1
|
Vyas P, Santra K, Preeyanka N, Gupta A, Weil-Ktorza O, Zhu Q, Metanis N, Fransson J, Longo LM, Naaman R. Role of Electron Spin, Chirality, and Charge Dynamics in Promoting the Persistence of Nascent Nucleic Acid-Peptide Complexes. J Phys Chem B 2025; 129:3978-3987. [PMID: 40231896 PMCID: PMC12035798 DOI: 10.1021/acs.jpcb.5c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Primitive nucleic acids and peptides likely collaborated in early biochemistry. What forces drove their interactions and how did these forces shape the properties of primitive complexes? We investigated how two model primordial polypeptides associate with DNA. When peptides were coupled to a ferromagnetic substrate, DNA binding depended on the substrate's magnetic moment orientation. Reversing the magnetic field nearly abolished binding despite complementary charges. Inverting the peptide chirality or just the cysteine residue reversed this effect. These results are attributed to the chiral-induced spin selectivity (CISS) effect, where molecular chirality and electron spin alter a protein's electric polarizability. The presence of CISS in simple protein-DNA complexes suggests that it played a significant role in ancient biomolecular interactions. A major consequence of CISS is enhancement of the kinetic stability of protein-nucleic acid complexes. These findings reveal how chirality and spin influence bioassociation, offering insights into primitive biochemical evolution and shaping contemporary protein functions.
Collapse
Affiliation(s)
- Pratik Vyas
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Kakali Santra
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Naupada Preeyanka
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Anu Gupta
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Orit Weil-Ktorza
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Qirong Zhu
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Norman Metanis
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jonas Fransson
- Department
of Physics and Astronomy, Uppsala University, Uppsala 752 36, Sweden
| | - Liam M. Longo
- Earth-Life
Science Institute, Institute of Science
Tokyo, Tokyo 152-8550, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98104, United States
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Vörös D, Czárán T, Szilágyi A, Könnyű B. The dynamics of prebiotic take-off: the transfer of functional RNA communities from mineral surfaces to vesicles. Commun Biol 2025; 8:484. [PMID: 40122986 PMCID: PMC11930959 DOI: 10.1038/s42003-025-07841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
In this study, we propose a two-phase scenario for the origin of the first protocellular form of life, linking two RNA-world models by an explicit dynamical interface that simulates the transition of a metabolically cooperating RNA-replicator community from a mineral surface into a population of membrane vesicles. The two agent-based models: the Metabolically Coupled Replicator System (MCRS) and the Stochastic Corrector Model (SCM), are built on principles of systems chemistry, molecular biology, ecology and evolutionary biology. We show that the MCRS is easier to initiate from random RNA communities, while the SCM is more efficient at reducing the genetic assortment load during system growth and preadapted to later evolutionary transitions like chromosome formation, suggesting the former as a stepping stone to the later, protocellular stage. The switching between the two scenarios is shown to be dynamically feasible under a wide range of the parameter space of the merged model, allowing for the emergence of complex cooperative behaviours in metabolically coupled communities of RNA enzymes.
Collapse
Affiliation(s)
- Dániel Vörös
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- ELTE Eötvös Loránd University, Institute of Biology, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| | - Tamás Czárán
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary.
| | - András Szilágyi
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| | - Balázs Könnyű
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| |
Collapse
|
3
|
Saha R, Kao WL, Malady B, Heng X, Chen IA. Effect of montmorillonite K10 clay on RNA structure and function. Biophys J 2024; 123:451-463. [PMID: 37924206 PMCID: PMC10912936 DOI: 10.1016/j.bpj.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Wei-Ling Kao
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Brandon Malady
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California.
| |
Collapse
|
4
|
Mizuuchi R. Constraint on an RNA world on montmorillonite clay. Biophys J 2024; 123:421-423. [PMID: 38263691 PMCID: PMC10912893 DOI: 10.1016/j.bpj.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Affiliation(s)
- Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; JST, FOREST, Kawaguchi, Saitama, Japan.
| |
Collapse
|
5
|
Sweeney KJ, Le T, Jorge MZ, Schellinger JG, Leman LJ, Müller UF. Peptide conjugates with polyaromatic hydrocarbons can benefit the activity of catalytic RNAs. Chem Sci 2023; 14:10318-10328. [PMID: 37772096 PMCID: PMC10529712 DOI: 10.1039/d3sc03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Early stages of life likely employed catalytic RNAs (ribozymes) in many functions that are today filled by proteins. However, the earliest life forms must have emerged from heterogenous chemical mixtures, which included amino acids, short peptides, and many other compounds. Here we explored whether the presence of short peptides can help the emergence of catalytic RNAs. To do this, we conducted an in vitro selection for catalytic RNAs from randomized sequence in the presence of ten different peptides with a prebiotically plausible length of eight amino acids. This in vitro selection generated dozens of ribozymes, one of them with ∼900-fold higher activity in the presence of one specific peptide. Unexpectedly, the beneficial peptide had retained its N-terminal Fmoc protection group, and this group was required to benefit ribozyme activity. The same, or higher benefit resulted from peptide conjugates with prebiotically plausible polyaromatic hydrocarbons (PAHs) such as fluorene and naphthalene. This shows that PAH-peptide conjugates can act as potent cofactors to enhance ribozyme activity. The results are discussed in the context of the origin of life.
Collapse
Affiliation(s)
- Kevin J Sweeney
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Tommy Le
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Micaella Z Jorge
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
6
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
7
|
Mizuuchi R, Ichihashi N. Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules. Life (Basel) 2021; 11:life11030191. [PMID: 33670881 PMCID: PMC7997230 DOI: 10.3390/life11030191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Correspondence: (R.M.); (N.I.)
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Correspondence: (R.M.); (N.I.)
| |
Collapse
|
8
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
9
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
10
|
Shah V, de Bouter J, Pauli Q, Tupper AS, Higgs PG. Survival of RNA Replicators is much Easier in Protocells than in Surface-Based, Spatial Systems. Life (Basel) 2019; 9:life9030065. [PMID: 31394866 PMCID: PMC6789734 DOI: 10.3390/life9030065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023] Open
Abstract
In RNA-World scenarios for the origin of life, replication is catalyzed by polymerase ribozymes. Replicating RNA systems are subject to invasion by non-functional parasitic strands. It is well-known that there are two ways to avoid the destruction of the system by parasites: spatial clustering in models with limited diffusion, or group selection in protocells. Here, we compare computational models of replication in spatial models and protocells as closely as possible in order to determine the relative importance of these mechanisms in the RNA World. For the survival of the polymerases, the replication rate must be greater than a minimum threshold value, kmin, and the mutation rate in replication must be less than a maximum value, Mmax, which is known as the error threshold. For the protocell models, we find that kmin is substantially lower and Mmax is substantially higher than for the equivalent spatial models; thus, the survival of polymerases is much easier in protocells than on surfaces. The results depend on the maximum number of strands permitted in one protocell or one lattice site in the spatial model, and on whether replication is limited by the supply of monomers or the population size of protocells. The substantial advantages that are seen in the protocell models relative to the spatial models are robust to changing these details. Thus, cooperative polymerases with limited accuracy would have found it much easier to operate inside lipid compartments, and this suggests that protocells may have been a very early step in the development of life. We consider cases where parasites have an equal replication rate to polymerases, and cases where parasites multiply twice as fast as polymerases. The advantage of protocell models over spatial models is increased when the parasites multiply faster.
Collapse
Affiliation(s)
- Vismay Shah
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Jonathan de Bouter
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Quinn Pauli
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Andrew S Tupper
- Origins Institute and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Paul G Higgs
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA.
| |
Collapse
|
11
|
Mizuuchi R, Blokhuis A, Vincent L, Nghe P, Lehman N, Baum D. Mineral surfaces select for longer RNA molecules. Chem Commun (Camb) 2019; 55:2090-2093. [PMID: 30694272 PMCID: PMC6377063 DOI: 10.1039/c8cc10319d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report empirically and theoretically that multiple prebiotic minerals can selectively accumulate longer RNAs, with selectivity enhanced at higher temperatures. We further demonstrate that surfaces can be combined with a catalytic RNA to form longer RNA polymers, supporting the potential of minerals to develop genetic information on the early Earth.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Rahman MM, Matsumura S, Ikawa Y. Oligomerization of a Bimolecular Ribozyme Modestly Rescues its Structural Defects that Disturb Interdomain Assembly to Form the Catalytic Site. J Mol Evol 2018; 86:431-442. [DOI: 10.1007/s00239-018-9862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|
13
|
Biondi E, Furukawa Y, Kawai J, Benner SA. Adsorption of RNA on mineral surfaces and mineral precipitates. Beilstein J Org Chem 2017; 13:393-404. [PMID: 28382177 PMCID: PMC5355914 DOI: 10.3762/bjoc.13.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022] Open
Abstract
The prebiotic significance of laboratory experiments that study the interactions between oligomeric RNA and mineral species is difficult to know. Natural exemplars of specific minerals can differ widely depending on their provenance. While laboratory-generated samples of synthetic minerals can have controlled compositions, they are often viewed as "unnatural". Here, we show how trends in the interaction of RNA with natural mineral specimens, synthetic mineral specimens, and co-precipitated pairs of synthetic minerals, can make a persuasive case that the observed interactions reflect the composition of the minerals themselves, rather than their being simply examples of large molecules associating nonspecifically with large surfaces. Using this approach, we have discovered Periodic Table trends in the binding of oligomeric RNA to alkaline earth carbonate minerals and alkaline earth sulfate minerals, where those trends are the same when measured in natural and synthetic minerals. They are also validated by comparison of co-precipitated synthetic minerals. We also show differential binding of RNA to polymorphic forms of calcium carbonate, and the stabilization of bound RNA on aragonite. These have relevance to the prebiotic stabilization of RNA, where such carbonate minerals are expected to have been abundant, as they appear to be today on Mars.
Collapse
Affiliation(s)
- Elisa Biondi
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA; Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577, Japan
| | - Jun Kawai
- Department of Material Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA; Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA; The Westheimer Institute for Science and Technology, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| |
Collapse
|