1
|
Qian Y, Liu C, Zeng X, Li LC. RNAa: Mechanisms, therapeutic potential, and clinical progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102494. [PMID: 40125270 PMCID: PMC11930103 DOI: 10.1016/j.omtn.2025.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
RNA activation (RNAa), a gene regulatory mechanism mediated by small activating RNAs (saRNAs) and microRNAs (miRNAs), has significant implications for therapeutic applications. Unlike small interfering RNA (siRNA), which is known for gene silencing in RNA interference (RNAi), synthetic saRNAs can stably upregulate target gene expression at the transcriptional level through the assembly of the RNA-induced transcriptional activation (RITA) complex. Moreover, the dual functionality of endogenous miRNAs in RNAa (hereafter referred to as mi-RNAa) reveals their complex role in cellular processes and disease pathology. Emerging studies suggest saRNAs' potential as a novel therapeutic modality for diseases such as metabolic disorders, hearing loss, tumors, and Alzheimer's. Notably, MTL-CEBPA, the first saRNA drug candidate, shows promise in hepatocellular carcinoma treatment, while RAG-01 is being explored for non-muscle-invasive bladder cancer, highlighting clinical advancements in RNAa. This review synthesizes our current understanding of the mechanisms of RNAa and highlights recent advancements in the study of mi-RNAa and the therapeutic development of saRNAs.
Collapse
Affiliation(s)
- Yukang Qian
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Cody Liu
- Univeristy of California, Davis, Davis, CA 95616, USA
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Long-Cheng Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
- Ractigen Therapeutics, Nantong, Jiangsu 226400, China
| |
Collapse
|
2
|
Rassoulzadegan M. RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory. Biomolecules 2025; 15:605. [PMID: 40305353 PMCID: PMC12024725 DOI: 10.3390/biom15040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
The mouse genome is transcribed at different rates in both directions from the newly formed genome after fertilization. During embryonic genomic activation (EGA/ZGA), the first RNA metabolism creates heterogeneity between blastomeres. Indeed, ZGA-dependent maternal RNA degradation is crucial to regulate gene expression and enable the initiation and acquisition of full developmental competence. Subsequently, from the new genome, in addition to mRNAs, a wide range of regulatory ncRNAs are also transcribed. Regulatory ncRNAs (non-coding RNAs) have profoundly influenced fields ranging from developmental biology to RNA-mediated non-Mendelian inheritance, exhibiting sequence-specific functions. To date, the database cataloging ncRNA is not exhaustive, but their high sequence diversity, length and low expression level can vary within the same genome depending on environmental conditions, making understanding their functions often ambiguous. Indeed, during transcription control, cellular RNA content varies continuously. This phenomenon is observed in genetically identical organisms studied-bacteria, flies, plants and mammals-due to changes in transcription rates, and therefore, it impacts cellular memory. Importantly, experimental data regarding the simple modification of RNAs levels by microinjection into fertilized mouse eggs suggest that they certainly play a driving role in establishing and transmitting newly formed expression information. The idea here is that, even in a stable genome, transcripts can vary rapidly and significantly in response to environmental changes, initiated by transcriptional variations in the genome, thus altering cellular memory.
Collapse
Affiliation(s)
- Minoo Rassoulzadegan
- Department of Medical Biology, Erciyes University, Kayseri 38039, Turkey;
- Centre de Biochimie Valrose, University of Nice Sophia Antipolis, 06000 Nice, France
| |
Collapse
|
3
|
Chong ZX, Ho WY, Yeap SK. Deciphering the roles of non-coding RNAs in liposarcoma development: Challenges and opportunities for translational therapeutic advances. Noncoding RNA Res 2025; 11:73-90. [PMID: 39736850 PMCID: PMC11683247 DOI: 10.1016/j.ncrna.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Liposarcoma is one of the most prevalent forms of soft tissue sarcoma, and its prognosis is highly dependent on its molecular subtypes. Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can bind various cellular targets to regulate carcinogenesis. By affecting the expressions and activities of their downstream targets post-transcriptionally, dysregulations of miRNAs can alter different oncogenic signalling pathways, mediating liposarcoma progression. On the contrary, lncRNAs can sponge miRNAs to spare their downstream targets from translational repression, indirectly affecting miRNA-regulated oncogenic activities. In the past 15 years, multiple fundamental and clinical research has shown that different ncRNAs play essential roles in modulating liposarcoma development. Yet, there is a lack of an effective review report that could summarize the findings from various studies. To narrow this literature gap, this review article aimed to compare the findings from different studies on the tumour-regulatory roles of ncRNAs in liposarcoma and to understand how ncRNAs control liposarcoma progression mechanistically. Additionally, the reported findings were critically reviewed to evaluate the translational potentials of various ncRNAs in clinical applications, including employing these ncRNAs as diagnostic and prognostic biomarkers or as therapeutic targets in the management of liposarcoma. Overall, over 15 ncRNAs were reported to play essential roles in modulating different cellular pathways, including apoptosis, WNT/β-catenin, TGF-β/SMAD4, EMT, interleukin, and YAP-associated pathways to influence liposarcoma development. 28 ncRNAs were reported to be upregulated in liposarcoma tissues or circulation, whereas 11 were downregulated, making them potential candidates as liposarcoma diagnostic biomarkers. Among these ncRNAs, measuring the tissues or circulating levels of miR-155 and miR-195 was reported to help detect liposarcoma, differentiate liposarcoma subtypes, and predict the survival and treatment response of liposarcoma patients. Overall, except for a few ncRNAs like miR-155 and miR-195, current evidence to support the use of discussed ncRNAs as biomarkers and therapeutic targets in managing liposarcoma is mainly based on a single-center study with relatively small sample sizes or cell-based studies. Hence, more large-scale multi-center studies should be conducted to further confirm the sensitivity, specificity, and safety of ncRNAs as biomarkers and therapeutic targets. Instead of furthering investigation to confirm the translational values of all the discussed ncRNAs, which can be time- and cost-consuming, it would be more practical to focus on a few ncRNAs, including miR-155 and miR-195, to evaluate if they are sensitive and safe to be used as liposarcoma biomarkers and therapeutic agents or targets.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| |
Collapse
|
4
|
Luo R, Liu J, Guan L, Li M. HybProm: An attention-assisted hybrid CNN-BiLSTM model for the interpretable prediction of DNA promoter. Methods 2025; 235:71-80. [PMID: 39929298 DOI: 10.1016/j.ymeth.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Promoter prediction is essential for analyzing gene structures, understanding regulatory networks, transcription mechanisms, and precisely controlling gene expression. Recently, computational and deep learning methods for promoter prediction have gained attention. However, there is still room to improve their accuracy. To address this, we propose the HybProm model, which uses DNA2Vec to transform DNA sequences into low-dimensional vectors, followed by a CNN-BiLSTM-Attention architecture to extract features and predict promoters across species, including E. coli, humans, mice, and plants. Experiments show that HybProm consistently achieves high accuracy (90%-99%) and offers good interpretability by identifying key sequence patterns and positions that drive predictions.
Collapse
Affiliation(s)
- Rentao Luo
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000 Jiangxi, China
| | - Jiawei Liu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000 Jiangxi, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000 Jiangxi, China
| | - Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000 Jiangxi, China.
| |
Collapse
|
5
|
Sarkar N, Kumar A. Paradigm shift: microRNAs interact with target gene promoters to cause transcriptional gene activation or silencing. Exp Cell Res 2025; 444:114372. [PMID: 39662662 DOI: 10.1016/j.yexcr.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
MicroRNAs (miRNAs/miRs) are small (18-25 nucleotides in length), endogenous, non-coding RNAs that typically repress gene expression by interacting with the 3'untranslated regions (3'UTRs) of target mRNAs in the cytoplasm. While most of the scientific community still views miRNAs as repressors of gene expression, this review highlights their non-canonical novel role in the nucleus as activators or silencers of target gene transcription through miRNA-promoter interaction. The mechanistic details of the transcriptional role of miRNAs are yet to be elucidated, however, they can be explained by prospective models. In this review, we aim to discuss the different examples of transcriptional regulation by miRNAs and their possible mechanism of action, thereby offering a comprehensive perspective on the role of miRNAs in gene regulation and their importance in health and diseases.
Collapse
Affiliation(s)
- Neelanjana Sarkar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
6
|
Wang Z, Liu Y, Asemi Z. Quercetin and microRNA Interplay in Apoptosis Regulation: A New Therapeutic Strategy for Cancer? Curr Med Chem 2025; 32:939-957. [PMID: 38018191 DOI: 10.2174/0109298673259466231031050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yanqing Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zatollah Asemi
- Department of Nutrition, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
7
|
Vangoor VR, Giuliani G, de Wit M, Rangel CK, Venø MT, Schulte JT, Gomes-Duarte A, Senthilkumar K, Puhakka N, Kjems J, de Graan PNE, Pasterkamp RJ. Compartment-specific small non-coding RNA changes and nucleolar defects in human mesial temporal lobe epilepsy. Acta Neuropathol 2024; 148:61. [PMID: 39509000 PMCID: PMC11543739 DOI: 10.1007/s00401-024-02817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a debilitating disease characterized by recurrent seizures originating from temporal lobe structures such as the hippocampus. The pathogenic mechanisms underlying mTLE are incompletely understood but include changes in the expression of non-coding RNAs in affected brain regions. Previous work indicates that some of these changes may be selective to specific sub-cellular compartments, but the full extent of these changes and how these sub-cellular compartments themselves are affected remains largely unknown. Here, we performed small RNA sequencing (RNA-seq) of sub-cellular fractions of hippocampal tissue from mTLE patients and controls to determine nuclear and cytoplasmic expression levels of microRNAs (miRNAs). This showed differential expression of miRNAs and isomiRs, several of which displayed enriched nuclear expression in mTLE. Subsequent analysis of miR-92b, the most strongly deregulated miRNA in the nucleus, showed accumulation of this miRNA in the nucleolus in mTLE and association with snoRNAs. This prompted us to further study the nucleolus in human mTLE which uncovered several defects, such as altered nucleolar size or shape, mis-localization of nucleolar proteins, and deregulation of snoRNAs, indicative of nucleolar stress. In a rat model of epilepsy, nucleolar phenotypes were detected in the latency period before the onset of spontaneous seizures, suggesting that nucleolar changes may contribute to the development of seizures and mTLE. Overall, these data for the first time implicate nucleolar defects in the pathogenesis of mTLE and provide a valuable framework for further defining the functional consequences of altered sub-cellular RNA profiles in this disease.
Collapse
Affiliation(s)
- Vamshidhar R Vangoor
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giuliano Giuliani
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Carolina K Rangel
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Omiics ApS, 8200, Aarhus N, Denmark
| | - Joran T Schulte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Ketharini Senthilkumar
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Noora Puhakka
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Pierre N E de Graan
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Schwarzenbach H. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Noncoding RNA 2024; 10:51. [PMID: 39452837 PMCID: PMC11510331 DOI: 10.3390/ncrna10050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Epithelial ovarian cancer (EOC) with its high death incidence rate is generally detected at advanced stages. During its progression, EOC often develops peritoneal metastasis aggravating the outcomes of EOC patients. Studies on non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), have analyzed the impact of miRNAs and circRNAs, along with their interaction among each other, on cancer cells. MiRNAs can act as oncogenes or tumor suppressors modulating post-transcriptional gene expression. There is accumulating evidence that circRNAs apply their stable, covalently closed, continuous circular structures to competitively inhibit miRNA function, and so act as competing endogenous RNAs (ceRNAs). This interplay between both ncRNAs participates in the malignity of a variety of cancer types, including EOC. In the current review, I describe the characteristics of miRNAs and circRNAs, and discuss their interplay with each other in the development, progression, and drug resistance of EOC. Sponging of miRNAs by circRNAs may be used as a biomarker and therapeutic target in EOC.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
9
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
10
|
Yilmaz Sukranli Z, Korkmaz Bayram K, Taheri S, Cuzin F, Ozkul Y, Rassoulzadegan M. Experimentally altering microRNA levels in embryos alters adult phenotypes. Sci Rep 2024; 14:19014. [PMID: 39152124 PMCID: PMC11329699 DOI: 10.1038/s41598-024-63692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/31/2024] [Indexed: 08/19/2024] Open
Abstract
We previously identified a unique genetic feature of Autism Spectrum Disorder (ASD) in human patients and established mouse models, a low to very low level of six microRNAs, miR-19a-3p, miR-361-5p, miR-3613-3p, miR-150-5p, miR-126-3p and miR-499a-5p. We attempted to interfere experimentally in mice with two of them, miR19a-3p and miR499a-5p by microinjecting into zygote pronuclei either the complementary sequence or an excess of the microRNA. Both resulted in low levels in the tissues and sperm of the targeted microRNAs and their pri and pre precursors. This method stably modify predetermined levels of miRNAs and identify miRNA alterations that cause changes in autistic behavior and predispose the individual to an inherited disease. Excess miRNA results in single-stranded miRNA variations in both free and DNA-bound RNA (R-loop) fractions in mouse models thus appearing to affect their own transcription. Analysis of miRNAs fractions in human patients blood samples confirm low level of six microRNAs also in R-loop fractions.
Collapse
Affiliation(s)
- Zeynep Yilmaz Sukranli
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Keziban Korkmaz Bayram
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Serpil Taheri
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Yusuf Ozkul
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Minoo Rassoulzadegan
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
- INSERM-CNRS, Université de Nice, Nice, France.
| |
Collapse
|
11
|
Billi M, De Marinis E, Gentile M, Nervi C, Grignani F. Nuclear miRNAs: Gene Regulation Activities. Int J Mol Sci 2024; 25:6066. [PMID: 38892257 PMCID: PMC11172810 DOI: 10.3390/ijms25116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which contribute to the regulation of many physiological and pathological processes. Conventionally, miRNAs perform their activity in the cytoplasm where they regulate gene expression by interacting in a sequence-specific manner with mature messenger RNAs. Recent studies point to the presence of mature miRNAs in the nucleus. This review summarizes current findings regarding the molecular activities of nuclear miRNAs. These molecules can regulate gene expression at the transcriptional level by directly binding DNA on the promoter or the enhancer of regulated genes. miRNAs recruit different protein complexes to these regions, resulting in activation or repression of transcription, through a number of molecular mechanisms. Hematopoiesis is presented as a paradigmatic biological process whereby nuclear miRNAs possess a relevant regulatory role. Nuclear miRNAs can influence gene expression by affecting nuclear mRNA processing and by regulating pri-miRNA maturation, thus impacting the biogenesis of miRNAs themselves. Overall, nuclear miRNAs are biologically active molecules that can be critical for the fine tuning of gene expression and deserve further studies in a number of physiological and pathological conditions.
Collapse
Affiliation(s)
- Monia Billi
- General Pathology and Department of Medicine, University of Perugia, 06132 Perugia, Italy;
| | - Elisabetta De Marinis
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Martina Gentile
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Clara Nervi
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Francesco Grignani
- General Pathology and Department of Medicine, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
12
|
Gu J, Li Y, Tian Y, Zhang Y, Cheng Y, Tang Y. Noncanonical functions of microRNAs in the nucleus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:151-161. [PMID: 38167929 PMCID: PMC10984876 DOI: 10.3724/abbs.2023268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that play their roles in the regulation of physiological and pathological processes. Originally, it was assumed that miRNAs only modulate gene expression posttranscriptionally in the cytoplasm by inducing target mRNA degradation. However, with further research, evidence shows that mature miRNAs also exist in the cell nucleus, where they can impact gene transcription and ncRNA maturation in several ways. This review provides an overview of novel models of nuclear miRNA functions. Some of the models remain to be verified by experimental evidence, and more details of the miRNA regulation network remain to be discovered in the future.
Collapse
Affiliation(s)
- Jiayi Gu
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yuanan Li
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Youtong Tian
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yehao Zhang
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yongjun Cheng
- Department of Rheumatologythe First People’s Hospital of WenlingWenling317500China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology/Department of RheumatologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200001China
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai200031China
| |
Collapse
|
13
|
Sanguino Otero J, Rodríguez-Jiménez C, Mostaza Prieto J, Rodríguez-Antolín C, Carazo Alvarez A, Arrieta Blanco F, Rodríguez-Nóvoa S. Functional Analysis of 3'UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia. Hum Mutat 2024; 2024:9964734. [PMID: 40225943 PMCID: PMC11918801 DOI: 10.1155/2024/9964734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 04/15/2025]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3'UTR regions of LDLR and PCSK9. However, 3'UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3'UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3'UTR-LDLR and 8 at 3'UTR-PCSK9. The variants' pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.∗653G > C showed a 41% decrease in luciferase expression, while PCSK9:c.∗950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3'UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.
Collapse
Affiliation(s)
- Javier Sanguino Otero
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Rodríguez-Jiménez
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Ana Carazo Alvarez
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Arrieta Blanco
- Department of Endocrinology and Nutrition, Hospital Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
14
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Ray A, Sarkar A, Banerjee S, Biswas K. Non-Canonical Targets of MicroRNAs: Role in Transcriptional Regulation, Disease Pathogenesis and Potential for Therapeutic Targets. Microrna 2024; 13:83-95. [PMID: 38317474 DOI: 10.2174/0122115366278651240105071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNAs are a class of regulatory, non-coding small ribonucleic acid (RNA) molecules found in eukaryotes. Dysregulated expression of microRNAs can lead to downregulation or upregulation of their target gene. In general, microRNAs bind with the Argonaute protein and its interacting partners to form a silencing complex. This silencing complex binds with fully or partial complementary sequences in the 3'-UTR of their cognate target mRNAs and leads to degradation of the transcripts or translational inhibition, respectively. However, recent developments point towards the ability of these microRNAs to bind to the promoters, enhancers or coding sequences, leading to upregulation of their target genes. This review briefly summarizes the various non-canonical binding sites of microRNAs and their regulatory roles in various diseased conditions.
Collapse
Affiliation(s)
- Aishwarya Ray
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Abhisek Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| |
Collapse
|
16
|
Linscott ML, Yildiz Y, Flury S, Newby ML, Pak TR. Age and 17β-Estradiol (E 2) Facilitate Nuclear Export and Argonaute Loading of microRNAs in the Female Brain. Noncoding RNA 2023; 9:74. [PMID: 38133208 PMCID: PMC10745551 DOI: 10.3390/ncrna9060074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone replacement therapy is only effective within a narrow window of time surrounding the menopausal transition. Our previous work identified microRNAs as a potential molecular substrate underlying the change in E2 efficacy associated with menopause in advanced age. Specifically, we showed that E2 regulated a small subset of mature miRNAs in the aging female brain. In this study, we hypothesized that E2 regulates the stability of mature miRNAs by altering their subcellular localization and their association with argonaute proteins. We also tested the hypothesis that the RNA binding protein, hnRNP A1, was an important regulator of mature miR-9-5p expression in neuronal cells. Our results demonstrated that E2 treatment affected miRNA subcellular localization and its association with argonaute proteins differently, depending on the length of time following E2 deprivation (i.e., ovariectomy). We also provide strong evidence that hnRNP A1 regulates the transcription of pri-miR-9 and likely plays a posttranscriptional role in mature miR-9-5p turnover. Taken together, these data have important implications for considering the optimal timing for hormone replacement therapy, which might be less dependent on age and more related to how long treatment is delayed following menopause.
Collapse
Affiliation(s)
| | | | | | | | - Toni R. Pak
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.L.L.); (Y.Y.); (S.F.); (M.L.N.)
| |
Collapse
|
17
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
18
|
Wang M, Wang Y, Yang L, Du X, Li Q. Nuclear lncRNA NORSF reduces E2 release in granulosa cells by sponging the endogenous small activating RNA miR-339. BMC Biol 2023; 21:221. [PMID: 37858148 PMCID: PMC10588145 DOI: 10.1186/s12915-023-01731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Functioning as a competing endogenous RNA (ceRNA) is the main action mechanism of most cytoplasmic lncRNAs. However, it is not known whether this mechanism of action also exists in the nucleus. RESULTS We identified four nuclear lncRNAs that are presented in granulosa cells (GCs) and were differentially expressed during sow follicular atresia. Notably, similar to cytoplasmic lncRNAs, these nuclear lncRNAs also sponge miRNAs in the nucleus of GCs through direct interactions. Furthermore, NORSF (non-coding RNA involved in sow fertility), one of the nuclear lncRNA acts as a ceRNA of miR-339. Thereby, it relieves the regulatory effect of miR-339 on CYP19A1 encoding P450arom, a rate-limiting enzyme for E2 synthesis in GCs. Interestingly, miR-339 acts as a saRNA that activates CYP19A1 transcription and enhances E2 release by GCs through altering histone modifications in the promoter by directly binding to the CYP19A1 promoter. Functionally, NORSF inhibited E2 release by GCs via the miR-339 and CYP19A1 axis. CONCLUSIONS Our findings highlight an unappreciated mechanism of nuclear lncRNAs and show it acts as a ceRNA, which may be a common lncRNA function in the cytoplasm and nucleus. We also identified a potential endogenous saRNA for improving female fertility and treating female infertility.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liu Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Tahamtan A, Samadizadeh S, Salimi V, Natarelli L, Nakstad B. Editorial: miRNAs and inflammation: from biogenesis to therapeutic option. Front Immunol 2023; 14:1296589. [PMID: 37854607 PMCID: PMC10579885 DOI: 10.3389/fimmu.2023.1296589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- Alireza Tahamtan
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Samadizadeh
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Salimi
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Lucia Natarelli
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany
| | - Britt Nakstad
- Department of Paediatrics and Adolescent Health, University of Botswana, Gaborone, Botswana
- Division of Paediatrics and Adeolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Al Qaryoute A, Fallatah W, Dhinoja S, Raman R, Jagadeeswaran P. Role of microRNAs and their downstream target transcription factors in zebrafish thrombopoiesis. Sci Rep 2023; 13:16066. [PMID: 37752184 PMCID: PMC10522587 DOI: 10.1038/s41598-023-42868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b, and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b, and mir-223 knockdowns. These results suggested mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa, and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223. We also identified that tgif1, cebpa, ikzf1, irf5, irf8, and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.
Collapse
Affiliation(s)
- Ayah Al Qaryoute
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Weam Fallatah
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Revathi Raman
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA.
| |
Collapse
|
21
|
Herbert A. Flipons and small RNAs accentuate the asymmetries of pervasive transcription by the reset and sequence-specific microcoding of promoter conformation. J Biol Chem 2023; 299:105140. [PMID: 37544644 PMCID: PMC10474125 DOI: 10.1016/j.jbc.2023.105140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
The role of alternate DNA conformations such as Z-DNA in the regulation of transcription is currently underappreciated. These structures are encoded by sequences called flipons, many of which are enriched in promoter and enhancer regions. Through a change in their conformation, flipons provide a tunable mechanism to mechanically reset promoters for the next round of transcription. They act as actuators that capture and release energy to ensure that the turnover of the proteins at promoters is optimized to cell state. Likewise, the single-stranded DNA formed as flipons cycle facilitates the docking of RNAs that are able to microcode promoter conformations and canalize the pervasive transcription commonly observed in metazoan genomes. The strand-specific nature of the interaction between RNA and DNA likely accounts for the known asymmetry of epigenetic marks present on the histone tetramers that pair to form nucleosomes. The role of these supercoil-dependent processes in promoter choice and transcriptional interference is reviewed. The evolutionary implications are examined: the resilience and canalization of flipon-dependent gene regulation is contrasted with the rapid adaptation enabled by the spread of flipon repeats throughout the genome. Overall, the current findings underscore the important role of flipons in modulating the readout of genetic information and how little we know about their biology.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery Division, InsideOutBio, Charlestown, Massachusetts, USA.
| |
Collapse
|
22
|
Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res 2023; 10:32. [PMID: 37460924 PMCID: PMC10351202 DOI: 10.1186/s40779-023-00468-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region 44001 Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region 44001 Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001 Iraq
| | - Fattma Abodi Ali
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, 44001 Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 22100 Malmö, Sweden
| | - Mark C. Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, San Diego, CA 94720 USA
| | - Wojciech Branicki
- Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| |
Collapse
|
23
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
24
|
Kordaß T, Chao TY, Osen W, Eichmüller SB. Novel microRNAs modulating ecto-5'-nucleotidase expression. Front Immunol 2023; 14:1199374. [PMID: 37409119 PMCID: PMC10318900 DOI: 10.3389/fimmu.2023.1199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction The expression of immune checkpoint molecules (ICMs) by cancer cells is known to counteract tumor-reactive immune responses, thereby promoting tumor immune escape. For example, upregulated expression of ecto-5'-nucleotidase (NT5E), also designated as CD73, increases extracellular levels of immunosuppressive adenosine, which inhibits tumor attack by activated T cells. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Thus, the binding of miRNAs to the 3'-untranslated region of target mRNAs either blocks translation or induces degradation of the targeted mRNA. Cancer cells often exhibit aberrant miRNA expression profiles; hence, tumor-derived miRNAs have been used as biomarkers for early tumor detection. Methods In this study, we screened a human miRNA library and identified miRNAs affecting the expression of ICMs NT5E, ENTPD1, and CD274 in the human tumor cell lines SK-Mel-28 (melanoma) and MDA-MB-231 (breast cancer). Thereby, a set of potential tumor-suppressor miRNAs that decreased ICM expression in these cell lines was defined. Notably, this study also introduces a group of potential oncogenic miRNAs that cause increased ICM expression and presents the possible underlying mechanisms. The results of high-throughput screening of miRNAs affecting NT5E expression were validated in vitro in 12 cell lines of various tumor entities. Results As result, miR-1285-5p, miR-155-5p, and miR-3134 were found to be the most potent inhibitors of NT5E expression, while miR-134-3p, miR-6859-3p, miR-6514-3p, and miR-224-3p were identified as miRNAs that strongly enhanced NT5E expression levels. Discussion The miRNAs identified might have clinical relevance as potential therapeutic agents and biomarkers or therapeutic targets, respectively.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Tsu-Yang Chao
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
26
|
Qaryoute AA, Fallatah W, Dhinoja S, Raman R, Jagadeeswaran P. Role of MicroRNAs and their Downstream Target Transcription Factors in Zebrafish Thrombopoiesis. RESEARCH SQUARE 2023:rs.3.rs-2807790. [PMID: 37162944 PMCID: PMC10168436 DOI: 10.21203/rs.3.rs-2807790/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b , and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b , and mir-223 knockdowns. These results suggested mir-7148, let-7b , and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8 , and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa , and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223 . We also identified that tgif1, cebpa, ikzf1, irf5 , irf8 , and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.
Collapse
|
27
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Circular RNAs and Untranslated Regions in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043215. [PMID: 36834627 PMCID: PMC9967498 DOI: 10.3390/ijms24043215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Before the advent of next-generation sequencing, research on acute myeloid leukemia (AML) mostly centered on protein-coding genes. In recent years, breakthroughs in RNA sequencing technologies and whole transcriptome analysis have led to the discovery that approximately 97.5% of the human genome is transcribed into non-coding RNAs (ncRNAs). This paradigm shift has led to an explosion of research interest in different classes of non-coding RNAs, such as circular RNAs (circRNAs) as well as non-coding untranslated regions (UTRs) of protein-coding messenger RNAs. The critical roles of circRNAs and UTRs in AML pathogenesis have become increasingly apparent. In this review, we discuss the cellular mechanisms of circRNAs and summarize recent studies that reveal their biological roles in AML. Furthermore, we also review the contribution of 3'UTRs to disease progression. Finally, we discuss the potential of circRNAs and 3'UTRs as new biomarkers for disease stratification and/or the prediction of treatment response and targets for the development of RNA-directed therapeutic applications.
Collapse
|
29
|
Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol 2023; 14:1097491. [PMID: 36911728 PMCID: PMC9992549 DOI: 10.3389/fimmu.2023.1097491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 22 nucleotide-long non-coding small RNAs (ncRNAs) play crucial roles in physiological and pathological activities, including microRNAs (miRNAs). Long ncRNAs often stay in the cytoplasm, modulating post-transcriptional gene expression. Briefly, miRNA binds with the target mRNA and builds a miRNA-induced silencing complex to silence the transcripts or prevent their translation. Interestingly, data from recent animal and plant studies suggested that mature miRNAs are present in the nucleus, where they regulate transcriptionally whether genes are activated or silenced. This significantly broadens the functional range of miRNAs. Here, we reviewed and summarized studies on the functions of nuclear miRNAs to better understand the modulatory networks associated with nuclear miRNAs.
Collapse
Affiliation(s)
- Xiaozhu Hu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Guoquan Yin
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Yuan Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Liangyu Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Haoyu Huang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| |
Collapse
|
30
|
De Freitas JH, Bragato JP, Rebech GT, Costa SF, Dos Santos MO, Soares MF, Eugênio FDR, Dos Santos PSP, De Lima VMF. MicroRNA-21 and microRNA-148a affects PTEN, NO and ROS in canine leishmaniasis. Front Genet 2023; 14:1106496. [PMID: 37124626 PMCID: PMC10137164 DOI: 10.3389/fgene.2023.1106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Canine Visceral leishmaniasis (CanL) poses a severe public health threat in several countries. Disease progression depends on the degree of immune response suppression. MicroRNAs (miRs) modulate mRNA translation into proteins and regulate various cellular functions and pathways associated with immune responses. MiR-21 and miR-148a can alter the parasite load and M1 macrophages are the principal cells in dogs' leishmanicidal activity. A previous study found increased miR-21 and miR-148a in splenic leukocytes (SL) of dogs with CanL using microarray analysis and in silico analysis identified PTEN pathway targets. PTEN is involved in the immune regulation of macrophages. We measured PTEN and the production of reactive oxygen species (ROS) and nitric oxide (NO) before and after transfection SLs of dogs with CanL with mimic and inhibition of miR-21 and miR-148a. PTEN levels increased, NO and ROS decreased in SLs from dogs with CanL. Inhibition of miRNA-21 resulted in PTEN increase; in contrast, PTEN decreased after miR-148a inhibition. Nitrite (NO2) levels increased after transfection with miR-21 inhibitor but were decreased with miR-148a inhibitor. The increase in miR-21 promoted a reduction in ROS and NO levels, but miR-148a inhibition increased NO and reduced ROS. These findings suggest that miR-21 and miR-148a can participate in immune response in CanL, affecting PTEN, NO, and ROS levels.
Collapse
|
31
|
de Rooij LA, Mastebroek DJ, ten Voorde N, van der Wall E, van Diest PJ, Moelans CB. The microRNA Lifecycle in Health and Cancer. Cancers (Basel) 2022; 14:cancers14235748. [PMID: 36497229 PMCID: PMC9736740 DOI: 10.3390/cancers14235748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that regulate gene expression at the post-transcriptional level. They can bind to around 60% of all protein-coding genes with an average of 200 targets per miRNA, indicating their important function within physiological and pathological cellular processes. miRNAs can be quickly produced in high amounts through canonical and non-canonical pathways that involve a multitude of steps and proteins. In cancer, miRNA biogenesis, availability and regulation of target expression can be altered to promote tumour progression. This can be due to genetic causes, such as single nucleotide polymorphisms, epigenetic changes, differences in host gene expression, or chromosomal remodelling. Alternatively, post-transcriptional changes in miRNA stability, and defective or absent components and mediators of the miRNA-induced silencing complex can lead to altered miRNA function. This review provides an overview of the current knowledge on the lifecycle of miRNAs in health and cancer. Understanding miRNA function and regulation is fundamental prior to potential future application of miRNAs as cancer biomarkers.
Collapse
Affiliation(s)
- Laura Adriana de Rooij
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-557
| | - Dirk Jan Mastebroek
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nicky ten Voorde
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul Joannes van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cathy Beatrice Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
32
|
Paloviita P, Vuoristo S. The non-coding genome in early human development - Recent advancements. Semin Cell Dev Biol 2022; 131:4-13. [PMID: 35177347 DOI: 10.1016/j.semcdb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Not that long ago, the human genome was discovered to be mainly non-coding, that is comprised of DNA sequences that do not code for proteins. The initial paradigm that non-coding is also non-functional was soon overturned and today the work to uncover the functions of non-coding DNA and RNA in human early embryogenesis has commenced. Early human development is characterized by large-scale changes in genomic activity and the transcriptome that are partly driven by the coordinated activation and repression of repetitive DNA elements scattered across the genome. Here we provide examples of recent novel discoveries of non-coding DNA and RNA interactions and mechanisms that ensure accurate non-coding activity during human maternal-to-zygotic transition and lineage segregation. These include studies on small and long non-coding RNAs, transposable element regulation, and RNA tailing in human oocytes and early embryos. High-throughput approaches to dissect the non-coding regulatory networks governing early human development are a foundation for functional studies of specific genomic elements and molecules that has only begun and will provide a wider understanding of early human embryogenesis and causes of infertility.
Collapse
Affiliation(s)
- Pauliina Paloviita
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
33
|
Wang Y, Peng Q, Mou X, Wang X, Li H, Han T, Sun Z, Wang X. A successful hybrid deep learning model aiming at promoter identification. BMC Bioinformatics 2022; 23:206. [PMID: 35641900 PMCID: PMC9158169 DOI: 10.1186/s12859-022-04735-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zone adjacent to a transcription start site (TSS), namely, the promoter, is primarily involved in the process of DNA transcription initiation and regulation. As a result, proper promoter identification is critical for further understanding the mechanism of the networks controlling genomic regulation. A number of methodologies for the identification of promoters have been proposed. Nonetheless, due to the great heterogeneity existing in promoters, the results of these procedures are still unsatisfactory. In order to establish additional discriminative characteristics and properly recognize promoters, we developed the hybrid model for promoter identification (HMPI), a hybrid deep learning model that can characterize both the native sequences of promoters and the morphological outline of promoters at the same time. We developed the HMPI to combine a method called the PSFN (promoter sequence features network), which characterizes native promoter sequences and deduces sequence features, with a technique referred to as the DSPN (deep structural profiles network), which is specially structured to model the promoters in terms of their structural profile and to deduce their structural attributes. RESULTS The HMPI was applied to human, plant and Escherichia coli K-12 strain datasets, and the findings showed that the HMPI was successful at extracting the features of the promoter while greatly enhancing the promoter identification performance. In addition, after the improvements of synthetic sampling, transfer learning and label smoothing regularization, the improved HMPI models achieved good results in identifying subtypes of promoters on prokaryotic promoter datasets. CONCLUSIONS The results showed that the HMPI was successful at extracting the features of promoters while greatly enhancing the performance of identifying promoters on both eukaryotic and prokaryotic datasets, and the improved HMPI models are good at identifying subtypes of promoters on prokaryotic promoter datasets. The HMPI is additionally adaptable to different biological functional sequences, allowing for the addition of new features or models.
Collapse
Affiliation(s)
- Ying Wang
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China.
| | - Xu Mou
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| | - Xinyuan Wang
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| | - Haozhou Li
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| | - Tian Han
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| | - Zhao Sun
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Wang
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
35
|
Fletcher CE, Deng L, Orafidiya F, Yuan W, Lorentzen MPGS, Cyran OW, Varela-Carver A, Constantin TA, Leach DA, Dobbs FM, Figueiredo I, Gurel B, Parkes E, Bogdan D, Pereira RR, Zhao SG, Neeb A, Issa F, Hester J, Kudo H, Liu Y, Philippou Y, Bristow R, Knudsen K, Bryant RJ, Feng FY, Reed SH, Mills IG, de Bono J, Bevan CL. A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer. Mol Cancer 2022; 21:82. [PMID: 35317841 PMCID: PMC8939142 DOI: 10.1186/s12943-022-01540-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND miR-346 was identified as an activator of Androgen Receptor (AR) signalling that associates with DNA damage response (DDR)-linked transcripts in prostate cancer (PC). We sought to delineate the impact of miR-346 on DNA damage, and its potential as a therapeutic agent. METHODS RNA-IP, RNA-seq, RNA-ISH, DNA fibre assays, in vivo xenograft studies and bioinformatics approaches were used alongside a novel method for amplification-free, single nucleotide-resolution genome-wide mapping of DNA breaks (INDUCE-seq). RESULTS miR-346 induces rapid and extensive DNA damage in PC cells - the first report of microRNA-induced DNA damage. Mechanistically, this is achieved through transcriptional hyperactivation, R-loop formation and replication stress, leading to checkpoint activation and cell cycle arrest. miR-346 also interacts with genome-protective lncRNA NORAD to disrupt its interaction with PUM2, leading to PUM2 stabilisation and its increased turnover of DNA damage response (DDR) transcripts. Confirming clinical relevance, NORAD expression and activity strongly correlate with poor PC clinical outcomes and increased DDR in biopsy RNA-seq studies. In contrast, miR-346 is associated with improved PC survival. INDUCE-seq reveals that miR-346-induced DSBs occur preferentially at binding sites of the most highly-transcriptionally active transcription factors in PC cells, including c-Myc, FOXA1, HOXB13, NKX3.1, and importantly, AR, resulting in target transcript downregulation. Further, RNA-seq reveals widespread miR-346 and shNORAD dysregulation of DNA damage, replication and cell cycle processes. NORAD drives target-directed miR decay (TDMD) of miR-346 as a novel genome protection mechanism: NORAD silencing increases mature miR-346 levels by several thousand-fold, and WT but not TDMD-mutant NORAD rescues miR-346-induced DNA damage. Importantly, miR-346 sensitises PC cells to DNA-damaging drugs including PARP inhibitor and chemotherapy, and induces tumour regression as a monotherapy in vivo, indicating that targeting miR-346:NORAD balance is a valid therapeutic strategy. CONCLUSIONS A balancing act between miR-346 and NORAD regulates DNA damage and repair in PC. miR-346 may be particularly effective as a therapeutic in the context of decreased NORAD observed in advanced PC, and in transcriptionally-hyperactive cancer cells.
Collapse
Affiliation(s)
- C E Fletcher
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK.
| | - L Deng
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - F Orafidiya
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - W Yuan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - M P G S Lorentzen
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - O W Cyran
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - A Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - T A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - D A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - F M Dobbs
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
- Broken String Biosciences, Unit AB303, Level 3, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - I Figueiredo
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - B Gurel
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - E Parkes
- Institute for Radiation Oncology, Department of Oncology, University of Oxford, London, UK
| | - D Bogdan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - R R Pereira
- Translational Oncogenomics, Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - A Neeb
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - F Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - H Kudo
- Section of Pathology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Y Liu
- Veracyte, Inc., San Diego, CA, USA
| | - Y Philippou
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R Bristow
- Translational Oncogenomics, Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Christie NHS Foundation Trust, Manchester, UK
| | - K Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- American Cancer Society and American Cancer Society Cancer Action Network, Washington DC, USA
| | - R J Bryant
- Institute for Radiation Oncology, Department of Oncology, University of Oxford, London, UK
| | - F Y Feng
- Departments of Urology and Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - S H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - I G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - J de Bono
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - C L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| |
Collapse
|
36
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
37
|
Huang W, Wu Y, Qiao M, Xie Z, Cen X, Huang X, Zhao Z. CircRNA-miRNA networks in regulating bone disease. J Cell Physiol 2022; 237:1225-1244. [PMID: 34796958 DOI: 10.1002/jcp.30625] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Circular RNA (circRNA) is a class of endogenous noncoding RNA (ncRNA), presenting as a special covalent closed loop without a 5' cap or 3' tail, maintaining resistance to RNA exonuclease and keeping high stability. Although lowly expressed in most situations, circRNA makes an active difference in regulating physiological or pathological processes by modulating gene expression by regulation of transcription, protein, and miRNA functions through various mechanisms in particular tissues. Recent studies have demonstrated the roles of the miRNA-circRNA network in the development of several bone diseases such as osteoporosis, a multiple-mechanism disease resulting from defective bone quality and low bone mass, osteoarthritis, whose main pathomechanism is inflammation and articular cartilage degradation, as well as osteosarcoma, known as one of the most common bone cancers. However, the specific mechanism of how circRNA along with miRNA influences those diseases is not well documented, showing potential for the development of new therapies for those bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - MingXin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
38
|
Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics. J Exp Clin Cancer Res 2021; 40:383. [PMID: 34863235 PMCID: PMC8642961 DOI: 10.1186/s13046-021-02193-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Short or small interfering RNAs (siRNAs) and microRNA (miRNAs) are molecules similar in size and function able to inhibit gene expression based on their complementarity with mRNA sequences, inducing the degradation of the transcript or the inhibition of their translation. siRNAs bind specifically to a single gene location by sequence complementarity and regulate gene expression by specifically targeting transcription units via posttranscriptional gene silencing. miRNAs can regulate the expression of different gene targets through their imperfect base pairing. This process - known as RNA interference (RNAi) - modulates transcription in order to maintain a correct physiological environment, playing a role in almost the totality of the cellular pathways. siRNAs have been evolutionary evolved for the protection of genome integrity in response to exogenous and invasive nucleic acids such as transgenes or transposons. Artificial siRNAs are widely used in molecular biology for transient silencing of genes of interest. This strategy allows to inhibit the expression of any target protein of known sequence and is currently used for the treatment of different human diseases including cancer. Modifications and rearrangements in gene regions encoding for miRNAs have been found in cancer cells, and specific miRNA expression profiles characterize the developmental lineage and the differentiation state of the tumor. miRNAs with different expression patterns in tumors have been reported as oncogenes (oncomirs) or tumor-suppressors (anti-oncomirs). RNA modulation has become important in cancer research not only for development of early and easy diagnosis tools but also as a promising novel therapeutic approach. Despite the emerging discoveries supporting the role of miRNAs in carcinogenesis and their and siRNAs possible use in therapy, a series of concerns regarding their development, delivery and side effects have arisen. In this review we report the biology of miRNAs and siRNAs in relation to cancer summarizing the recent methods described to use them as novel therapeutic drugs and methods to specifically deliver them to cancer cells and overcome the limitations in the use of these molecules.
Collapse
|
39
|
Elizarova A, Ozturk M, Guler R, Medvedeva YA. MIREyA: a computational approach to detect miRNA-directed gene activation. F1000Res 2021; 10:249. [PMID: 34527215 PMCID: PMC8411277 DOI: 10.12688/f1000research.28142.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Emerging studies demonstrate the ability of microRNAs (miRNAs) to activate genes via different mechanisms. Specifically, miRNAs may trigger an enhancer promoting chromatin remodelling in the enhancer region, thus activating the enhancer and its target genes. Here we present MIREyA, a pipeline developed to predict such miRNA-gene-enhancer trios based on an expression dataset which obviates the need to write custom scripts. We applied our pipeline to primary murine macrophages infected by Mycobacterium tuberculosis (HN878 strain) and detected Mir22, Mir221, Mir222, Mir155 and Mir1956, which could up-regulate genes related to immune responses. We believe that MIREyA is a useful tool for detecting putative miRNA-directed gene activation cases. MIREyA is available from: https://github.com/veania/MIREyA.
Collapse
Affiliation(s)
- Anna Elizarova
- Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Yulia A Medvedeva
- Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation
| |
Collapse
|
40
|
Small RNA expression and miRNA modification dynamics in human oocytes and early embryos. Genome Res 2021; 31:1474-1485. [PMID: 34340992 PMCID: PMC8327922 DOI: 10.1101/gr.268193.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Small noncoding RNAs (sRNAs) play important roles during the oocyte-to-embryo transition (OET), when the maternal phenotype is reprogrammed and the embryo genome is gradually activated. The transcriptional program driving early human development has been studied with the focus mainly on protein-coding RNAs, and expression dynamics of sRNAs remain largely unexplored. We profiled sRNAs in human oocytes and early embryos using an RNA-sequencing (RNA-seq) method suitable for low inputs of material. We show that OET in humans is temporally coupled with the transition from predominant expression of oocyte short piRNAs (os-piRNAs) in oocytes, to activation of microRNA (miRNA) expression in cleavage stage embryos. Additionally, 3′ mono- and oligoadenylation of miRNAs is markedly increased in zygotes. We hypothesize that this may modulate the function or stability of maternal miRNAs, some of which are retained throughout the first cell divisions in embryos. This study is the first of its kind elucidating the dynamics of sRNA expression and miRNA modification along a continuous trajectory of early human development and provides a valuable data set for in-depth interpretative analyses.
Collapse
|
41
|
Wu W, Gou H, Dong J, Yang X, Zhao Y, Peng H, Chen D, Geng R, Chen L, Liu J. Usnic Acid Inhibits Proliferation and Migration through ATM Mediated DNA Damage Response in RKO Colorectal Cancer Cell. Curr Pharm Biotechnol 2021; 22:1129-1138. [PMID: 33006536 DOI: 10.2174/1389201021666201002155955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Usnic Acid (UA), also known as lichenol, has been reported to have inhibitory effects on a variety of cancer cells, but its specific mechanism remained to be elucidated. Tumor chemotherapy drugs, especially DNA damage chemotherapeutic drugs, target Chromosomal DNA, but their spontaneous and acquired drug resistance are also an urgent problem to be solved. Therefore, drug combination research has become the focus of researchers. METHODS Here, we evaluated the tumor-suppressing molecular mechanism of UA in colorectal cancer cells RKO from the perspective of the ATM-mediated DNA damage signaling pathway through H2O2 simulating DNA damage chemotherapeutic drugs. CCK8 cell proliferation assay was used to determine the inhibition of RKO cells by hydrogen peroxide and UA alone or in combination, and wound healing assay was applied to determine the effect of the drug on cell migration. RESULTS Transfected cells with miRNA18a-5p mimics and inhibitors, MDC and DCFH-DA staining for the measurement of autophagy and ROS, cell cycle and apoptosis were detected by flow cytometry, expressions of microRNA and mRNA were determined by fluorescence quantitative PCR, and protein by Western blot. DISCUSSION We found that UA can upregulate ATM via miR-18a to activate the DNA damage signaling pathway and inhibit the proliferation and migration of RKO cells in a concentration-dependent manner. CONCLUSION At the same time, DNA damage responses, including cell cycle, autophagy, apoptosis and ROS levels, are also regulated by UA. Therefore, UA combined with DNA damage chemotherapeutic drugs may be an effective treatment for cancer.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jingying Dong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaolong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yanan Zhao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Heng Peng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
42
|
da Silva MC, Medeiros FS, da Silva NCH, Paiva LA, Gomes FODS, Costa E Silva M, Gomes TT, Peixoto CA, Rygaard MCV, Menezes MLB, Welkovic S, Donadi EA, Lucena-Silva N. Increased PD-1 Level in Severe Cervical Injury Is Associated With the Rare Programmed Cell Death 1 ( PDCD1) rs36084323 A Allele in a Dominant Model. Front Cell Infect Microbiol 2021; 11:587932. [PMID: 34290992 PMCID: PMC8288189 DOI: 10.3389/fcimb.2021.587932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
The high-risk oncogenic human papillomavirus (HPV) has developed mechanisms for evasion of the immune system, favoring the persistence of the infection. The chronic inflammation further contributes to the progression of tissue injury to cervical cancer. The programmed cell death protein (PD-1) after contacting with its ligands (PD-L1 and PD-L2) exerts an inhibitory effect on the cellular immune response, maintaining the balance between activation, tolerance, and immune cell-dependent lesion. We evaluated 295 patients exhibiting or not HPV infection, stratified according to the location (injured and adjacent non-injured areas) and severity of the lesion (benign, pre-malignant lesions). Additionally, we investigated the role of the promoter region PDCD1 -606G>A polymorphism (rs36084323) on the studied variables. PD-1 and PDCD1 expression were evaluated by immunohistochemistry and qPCR, respectively, and the PDCD1 polymorphism was evaluated by nucleotide sequencing. Irrespective of the severity of the lesion, PD-1 levels were increased compared to adjacent uninjured areas. Additionally, in cervical intraepithelial neoplasia (CIN) I, the presence of HPV was associated with increased (P = 0.0649), whereas in CIN III was associated with decreased (P = 0.0148) PD-1 levels, compared to the uninjured area in absence of HPV infection. The PDCD1 -606A allele was rare in our population (8.7%) and was not associated with the risk for development of HPV infection, cytological and histological features, and aneuploidy. In contrast, irrespective of the severity of the lesion, patients exhibiting the mutant PDCD1 -606A allele at single or double doses exhibited increased protein and gene expression when compared to the PDCD1 -606GG wild type genotype. Besides, the presence of HPV was associated with the decrease in PDCD1 expression and PD-1 levels in carriers of the -606 A allele presenting severe lesions, suggesting that other mediators induced during the HPV infection progression may play an additional role. This study showed that increased PD-1 levels are influenced by the -606G>A nucleotide variation, particularly in low-grade lesions, in which the A allele favors increased PDCD1 expression, contributing to HPV immune system evasion, and in the high-grade lesion, by decreasing tissue PD-1 levels.
Collapse
Affiliation(s)
- Mauro César da Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Fernanda Silva Medeiros
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | | | | | | | - Matheus Costa E Silva
- Clinical Immunology Division, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thailany Thays Gomes
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Christina Alves Peixoto
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | | | | | - Stefan Welkovic
- Integrated Health Center Amaury de Medeiros (CISAM), University of Pernambuco, Recife, Brazil
| | - Eduardo Antônio Donadi
- Clinical Immunology Division, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil.,Laboratory of Molecular Biology, IMIP Hospital, Pediatric Oncology Service, Recife, Brazil
| |
Collapse
|
43
|
MicroRNA 195-5p Targets Foxo3 Promoter Region to Regulate Its Expression in Granulosa Cells. Int J Mol Sci 2021; 22:ijms22136721. [PMID: 34201585 PMCID: PMC8267755 DOI: 10.3390/ijms22136721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Forkhead box O3 (Foxo3) is a member of the FOXO subfamily within the forkhead box (FOX) family, which has been shown to be essential for ovarian follicular development and maturation. Previous studies have shown the abundant expression of miR-195-5p in the nuclei of porcine granulosa cells (GCs), suggesting its potential role during ovarian follicle growth. In this study, a conditional immortalized porcine granulosa cell (CIPGC) line was used to determine whether the expression of Foxo3 could be regulated by the nuclear-enriched miR-195-5p. Through silico target prediction, we identified a potential binding site of miR-195-5p within the Foxo3 promoter. The over-expression of miR-195-5p increased Foxo3 expression at both mRNA and protein levels, while the knockdown of miR-195-5p decreased the expression of Foxo3. Furthermore, driven by the Foxo3 promoter, luciferase reporter activity was increased in response to miR-195-5p, while the mutation of the miR-195-5p binding site in the promoter region abolished this effect. In addition, the siRNA knockdown of Argonaute (AGO) 2, but not AGO1, significantly decreased Foxo3 transcript level. However, miR-195-5p failed to upregulate Foxo3 expression when AGO2 was knocked down. Moreover, chromatin immunoprecipitation (CHIP) assay showed that anti-AGO2 antibody pulled down both AGO2 and the Foxo3 promoter sequence, suggesting that AGO2 may be required for miR-195-5p to regulate Foxo3 expression in the nucleus. Additionally, Foxo3 expression was significantly increased by valproic acid (VPA), the inhibitor of deacetylase, as well as by methyltransferase inhibitor BIX-01294, indicating the involvement of histone modification. These effects were further enhanced in the presence of miR-195-5p and were decreased when miR-195-5p was knocked down. Overall, our results suggest that nuclear-enriched miR-195-5p regulates Foxo3 expression, which may be associated with AGO2 recruitment, as well as histone demethylation and acetylation in ovarian granulosa cells.
Collapse
|
44
|
de Barros Sene L, Lamana GL, Schwambach Vieira A, Scarano WR, Gontijo JAR, Boer PA. Gestational Low Protein Diet Modulation on miRNA Transcriptome and Its Target During Fetal and Breastfeeding Nephrogenesis. Front Physiol 2021; 12:648056. [PMID: 34239447 PMCID: PMC8258388 DOI: 10.3389/fphys.2021.648056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The kidney ontogenesis is the most structurally affected by gestational protein restriction, reducing 28% of their functional units. The reduced nephron number is predictive of hypertension and cardiovascular dysfunctions that are generally observed in the adult age of most fetal programming models. We demonstrate miRNAs and predict molecular pathway changes associated with reduced reciprocal interaction between metanephros cap (CM) and ureter bud (UB) and a 28% decreased nephron stem cells in the 17 gestational days (17GD) low protein (LP) intake male fetal kidney. Here, we evaluated the same miRNAs and predicted targets in the kidneys of 21GD and at 7 days of life (7DL) LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS Pregnant Wistar rats were allocated into two groups: NP (regular protein diet- 17%) or LP (diet-6%). miRNA transcriptome sequencing (miRNA-Seq) was performed on the MiSeq platform from 21GD and 7DL male offspring kidneys using previously described methods. Among the top 10 dysfunctional regulated miRNAs, we validated 7 related to proliferation, differentiation, and apoptosis processes and investigated predicted target genes and proteins by RT-qPCR and immunohistochemistry. RESULTS In 21GD, LP fetuses were identified alongside 21 differently expressed miRNAs, of which 12 were upregulated and 9 downregulated compared to age-matched NP offspring. In 7-DL LP offspring, the differentially expressed miRNAs were counted to be 74, of which 46 were upregulated and 28 downregulated. The curve from 17-GD to 7-DL shows that mTOR was fundamental in reducing the number of nephrons in fetal kidneys where the mothers were subjected to a protein restriction. IGF1 and TGFβ curves also seemed to present the same mTOR pattern and were modulated by miRNAs 181a-5p, 181a-3p, and 199a-5p. The miRNA 181c-3p modulated SIX2 and Notch1 reduction in 7-DL but not in terms of the enhanced expression of both in the 21-GD, suggesting the participation of an additional regulator. We found enhanced Bax in 21-GD; it was regulated by miRNA 298-5p, and Bcl2 and Caspase-3 were controlled by miRNA (by 7a-5p and not by the predicted 181a-5p). The miRNA 144-3p regulated BCL6, which was enhanced, as well as Zeb 1 and 2 induced by BCL6. These results revealed that in 21GD, the compensatory mechanisms in LP kidneys led to the activation of UB ramification. Besides, an increase of 32% in the CM stem cells and a possible cell cycle halt of renal progenitor cells, which remaining undifferentiated, were observed. In the 7DL, much more altered miRNA expression was found in LP kidneys, and this was probably due to an increased maternal diet content. Additionally, we verified the activation of pathways related to differentiation and consumption of progenitor cells.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Andre Schwambach Vieira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| |
Collapse
|
45
|
Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Genes (Basel) 2021; 12:genes12060856. [PMID: 34199614 PMCID: PMC8226975 DOI: 10.3390/genes12060856] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are thought to act as post-transcriptional regulators in the cytoplasm by either dampening translation or stimulating degradation of target mRNAs. With the increasing resolution and scope of RNA mapping, recent studies have revealed novel insights into the subcellular localization of miRNAs. Based on miRNA subcellular localization, unconventional functions and mechanisms at the transcriptional and post-transcriptional levels have been identified. This minireview provides an overview of the subcellular localization of miRNAs and the mechanisms by which they regulate transcription and cellular homeostasis in mammals, with a particular focus on the roles of phase-separated biomolecular condensates.
Collapse
|
46
|
Xing Y, Wang Z, Lu Z, Xia J, Xie Z, Jiao M, Liu R, Chu Y. MicroRNAs: immune modulators in cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab006. [PMID: 35919742 PMCID: PMC9327120 DOI: 10.1093/immadv/ltab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Summary
MicroRNA (miRNA) is a class of endogenous small non-coding RNA of 18–25 nucleotides and plays regulatory roles in both physiological and pathological processes. Emerging evidence support that miRNAs function as immune modulators in tumors. MiRNAs as tumor suppressors or oncogenes are also found to be able to modulate anti-tumor immunity or link the crosstalk between tumor cells and immune cells surrounding. Based on the specific regulating function, miRNAs can be used as predictive, prognostic biomarkers, and therapeutic targets in immunotherapy. Here, we review new findings about the role of miRNAs in modulating immune responses, as well as discuss mechanisms underlying their dysregulation, and their clinical potentials as indicators of tumor prognosis or to sensitize cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Xing
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Jie Xia
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhangjuan Xie
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Mengxia Jiao
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Ronghua Liu
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Yiwei Chu
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
47
|
Di Fiore R, Suleiman S, Pentimalli F, O’Toole SA, O’Leary JJ, Ward MP, Conlon NT, Sabol M, Ozretić P, Erson-Bensan AE, Reed N, Giordano A, Herrington CS, Calleja-Agius J. Could MicroRNAs Be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview. Int J Mol Sci 2021; 22:3822. [PMID: 33917022 PMCID: PMC8067678 DOI: 10.3390/ijms22083822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gynecological cancers pose an important public health issue, with a high incidence among women of all ages. Gynecological cancers such as malignant germ-cell tumors, sex-cord-stromal tumors, uterine sarcomas and carcinosarcomas, gestational trophoblastic neoplasia, vulvar carcinoma and melanoma of the female genital tract, are defined as rare with an annual incidence of <6 per 100,000 women. Rare gynecological cancers (RGCs) are associated with poor prognosis, and given the low incidence of each entity, there is the risk of delayed diagnosis due to clinical inexperience and limited therapeutic options. There has been a growing interest in the field of microRNAs (miRNAs), a class of small non-coding RNAs of ∼22 nucleotides in length, because of their potential to regulate diverse biological processes. miRNAs usually induce mRNA degradation and translational repression by interacting with the 3' untranslated region (3'-UTR) of target mRNAs, as well as other regions and gene promoters, as well as activating translation or regulating transcription under certain conditions. Recent research has revealed the enormous promise of miRNAs for improving the diagnosis, therapy and prognosis of all major gynecological cancers. However, to date, only a few studies have been performed on RGCs. In this review, we summarize the data currently available regarding RGCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Napoli, Italy;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Neil T. Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, 9 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University, Ankara 06810, Turkey;
| | - Nicholas Reed
- Beatson Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - C. Simon Herrington
- Cancer Research UK Edinburgh Centre, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
48
|
Nuclear functions of microRNAs relevant to the cardiovascular system. Transl Res 2021; 230:151-163. [PMID: 33186782 DOI: 10.1016/j.trsl.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
A fraction of the transcriptome is translated into proteins. The rest is classified as non-protein coding RNA (Ribonucleic Acid) but has gained increased attention as functional and regulatory group of transcripts. The gene regulatory role of non-coding RNAs (ncRNAs) has now been widely accepted in diverse biological processes in both physiology and disease. MicroRNAs fall into this latter group and are widely known for their diverse post-transcriptional regulatory role. MicroRNA sequences are embedded in the long ncRNAs, known as primary microRNAs, are processed into precursor microRNAs and are typically transported out of the nucleus for maturation and loading into a protein complex forming RNA-induced silencing complex (RISC) that either drives the degradation of messenger RNA (mRNA) or blocks its translation. A new phenomenon is emerging where microRNAs have active roles within the nucleus. The presence of RISC components including microRNAs in the nucleus supports this notion. They may integrate with chromatin modifiers, microprocessing machinery and mRNA stabilizing transcripts to play a multifunctional role in the nucleus. Although a limited number of studies appreciate this novel activity of microRNAs relevant to the cardiovascular system, they provide proof-of-concept that requires consideration while targeting miRNAs with therapeutic potential.
Collapse
|
49
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
50
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|