight the tissue-specific adaptation of sRNA pathways through chaperone diversification.
Collapse
Affiliation(s)
- Taichiro Iki
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan.
| | - Moe Takami
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Mol Cell 2019; 77:571-585.e4. [PMID: 31901448 DOI: 10.1016/j.molcel.2019.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.
Collapse
|
18
|
Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H, Wang YF. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103938. [PMID: 31491378 DOI: 10.1016/j.jinsphys.2019.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
19
|
Lu GA, Zhao Y, Yang H, Lan A, Shi S, Liufu Z, Huang Y, Tang T, Xu J, Shen X, Wu CI. Death of new microRNA genes in Drosophila via gradual loss of fitness advantages. Genome Res 2018; 28:1309-1318. [PMID: 30049791 PMCID: PMC6120634 DOI: 10.1101/gr.233809.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
The prevalence of de novo coding genes is controversial due to length and coding constraints. Noncoding genes, especially small ones, are freer to evolve de novo by comparison. The best examples are microRNAs (miRNAs), a large class of regulatory molecules ∼22 nt in length. Here, we study six de novo miRNAs in Drosophila, which, like most new genes, are testis-specific. We ask how and why de novo genes die because gene death must be sufficiently frequent to balance the many new births. By knocking out each miRNA gene, we analyzed their contributions to the nine components of male fitness (sperm production, length, and competitiveness, among others). To our surprise, the knockout mutants often perform better than the wild type in some components, and slightly worse in others. When two of the younger miRNAs are assayed in long-term laboratory populations, their total fitness contributions are found to be essentially zero. These results collectively suggest that adaptive de novo genes die regularly, not due to the loss of functionality, but due to the canceling out of positive and negative fitness effects, which may be characterized as "quasi-neutrality." Since de novo genes often emerge adaptively and become lost later, they reveal ongoing period-specific adaptations, reminiscent of the "Red-Queen" metaphor for long-term evolution.
Collapse
Affiliation(s)
- Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ao Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yumei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Luo J, Wang Y, Yuan J, Zhao Z, Lu J. MicroRNA duplication accelerates the recruitment of new targets during vertebrate evolution. RNA (NEW YORK, N.Y.) 2018; 24:787-802. [PMID: 29511046 PMCID: PMC5959248 DOI: 10.1261/rna.062752.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
The repertoire of miRNAs has considerably expanded during metazoan evolution, and duplication is an important mechanism for generating new functional miRNAs. However, relatively little is known about the functional divergence between paralogous miRNAs and the possible coevolution between duplicated miRNAs and the genomic contexts. By systematically examining small RNA expression profiles across various human tissues and interrogating the publicly available miRNA:mRNA pairing chimeras, we found that changes in expression patterns and targeting preferences are widespread for duplicated miRNAs in vertebrates. Both the empirical interactions and target predictions suggest that evolutionarily conserved homo-seed duplicated miRNAs pair with significantly higher numbers of target sites compared to the single-copy miRNAs. Our birth-and-death evolutionary analysis revealed that the new target sites of miRNAs experienced frequent gains and losses during function development. Our results suggest that a newly emerged target site has a higher probability to be functional and maintained by natural selection if it is paired to a seed shared by multiple paralogous miRNAs rather than being paired to a single-copy miRNA. We experimentally verified the divergence in target repression between two paralogous miRNAs by transfecting let-7a and let-7b mimics into kidney-derived cell lines of four mammalian species and measuring the resulting transcriptome alterations by extensive high-throughput sequencing. Our results also suggest that the gains and losses of let-7 target sites might be associated with the evolution of repressiveness of let-7 across mammalian species.
Collapse
Affiliation(s)
- Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian Yuan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhilei Zhao
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Lu GA, Zhao Y, Liufu Z, Wu CI. On the possibility of death of new genes - evidence from the deletion of de novo microRNAs. BMC Genomics 2018; 19:388. [PMID: 29792159 PMCID: PMC5966946 DOI: 10.1186/s12864-018-4755-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/02/2018] [Indexed: 01/21/2023] Open
Abstract
Background New genes are constantly formed, sometimes from non-genic sequences, creating what is referred to as de novo genes. Since the total number of genes remains relatively steady, gene deaths likely balance out new births. In metazoan genomes, microRNAs (miRs) genes, small and non-coding, account for the bulk of functional de novo genes and are particularly suited to the investigation of gene death. Results In this study, we discover a Drosophila-specific de novo miRNA (mir-977) that may be facing impending death. Strikingly, after this testis-specific gene is deleted from D. melanogaster, most components of male fitness increase, rather than decrease as had been expected. These components include male viability, fertility and males’ ability to repress female re-mating. Given that mir-977 has a negative fitness effect in D. melanogaster, this de novo gene with an adaptive history for over 60 Myrs may be facing elimination. In some other species where mir-977 is not found, gene death may have already happened. Conclusion The surprising result suggests that de novo genes, constantly rising and falling during evolution, may often be transiently adaptive and then purged from the genome. Electronic supplementary material The online version of this article (10.1186/s12864-018-4755-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
22
|
Mohammed J, Flynt AS, Panzarino AM, Mondal MMH, DeCruz M, Siepel A, Lai EC. Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus. Genome Res 2017; 28:52-65. [PMID: 29233922 PMCID: PMC5749182 DOI: 10.1101/gr.226068.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022]
Abstract
To assess miRNA evolution across the Drosophila genus, we analyzed several billion small RNA reads across 12 fruit fly species. These data permit comprehensive curation of species- and clade-specific variation in miRNA identity, abundance, and processing. Among well-conserved miRNAs, we observed unexpected cases of clade-specific variation in 5' end precision, occasional antisense loci, and putatively noncanonical loci. We also used strict criteria to identify a large set (649) of novel, evolutionarily restricted miRNAs. Within the bulk collection of species-restricted miRNAs, two notable subpopulations are splicing-derived mirtrons and testes-restricted, recently evolved, clustered (TRC) canonical miRNAs. We quantified miRNA birth and death using our annotation and a phylogenetic model for estimating rates of miRNA turnover. We observed striking differences in birth and death rates across miRNA classes defined by biogenesis pathway, genomic clustering, and tissue restriction, and even identified flux heterogeneity among Drosophila clades. In particular, distinct molecular rationales underlie the distinct evolutionary behavior of different miRNA classes. Mirtrons are associated with high rates of 3' untemplated addition, a mechanism that impedes their biogenesis, whereas TRC miRNAs appear to evolve under positive selection. Altogether, these data reveal miRNA diversity among Drosophila species and principles underlying their emergence and evolution.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Alex S Flynt
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Alexandra M Panzarino
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | - Matthew DeCruz
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric C Lai
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
23
|
Kondo S, Vedanayagam J, Mohammed J, Eizadshenass S, Kan L, Pang N, Aradhya R, Siepel A, Steinhauer J, Lai EC. New genes often acquire male-specific functions but rarely become essential in Drosophila. Genes Dev 2017; 31:1841-1846. [PMID: 29051389 PMCID: PMC5695085 DOI: 10.1101/gad.303131.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
In this study, Kondo et al. performed large-scale CRISPR/Cas9 mutagenesis of “conserved, essential” and “young, RNAi-lethal” genes and confirmed the lethality of conserved genes but not young genes. Additionally, two young gene mutants resulted in spermatogenesis and/or male sterility, indicating that young genes have a preferential impact on male reproductive system function. Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of “conserved, essential” and “young, RNAi-lethal” genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function.
Collapse
Affiliation(s)
- Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA
| | - Sogol Eizadshenass
- Department of Biology, Yeshiva University, New York, New York 10033, USA
| | - Lijuan Kan
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Nan Pang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Rajaguru Aradhya
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Josefa Steinhauer
- Department of Biology, Yeshiva University, New York, New York 10033, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
24
|
Wang K, Wang X, Li M, Shi T, Yang P. Low genetic diversity and functional constraint of miRNA genes participating pollen-pistil interaction in rice. PLANT MOLECULAR BIOLOGY 2017; 95:89-98. [PMID: 28735504 DOI: 10.1007/s11103-017-0638-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
In this study, we sequenced and analyzed the expression and evolution of rice miRNA genes participating pollen-pistil interaction that is crucial to rice yield. Pollen-pistil interaction is an essential reproductive process for all flowering plants. While microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNA levels in eukaryotic cells, there is little knowledge about which miRNAs involved in the early stages of pollen-pistil interaction in rice and how they evolve under this conserved process. In this study, we sequenced the small RNAs in rice from unpollinated pistil (R0), pistil from 5 min and 15 min after pollination, respectively, to identify known and novel miRNAs that are involved in this process. By comparing the corresponding mRNA-seq dataset, we identified a group of miRNAs with strong negative expression pattern with their target genes. Further investigation of all miRNA loci (MIRNAs) across 1083 public rice accessions revealed significantly reduced genetic diversity in MIRNAs with strong negative expression of their targets when comparing to those with little or no impact on targets during pollen-pistil interaction. Annotation of targets suggested that those MIRNAs with strong impact on targets were pronounced in cell wall related processes such as xylan metabolism. Additionally, plant conserved miRNAs, such as those with functions in gibberellic acid, auxin and nitrate signaling, were also with strong negative expression of their targets. Overall, our analyses identified key miRNAs participating pollen-pistil interaction and their evolutionary patterns in rice, which can facilitate the understanding of molecular mechanisms associated with seed setting.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
25
|
Shi T, Wang K, Yang P. The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:442-457. [PMID: 27743419 DOI: 10.1111/tpj.13394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre-eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA-likes. Additionally, the MIRNAs participating in lotus pollen-pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.
Collapse
Affiliation(s)
- Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
Characterization and comparative profiling of the small RNA transcriptomes in the Hemipteran insect Nilaparvata lugens. Gene 2016; 595:83-91. [PMID: 27693372 DOI: 10.1016/j.gene.2016.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a group of small RNAs involved in various biological processes through negative regulation of mRNAs at the post-transcriptional level. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive insect pests of rice. In the present study, two small RNA libraries of virulent N. lugens populations (Biotype I survives on susceptive rice variety TN1 and Biotype Y survives on moderately resistant rice variety YHY15) were constructed and sequenced using the high-throughput sequencing technology in order to identify the relationship between miRNAs of N.lugens and adaptation of BPH pests to rice resistance. In total 15,758,632 and 11,442,592 reads, corresponding to 3,144,026 and 2,550,049 unique sequences, were obtained in the two libraries (BPH-TN1 and BPH-YHY15 libraries), respectively. A total of 41 potential novel miRNAs were predicted in the two libraries, and 26 miRNAs showed significantly differential expression between two libraries. All miRNAs were significantly up-regulated in the BPH-TN1 library. Target genes likely regulated by these differentially expressed miRNAs were predicted using computational prediction. The functional annotation of target genes performed by Gene Ontology enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) indicated that a majority of differential miRNAs were involved in "Metabolism" pathway. These results provided an understanding of the role of miRNAs in BPH to adaptability of BPH on rice resistance, and will be useful in developing new control strategies for host defense against BPH.
Collapse
|
27
|
Wang Y, Luo J, Zhang H, Lu J. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes. Mol Biol Evol 2016; 33:2232-47. [PMID: 27189568 PMCID: PMC4989102 DOI: 10.1093/molbev/msw089] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a "functional co-adaptation" model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17-92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering.
Collapse
Affiliation(s)
- Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Leite DJ, Ninova M, Hilbrant M, Arif S, Griffiths-Jones S, Ronshaugen M, McGregor AP. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2133-44. [PMID: 27324919 PMCID: PMC4987109 DOI: 10.1093/gbe/evw143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | | | | | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| |
Collapse
|
29
|
Lim MYT, Ng AWT, Chou Y, Lim TP, Simcox A, Tucker-Kellogg G, Okamura K. The Drosophila Dicer-1 Partner Loquacious Enhances miRNA Processing from Hairpins with Unstable Structures at the Dicing Site. Cell Rep 2016; 15:1795-808. [PMID: 27184838 DOI: 10.1016/j.celrep.2016.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/03/2016] [Accepted: 04/15/2016] [Indexed: 12/24/2022] Open
Abstract
In Drosophila, Dicer-1 binds Loquacious-PB (Loqs-PB) as its major co-factor. Previous analyses indicated that loqs mutants only partially impede miRNA processing, but the activity of minor isoforms or maternally deposited Loqs was not eliminated in these studies. We addressed this by generating a cell line from loqs-null embryos and found that only ∼40% of miRNAs showed clear Loqs dependence. Genome-wide comparison of the hairpin structure and Loqs dependence suggested that Loqs substrates are influenced by base-pairing status at the dicing site. Artificial alteration of base-pairing stability at this position in model miRNA hairpins resulted in predicted changes in Loqs dependence, providing evidence for this hypothesis. Finally, we found that evolutionarily young miRNA genes tended to be Loqs dependent. We propose that Loqs may have roles in assisting the de novo emergence of miRNA genes by facilitating dicing of suboptimal hairpin substrates.
Collapse
Affiliation(s)
- Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore
| | - Alvin Wei Tian Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yuting Chou
- Sloan-Kettering Institute, Department of Developmental Biology, New York, NY 10065, USA
| | - Teck Por Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Amanda Simcox
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore.
| |
Collapse
|
30
|
Wang Y, Jiang F, Wang H, Song T, Wei Y, Yang M, Zhang J, Kang L. Evidence for the expression of abundant microRNAs in the locust genome. Sci Rep 2015; 5:13608. [PMID: 26329925 PMCID: PMC4556993 DOI: 10.1038/srep13608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
Substantial accumulation of neutral sequences accounts for genome size expansion in animal genomes. Numerous novel microRNAs (miRNAs), which evolve in a birth and death manner, are considered evolutionary neutral sequences. The migratory locust is an ideal model to determine whether large genomes contain abundant neutral miRNAs because of its large genome size. A total of 833 miRNAs were discovered, and several miRNAs were randomly chosen for validation by Northern blot and RIP-qPCR. Three additional verification methods, namely, processing-dependent methods of miRNA biogenesis using RNAi, evolutionary comparison with closely related species, and evidence supported by tissue-specific expression, were applied to provide compelling results that support the authenticity of locust miRNAs. We observed that abundant local duplication events of miRNAs, which were unique in locusts compared with those in other insects with small genome sizes, may be responsible for the substantial acquisition of miRNAs in locusts. Together, multiple evidence showed that the locust genome experienced a burst of miRNA acquisition, suggesting that genome size expansion may have considerable influences of miRNA innovation. These results provide new insight into the genomic dynamics of miRNA repertoires under genome size evolution.
Collapse
Affiliation(s)
- Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tianqi Song
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yuanyuan Wei
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meiling Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Liu J, Luo M, Sheng Y, Hong Q, Cheng H, Zhou R. Dynamic evolution and biogenesis of small RNAs during sex reversal. Sci Rep 2015; 5:9999. [PMID: 25944477 PMCID: PMC4421800 DOI: 10.1038/srep09999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/24/2015] [Indexed: 12/31/2022] Open
Abstract
Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.
Collapse
Affiliation(s)
- Jie Liu
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Majing Luo
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue Sheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qiang Hong
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
32
|
Wen J, Duan H, Bejarano F, Okamura K, Fabian L, Brill JA, Bortolamiol-Becet D, Martin R, Ruby JG, Lai EC. Adaptive regulation of testis gene expression and control of male fertility by the Drosophila hairpin RNA pathway. [Corrected]. Mol Cell 2014; 57:165-78. [PMID: 25544562 DOI: 10.1016/j.molcel.2014.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
Although endogenous siRNAs (endo-siRNAs) have been described in many species, still little is known about their endogenous utility. Here, we show that Drosophila hairpin RNAs (hpRNAs) generate an endo-siRNA class with predominant expression in testes. Although hpRNAs are universally recently evolved, we identify highly complementary protein-coding targets for all hpRNAs. Importantly, we find broad evidence for evolutionary divergences that preferentially maintain compensatory pairing between hpRNAs and targets, serving as first evidence for adaptive selection for siRNA-mediated target regulation in metazoans. We demonstrate organismal impact of hpRNA activity, since knockout of hpRNA1 derepresses its target ATP synthase-β in testes and compromises spermatogenesis and male fertility. Moreover, we reveal surprising male-specific impact of RNAi factors on germ cell development and fertility, consistent with testis-directed function of the hpRNA pathway. Finally, the collected hpRNA loci chronicle an evolutionary timeline that reflects their origins from prospective target genes, mirroring a strategy described for plant miRNAs.
Collapse
Affiliation(s)
- Jiayu Wen
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Hong Duan
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Katsutomo Okamura
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Lacramioara Fabian
- Cell Biology Program, The Hospital for Sick Children, PGCRL, 686 Bay Street, Room 15.9716, Toronto, ON M5G 0A4, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL, 686 Bay Street, Room 15.9716, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Diane Bortolamiol-Becet
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Raquel Martin
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - J Graham Ruby
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Eric C Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
33
|
Mohammed J, Siepel A, Lai EC. Diverse modes of evolutionary emergence and flux of conserved microRNA clusters. RNA (NEW YORK, N.Y.) 2014; 20:1850-63. [PMID: 25332374 PMCID: PMC4238352 DOI: 10.1261/rna.046805.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/30/2014] [Indexed: 05/15/2023]
Abstract
Many animal miRNA loci reside in genomic clusters that generate multicistronic primary-miRNA transcripts. While clusters that contain copies of the same miRNA hairpin are clearly products of local duplications, the evolutionary provenance of clusters with disparate members is less clear. Recently, it was proposed that essentially all such clusters in Drosophila derived from de novo formation of miRNA-like hairpins within existing miRNA transcripts, and that the maintenance of multiple miRNAs in such clusters was due to evolutionary hitchhiking on a major cluster member. However, this model seems at odds with the fact that many such miRNA clusters are composed of well-conserved miRNAs. In an effort to trace the birth and expansion of miRNA clusters that are presently well-conserved across Drosophilids, we analyzed a broad swath of metazoan species, with particular emphasis on arthropod evolution. Beyond duplication and de novo birth, we highlight a diversity of modes that contribute to miRNA evolution, including neofunctionalization of miRNA copies, fissioning of locally duplicated miRNA clusters, miRNA deletion, and miRNA cluster expansion via the acquisition and/or neofunctionalization of miRNA copies from elsewhere in the genome. In particular, we suggest that miRNA clustering by acquisition represents an expedient strategy to bring cohorts of target genes under coordinate control by miRNAs that had already been individually selected for regulatory impact on the transcriptome.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA Tri-Institutional Training Program in Computational Biology and Medicine, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|