1
|
Mo O, Zhang Z, Cheng X, Zhu L, Zhang K, Zhang N, Li J, Li H, Fan S, Li X, Hao P. mRNAdesigner: an integrated web server for optimizing mRNA design and protein translation in eukaryotes. Nucleic Acids Res 2025:gkaf410. [PMID: 40384581 DOI: 10.1093/nar/gkaf410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Messenger RNA (mRNA) therapy has revolutionized modern medicine through its rapid development capabilities and ability to induce effective immune responses, becoming a powerful weapon against infectious diseases. The expression level of target proteins from mRNA sequences is primarily influenced by translational efficiency and stability, which can be significantly enhanced by modifying the 5' and 3' untranslated regions (UTRs), codon adaptation index, GC content, and secondary structure. To address the challenges of optimizing mRNA design, we have developed mRNAdesigner (https://www.biosino.org/mRNAdesigner/), a web server specifically designed to improve mRNA stability and translational efficiency in eukaryotes. Users can input a coding sequence (CDS) along with optional 5' UTR and 3' UTR, and the tool optimizes the CDS by reducing unpaired regions, minimizing complex stem-loop structures, and mitigating the use of rare codons while adhering to user-defined GC content preferences. Additionally, mRNAdesigner identifies optimal UTR sequences to enhance translation efficiency and stability. As an open-access computational resource, mRNAdesigner supports full-length mRNA design, enabling researchers to generate high-expression mRNA sequences for efficient protein production in eukaryotic expression systems, providing extra support for vaccine development and protein therapeutics. This is the first such tool that was made open accessible to the public.
Collapse
Affiliation(s)
- Ouyang Mo
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Zhang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Cheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liqi Zhu
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixiang Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Justin Li
- Department of Mathematics, University of Connecticut, 352 Mansfield Road, Storrs, CT 06269, United States
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200237, China
| | - Shixin Fan
- ChemPartner PharmaTech Co., Ltd, Shanghai 200237, China
| | - Xuan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Burnett D, Hussein M, Barr ZK, Näther LN, Wright KM, Tilsner J. Live-cell RNA imaging with the inactivated endonuclease Csy4 enables new insights into plant virus transport through plasmodesmata. PLoS Pathog 2025; 21:e1013049. [PMID: 40203052 PMCID: PMC12052393 DOI: 10.1371/journal.ppat.1013049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 05/05/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Plant-infecting viruses spread through their hosts by transporting their infectious genomes through intercellular nano-channels called plasmodesmata. This process is mediated by virus-encoded movement proteins. Whilst the sub-cellular localisations of movement proteins have been intensively studied, live-cell RNA imaging systems have so far not been able to detect viral genomes inside the plasmodesmata. Here, we describe a highly sensitive RNA live-cell reporter based on an enzymatically inactive form of the small bacterial endonuclease Csy4, which binds to its cognate stem-loop with picomolar affinity. This system allows imaging of plant viral RNA genomes inside plasmodesmata and shows that potato virus X RNA remains accessible within the channels and is therefore not fully encapsidated during movement. We also combine Csy4-based RNA-imaging with interspecies movement complementation to show that an unrelated movement protein from tobacco mosaic virus can recruit potato virus X replication complexes adjacent to plasmodesmata. Therefore, recruitment of potato virus X replicase is mediated non-specifically, likely by indirect coupling of movement proteins and viral replicase via the viral RNA or co-compartmentalisation, potentially contributing to transport specificity. Lastly, we show that a 'self-tracking' virus can express the Csy4-based reporter during the progress of infection. However, expression of the RNA-binding protein in cis interferes with viral movement by an unidentified mechanism when cognate stem-loops are present in the viral RNA.
Collapse
Affiliation(s)
- David Burnett
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Mohamed Hussein
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cukurova University, Institute of Natural and Applied Sciences, Saricam, Adana, Turkey
| | - Zoe Kathleen Barr
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Laura Newsha Näther
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
| | - Kathryn M. Wright
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
3
|
Quillin AL, Karloff DB, Ayele TM, Flores TF, Chen G, McEachin ZT, Valdez-Sinon AN, Heemstra JM. Imaging and Tracking RNA in Live Mammalian Cells via Fluorogenic Photoaffinity Labeling. ACS Chem Biol 2025; 20:707-720. [PMID: 39953970 PMCID: PMC11952673 DOI: 10.1021/acschembio.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Cellular RNA labeling using light-up aptamers that bind to and activate fluorogenic molecules has gained interest in recent years as an alternative to protein-based RNA labeling approaches. Aptamer-based systems are genetically encodable and cover the entire visible spectrum. However, the inherently temporary nature of the noncovalent aptamer-fluorogen interaction limits the utility of these systems in that imaging does not withstand dye washout, and dye dissociation can compromise RNA tracking. We propose that these limitations can be averted through covalent RNA labeling. Here, we describe a photoaffinity approach in which the aptamer ligand is functionalized with a photoactivatable diazirine reactive group such that irradiation with UV light results in covalent attachment to the RNA of interest. In addition to the robustness of the covalent linkage, this approach benefits from the ability to achieve spatiotemporal control over RNA labeling. To demonstrate this approach, we incorporated a photoaffinity linker into malachite green and fused a single copy of the malachite green aptamer to a Cajal body-associated small nuclear RNA of interest as well as a cytoplasmic mRNA. We observed improved sensitivity for live cell imaging of the target RNA upon UV irradiation and demonstrated visualization of RNA dynamics over a time scale of minutes. The covalent attachment uniquely enables these time-resolved experiments, whereas in noncovalent approaches, the dye molecule can be transferred between different RNA molecules, compromising tracking. We envision future applications of this method for a wide range of investigations into the cellular localization, dynamics, and protein-binding properties of cellular RNAs.
Collapse
Affiliation(s)
| | - Diane B. Karloff
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Tewoderos M. Ayele
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Tatiana F. Flores
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| | - Gerry Chen
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30363, United States
| | - Zachary T. McEachin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Arielle N. Valdez-Sinon
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| |
Collapse
|
4
|
Xia C, Colognori D, Jiang XS, Xu K, Doudna JA. Single-molecule live-cell RNA imaging with CRISPR-Csm. Nat Biotechnol 2025:10.1038/s41587-024-02540-5. [PMID: 39966655 DOI: 10.1038/s41587-024-02540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025]
Abstract
Understanding the diverse dynamic behaviors of individual RNA molecules in single cells requires visualizing them at high resolution in real time. However, single-molecule live-cell imaging of unmodified endogenous RNA has not yet been achieved in a generalizable manner. Here, we present single-molecule live-cell fluorescence in situ hybridization (smLiveFISH), a robust approach that combines the programmable RNA-guided, RNA-targeting CRISPR-Csm complex with multiplexed guide RNAs for direct and efficient visualization of single RNA molecules in a range of cell types, including primary cells. Using smLiveFISH, we track individual native NOTCH2 and MAP1B transcripts in living cells and identify two distinct localization mechanisms including the cotranslational translocation of NOTCH2 mRNA at the endoplasmic reticulum and directional transport of MAP1B mRNA toward the cell periphery. This method has the potential to unlock principles governing the spatiotemporal organization of native transcripts in health and disease.
Collapse
Affiliation(s)
- Chenglong Xia
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xueyang Stephen Jiang
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ke Xu
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Banna HA, Berg K, Sadat T, Das N, Paudel R, D'Souza V, Koirala D. Synthetic anti-RNA antibody derivatives for RNA visualization in mammalian cells. Nucleic Acids Res 2025; 53:gkae1275. [PMID: 39739875 PMCID: PMC11879077 DOI: 10.1093/nar/gkae1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody-GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells. Our current RNA imaging strategy is analogous to the existing MCP-MS2 system for RNA visualization, but additionally, our approach provides robust flexibility for developing target RNA-specific imaging modules, as epitope-specific probes can be selected from a library generated by diversifying the sarabody complementarity determining regions. While we continue to optimize these probes, develop new probes for various target RNAs and incorporate other fluorescence proteins like mCherry and HaloTag, our groundwork results demonstrated that these first-of-a-kind immunofluorescent probes will have tremendous potential for tracking mature RNAs and may aid in visualizing and quantifying many cellular processes as well as examining the spatiotemporal dynamics of various RNAs.
Collapse
Affiliation(s)
- Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Kimberley Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tasnia Sadat
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Roshan Paudel
- Department of Computer Science, Morgan State University, Baltimore, MD 21251, USA
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
6
|
Halbers LP, Cole KH, Ng KK, Fuller EB, Chan CET, Callicoatte C, Metcalfe M, Chen CC, Barhoosh AA, Reid-McLaughlin E, Kent AD, Torrey ZR, Steward O, Lupták A, Prescher JA. A modular platform for bioluminescent RNA tracking. Nat Commun 2024; 15:9992. [PMID: 39557883 PMCID: PMC11574019 DOI: 10.1038/s41467-024-54263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
A complete understanding of RNA biology requires methods for tracking transcripts in vivo. Common strategies rely on fluorogenic probes that are limited in sensitivity, dynamic range, and depth of interrogation, owing to their need for excitation light and tissue autofluorescence. To overcome these challenges, we report a bioluminescent platform for serial imaging of RNAs. The RNA tags are engineered to recruit light-emitting luciferase fragments (termed RNA lanterns) upon transcription. Robust photon production is observed for RNA targets both in cells and in live animals. Importantly, only a single copy of the tag is necessary for sensitive detection, in sharp contrast to fluorescent platforms requiring multiple repeats. Overall, this work provides a foundational platform for visualizing RNA dynamics from the micro to the macro scale.
Collapse
Affiliation(s)
- Lila P Halbers
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Kevin K Ng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Erin B Fuller
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Christelle E T Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Chelsea Callicoatte
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mariajose Metcalfe
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Claire C Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ahfnan A Barhoosh
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | | | - Alexandra D Kent
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Zachary R Torrey
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Oswald Steward
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Jennifer A Prescher
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Ortiz-Rodríguez LA, Yassine H, Nandana V, Azaldegui CA, Cheng J, Schrader JM, Biteen JS. Stress Changes the Bacterial Biomolecular Condensate Material State and Shifts Function from mRNA Decay to Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623272. [PMID: 39605536 PMCID: PMC11601435 DOI: 10.1101/2024.11.12.623272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bacterial ribonucleoprotein bodies (BR-bodies) are dynamic biomolecular condensates that play a pivotal role in RNA metabolism. We investigated how BR-bodies significantly influence mRNA fate by transitioning between liquid- and solid-like states in response to stress. With a combination of single-molecule and bulk fluorescence microscopy, biochemical assays, and quantitative analyses, we determine that BR-bodies promote efficient mRNA decay in a liquid-like condensate during exponential growth. On the other hand, BR-bodies are repurposed from sites of mRNA decay to reservoirs for mRNA storage under stress, a functional change that is enabled by their transition to a more rigid state, marked by reduced internal dynamics, increased molecular density, and prolonged residence time of ribonuclease E. Furthermore, we manipulated ATP levels and translation rates and conclude that the accumulation of ribosome-depleted mRNA is a key factor driving these material state transitions, and that condensate maturation further contributes to this process. Upon nutrient replenishment, stationary-phase BR-bodies disassemble, releasing stored mRNAs for rapid translation, demonstrating that BR-body function is governed by a reversible mechanism for resource management. These findings reveal adaptive strategies by which bacteria regulate RNA metabolism through condensate-mediated control of mRNA decay and storage.
Collapse
|
8
|
Merens HE, Choquet K, Baxter-Koenigs AR, Churchman LS. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol 2024; 34:968-981. [PMID: 38777664 DOI: 10.1016/j.tcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
Collapse
Affiliation(s)
- Hope E Merens
- Harvard University, Department of Genetics, Boston, MA, USA
| | - Karine Choquet
- University of Sherbrooke, Department of Biochemistry and Functional Genomics, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
9
|
Xie Y, Shu T, Liu T, Spindler MC, Mahamid J, Hocky GM, Gresham D, Holt LJ. Polysome collapse and RNA condensation fluidize the cytoplasm. Mol Cell 2024; 84:2698-2716.e9. [PMID: 39059370 PMCID: PMC11539954 DOI: 10.1016/j.molcel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marie-Christin Spindler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Glen M Hocky
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, USA.
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
11
|
Kindongo O, Lieb G, Skaggs B, Dusserre Y, Vincenzetti V, Pelet S. Implication of polymerase recycling for nascent transcript quantification by live cell imaging. Yeast 2024; 41:279-294. [PMID: 38389243 DOI: 10.1002/yea.3929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state.
Collapse
Affiliation(s)
- Olivia Kindongo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Lieb
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Benjamin Skaggs
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yves Dusserre
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
13
|
Blake LA, Watkins L, Liu Y, Inoue T, Wu B. A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies. Nat Commun 2024; 15:2720. [PMID: 38548718 PMCID: PMC10979015 DOI: 10.1038/s41467-024-46943-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
RNA decay is vital for regulating mRNA abundance and gene expression. Existing technologies lack the spatiotemporal precision or transcript specificity to capture the stochastic and transient decay process. We devise a general strategy to inducibly recruit protein factors to modulate target RNA metabolism. Specifically, we introduce a Rapid Inducible Decay of RNA (RIDR) technology to degrade target mRNAs within minutes. The fast and synchronous induction enables direct visualization of mRNA decay dynamics in cells. Applying RIDR to endogenous ACTB mRNA reveals rapid formation and dissolution of RNA granules in pre-existing P-bodies. Time-resolved RNA distribution measurements demonstrate rapid RNA decay inside P-bodies, which is further supported by knocking down P-body constituent proteins. Light and oxidative stress modulate P-body behavior, potentially reconciling the contradictory literature about P-body function. This study reveals compartmentalized RNA decay kinetics, establishing RIDR as a pivotal tool for exploring the spatiotemporal RNA metabolism in cells.
Collapse
Affiliation(s)
- Lauren A Blake
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leslie Watkins
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Takanari Inoue
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Pham TG, Wu J. Recent advances in methods for live-cell RNA imaging. NANOSCALE 2024; 16:5537-5545. [PMID: 38414383 DOI: 10.1039/d4nr00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
As one of the most fundamental building blocks of life, RNA plays critical roles in diverse biological processes, from X chromosome inactivation, genome stability maintenance, to embryo development. Being able to visualize the localization and dynamics of RNA can provide critical insights into these fundamental processes. In this review, we provide an overview of current methods for live-cell RNA imaging with a focus on methods for visualizing RNA in living mammalian cells with single-molecule resolution.
Collapse
Affiliation(s)
- Tien G Pham
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jiahui Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
15
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Heinrich S, Hondele M, Marchand D, Derrer CP, Zedan M, Oswald A, Malinovska L, Uliana F, Khawaja S, Mancini R, Grunwald D, Weis K. Glucose stress causes mRNA retention in nuclear Nab2 condensates. Cell Rep 2024; 43:113593. [PMID: 38113140 DOI: 10.1016/j.celrep.2023.113593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Nuclear mRNA export via nuclear pore complexes is an essential step in eukaryotic gene expression. Although factors involved in mRNA transport have been characterized, a comprehensive mechanistic understanding of this process and its regulation is lacking. Here, we use single-RNA imaging in yeast to show that cells use mRNA retention to control mRNA export during stress. We demonstrate that, upon glucose withdrawal, the essential RNA-binding factor Nab2 forms RNA-dependent condensate-like structures in the nucleus. This coincides with a reduced abundance of the DEAD-box ATPase Dbp5 at the nuclear pore. Depleting Dbp5, and consequently blocking mRNA export, is necessary and sufficient to trigger Nab2 condensation. The state of Nab2 condensation influences the extent of nuclear mRNA accumulation and can be recapitulated in vitro, where Nab2 forms RNA-dependent liquid droplets. We hypothesize that cells use condensation to regulate mRNA export and control gene expression during stress.
Collapse
Affiliation(s)
- Stephanie Heinrich
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland.
| | - Maria Hondele
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland; Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Désirée Marchand
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Carina Patrizia Derrer
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Mostafa Zedan
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Alexandra Oswald
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Liliana Malinovska
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Sarah Khawaja
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Roberta Mancini
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - David Grunwald
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01605, USA
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Festekdjian T, Bonavida B. Targeting the Depletion of M2 Macrophages: Implication in Cancer Immunotherapy. Crit Rev Oncog 2024; 29:55-73. [PMID: 38989738 DOI: 10.1615/critrevoncog.2024053580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We have witnessed the emergence of immunotherapy against various cancers that resulted in significant clinical responses and particularly in cancers that were resistant to chemotherapy. These milestones have ignited the development of novel strategies to boost the anti-tumor immune response for immune-suppressed tumors in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant cells in the TME, and their frequency correlates with poor prognosis. Hence, several approaches have been developed to target TAMs in effort to restore the anti-tumor immune response and inhibit tumor growth and metastasis. One approach discussed herein is targeting TAMs via their depletion. Several methods have been reported for TAMs depletion including micro-RNAs, transcription factors (e.g., PPARγ, KLF4, STAT3, STAT6, NF-κB), chemokines and chemokine receptors, antibodies-mediated blocking the CSF-1/CSF-1R pathway, nanotechnology, and various combination treatments. In addition, various clinical trials are currently examining the targeting of TAMs. Many of these methods also have side effects that need to be monitored and reduced. Future perspectives and directions are discussed.
Collapse
Affiliation(s)
- Talia Festekdjian
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
18
|
Bühler B, Sunbul M. Single-Molecule RNA Imaging in Live Cells with an Avidity-Based Fluorescent Light-Up Aptamer biRhoBAST. Methods Mol Biol 2024; 2822:87-100. [PMID: 38907914 DOI: 10.1007/978-1-0716-3918-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Observing individual RNA molecules provides valuable insights into their regulation, interactions with other cellular components, organization, and functions. Although fluorescent light-up aptamers (FLAPs) have recently shown promise for RNA imaging, their wider applications have been mostly hindered by poor brightness and photostability. We recently developed an avidity-based FLAP known as biRhoBAST that allows for single-molecule RNA imaging in live or fixed cells and tracking individual mRNA molecules in living cells due to its excellent photostability and high brightness. Here, we present step-by-step detailed protocols starting from cloning biRhoBAST repeats into the target RNA sequence, to imaging dynamics of single mRNA molecules. Additionally, we address the validation of single-molecule imaging experiments through single-molecule fluorescence in situ hybridization (smFISH) and colocalization studies.
Collapse
Affiliation(s)
- Bastian Bühler
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
19
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
20
|
Liu Z, Jillette N, Robson P, Cheng AW. Simultaneous multifunctional transcriptome engineering by CRISPR RNA scaffold. Nucleic Acids Res 2023; 51:e77. [PMID: 37395412 PMCID: PMC10415119 DOI: 10.1093/nar/gkad547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
RNA processing and metabolism are subjected to precise regulation in the cell to ensure integrity and functions of RNA. Though targeted RNA engineering has become feasible with the discovery and engineering of the CRISPR-Cas13 system, simultaneous modulation of different RNA processing steps remains unavailable. In addition, off-target events resulting from effectors fused with dCas13 limit its application. Here we developed a novel platform, Combinatorial RNA Engineering via Scaffold Tagged gRNA (CREST), which can simultaneously execute multiple RNA modulation functions on different RNA targets. In CREST, RNA scaffolds are appended to the 3' end of Cas13 gRNA and their cognate RNA binding proteins are fused with enzymatic domains for manipulation. Taking RNA alternative splicing, A-to-G and C-to-U base editing as examples, we developed bifunctional and tri-functional CREST systems for simultaneously RNA manipulation. Furthermore, by fusing two split fragments of the deaminase domain of ADAR2 to dCas13 and/or PUFc respectively, we reconstituted its enzyme activity at target sites. This split design can reduce nearly 99% of off-target events otherwise induced by a full-length effector. The flexibility of the CREST framework will enrich the transcriptome engineering toolbox for the study of RNA biology.
Collapse
Affiliation(s)
- Zukai Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Jackson Laboratory Cancer Center, Bar Harbor, ME 04609, USA
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Albert Wu Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Jackson Laboratory Cancer Center, Bar Harbor, ME 04609, USA
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
21
|
Xie Y, Liu T, Gresham D, Holt LJ. mRNA condensation fluidizes the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542963. [PMID: 37398029 PMCID: PMC10312499 DOI: 10.1101/2023.05.30.542963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The intracellular environment is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cell physiology. When exposed to stress, mRNAs released after translational arrest condense with RNA binding proteins, resulting in the formation of membraneless RNA protein (RNP) condensates known as processing bodies (P-bodies) and stress granules (SGs). However, the impact of the assembly of these condensates on the biophysical properties of the crowded cytoplasmic environment remains unclear. Here, we find that upon exposure to stress, polysome collapse and condensation of mRNAs increases mesoscale particle diffusivity in the cytoplasm. Increased mesoscale diffusivity is required for the efficient formation of Q-bodies, membraneless organelles that coordinate degradation of misfolded peptides that accumulate during stress. Additionally, we demonstrate that polysome collapse and stress granule formation has a similar effect in mammalian cells, fluidizing the cytoplasm at the mesoscale. We find that synthetic, light-induced RNA condensation is sufficient to fluidize the cytoplasm, demonstrating a causal effect of RNA condensation. Together, our work reveals a new functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to effectively respond to stressful conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
- Department of Biology, New York University, New York, New York, United States
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
| | - David Gresham
- Department of Biology, New York University, New York, New York, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
| |
Collapse
|
22
|
Gerber A, van Otterdijk S, Bruggeman FJ, Tutucci E. Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies. Transcription 2023; 14:105-126. [PMID: 37050882 PMCID: PMC10807504 DOI: 10.1080/21541264.2023.2199669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.
Collapse
Affiliation(s)
- Alan Gerber
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sander van Otterdijk
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evelina Tutucci
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Liang Y, Willey S, Chung YC, Lo YM, Miao S, Rundell S, Tu LC, Bong D. Intracellular RNA and DNA tracking by uridine-rich internal loop tagging with fluorogenic bPNA. Nat Commun 2023; 14:2987. [PMID: 37225690 DOI: 10.1038/s41467-023-38579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
The most widely used method for intracellular RNA fluorescence labeling is MS2 labeling, which generally relies on the use of multiple protein labels targeted to multiple RNA (MS2) hairpin structures installed on the RNA of interest (ROI). While effective and conveniently applied in cell biology labs, the protein labels add significant mass to the bound RNA, which potentially impacts steric accessibility and native RNA biology. We have previously demonstrated that internal, genetically encoded, uridine-rich internal loops (URILs) comprised of four contiguous UU pairs (8 nt) in RNA may be targeted with minimal structural perturbation by triplex hybridization with 1 kD bifacial peptide nucleic acids (bPNAs). A URIL-targeting strategy for RNA and DNA tracking would avoid the use of cumbersome protein fusion labels and minimize structural alterations to the RNA of interest. Here we show that URIL-targeting fluorogenic bPNA probes in cell media can penetrate cell membranes and effectively label RNAs and RNPs in fixed and live cells. This method, which we call fluorogenic U-rich internal loop (FLURIL) tagging, was internally validated through the use of RNAs bearing both URIL and MS2 labeling sites. Notably, a direct comparison of CRISPR-dCas labeled genomic loci in live U2OS cells revealed that FLURIL-tagged gRNA yielded loci with signal to background up to 7X greater than loci targeted by guide RNA modified with an array of eight MS2 hairpins. Together, these data show that FLURIL tagging provides a versatile scope of intracellular RNA and DNA tracking while maintaining a light molecular footprint and compatibility with existing methods.
Collapse
Affiliation(s)
- Yufeng Liang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Sydney Willey
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Yi-Meng Lo
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Shiqin Miao
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Sarah Rundell
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Li-Chun Tu
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Dennis Bong
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Huang Y, Gao BQ, Meng Q, Yang LZ, Ma XK, Wu H, Pan YH, Yang L, Li D, Chen LL. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos. Genome Biol 2023; 24:15. [PMID: 36658633 PMCID: PMC9854193 DOI: 10.1186/s13059-023-02848-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding gene transcription and mRNA-protein (mRNP) dynamics in single cells in a multicellular organism has been challenging. The catalytically dead CRISPR-Cas13 (dCas13) system has been used to visualize RNAs in live cells without genetic manipulation. We optimize this system to track developmentally expressed mRNAs in zebrafish embryos and to understand features of endogenous transcription kinetics and mRNP export. RESULTS We report that zygotic microinjection of purified CRISPR-dCas13-fluorescent proteins and modified guide RNAs allows single- and dual-color tracking of developmentally expressed mRNAs in zebrafish embryos from zygotic genome activation (ZGA) until early segmentation period without genetic manipulation. Using this approach, we uncover non-synchronized de novo transcription between inter-alleles, synchronized post-mitotic re-activation in pairs of alleles, and transcriptional memory as an extrinsic noise that potentially contributes to synchronized post-mitotic re-activation. We also reveal rapid dCas13-engaged mRNP movement in the nucleus with a corralled and diffusive motion, but a wide varying range of rate-limiting mRNP export, which can be shortened by Alyref and Nxf1 overexpression. CONCLUSIONS This optimized dCas13-based toolkit enables robust spatial-temporal tracking of endogenous mRNAs and uncovers features of transcription and mRNP motion, providing a powerful toolkit for endogenous RNA visualization in a multicellular developmental organism.
Collapse
Affiliation(s)
- Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Bao-Qing Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
25
|
Xie Y, Gresham D, Holt L. Increased mesoscale diffusivity in response to acute glucose starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523352. [PMID: 36711511 PMCID: PMC9882054 DOI: 10.1101/2023.01.10.523352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Macromolecular crowding is an important parameter that impacts multiple biological processes. Passive microrheology using single particle tracking is a powerful means of studying macromolecular crowding. Here we monitored the diffusivity of self-assembling fluorescent nanoparticles (μNS) in response to acute glucose starvation. mRNP diffusivity was reduced upon glucose starvation as previously reported. In contrast, we observed increased diffusivity of μNS particles. Our results suggest that, upon glucose starvation, mRNP granule diffusivity may be reduced due to changes in physical interactions, while global crowding in the cytoplasm may be reduced.
Collapse
Affiliation(s)
- Ying Xie
- New York University, School of Medicine, Institute for Systems Genetics, New York, USA
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, USA
| | - David Gresham
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, USA
| | - Liam Holt
- New York University, School of Medicine, Institute for Systems Genetics, New York, USA
| |
Collapse
|
26
|
Xie Y, Gresham D, Holt LJ. Increased mesoscale diffusivity in response to acute glucose starvation. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000729. [PMID: 36908311 PMCID: PMC9996311 DOI: 10.17912/micropub.biology.000729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Macromolecular crowding is an important property of cells that impacts multiple biological processes. Passive microrheology using single particle tracking is a powerful means of studying macromolecular crowding. Here we monitored the diffusivity of self-assembling fluorescent nanoparticles (μNS) and mRNPs ( GFA1 -PP7) in response to acute glucose starvation. mRNP diffusivity was reduced upon glucose starvation as previously reported. By contrast, we observed increased diffusivity of μNS particles. Our results suggest that, upon glucose starvation, mRNP granule diffusivity may be reduced due to increased physical interactions, whereas macromolecular crowding in the cytoplasm may be globally reduced.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
- Department of Biology, New York University, New York, New York, United States
| | - David Gresham
- Department of Biology, New York University, New York, New York, United States
- Correspondence to: David Gresham (
)
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
- Correspondence to: Liam J Holt (
)
| |
Collapse
|
27
|
Jeziorska DM, Tunnacliffe EAJ, Brown JM, Ayyub H, Sloane-Stanley J, Sharpe JA, Lagerholm BC, Babbs C, Smith AJH, Buckle VJ, Higgs DR. On-microscope staging of live cells reveals changes in the dynamics of transcriptional bursting during differentiation. Nat Commun 2022; 13:6641. [PMID: 36333299 PMCID: PMC9636426 DOI: 10.1038/s41467-022-33977-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using an on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in transcriptional activity whereas at the peak of gene expression, in early erythroblasts, transcription is relatively stable. Later during differentiation as α-globin expression declines, we again observe more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of active transcriptional compartments as gene expression is regulated during differentiation.
Collapse
Affiliation(s)
- D M Jeziorska
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nucleome Therapeutics Ltd., BioEscalator, The Innovation Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - E A J Tunnacliffe
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J M Brown
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - H Ayyub
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J Sloane-Stanley
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J A Sharpe
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - B C Lagerholm
- Wolfson Imaging Centre, MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- The Kennedy Institute Of Rheumatology, University of Oxford, Old Road Campus, Oxford, OX3 7FY, UK
| | - C Babbs
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - A J H Smith
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - V J Buckle
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - D R Higgs
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK.
| |
Collapse
|
28
|
Kukhtevich IV, Rivero-Romano M, Rakesh N, Bheda P, Chadha Y, Rosales-Becerra P, Hamperl S, Bureik D, Dornauer S, Dargemont C, Kirmizis A, Schmoller KM, Schneider R. Quantitative RNA imaging in single live cells reveals age-dependent asymmetric inheritance. Cell Rep 2022; 41:111656. [DOI: 10.1016/j.celrep.2022.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
|
29
|
Fu X, Patel HP, Coppola S, Xu L, Cao Z, Lenstra TL, Grima R. Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions. eLife 2022; 11:e82493. [PMID: 36250630 PMCID: PMC9648968 DOI: 10.7554/elife.82493] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Transcriptional rates are often estimated by fitting the distribution of mature mRNA numbers measured using smFISH (single molecule fluorescence in situ hybridization) with the distribution predicted by the telegraph model of gene expression, which defines two promoter states of activity and inactivity. However, fluctuations in mature mRNA numbers are strongly affected by processes downstream of transcription. In addition, the telegraph model assumes one gene copy but in experiments, cells may have two gene copies as cells replicate their genome during the cell cycle. While it is often presumed that post-transcriptional noise and gene copy number variation affect transcriptional parameter estimation, the size of the error introduced remains unclear. To address this issue, here we measure both mature and nascent mRNA distributions of GAL10 in yeast cells using smFISH and classify each cell according to its cell cycle phase. We infer transcriptional parameters from mature and nascent mRNA distributions, with and without accounting for cell cycle phase and compare the results to live-cell transcription measurements of the same gene. We find that: (i) correcting for cell cycle dynamics decreases the promoter switching rates and the initiation rate, and increases the fraction of time spent in the active state, as well as the burst size; (ii) additional correction for post-transcriptional noise leads to further increases in the burst size and to a large reduction in the errors in parameter estimation. Furthermore, we outline how to correctly adjust for measurement noise in smFISH due to uncertainty in transcription site localisation when introns cannot be labelled. Simulations with parameters estimated from nascent smFISH data, which is corrected for cell cycle phases and measurement noise, leads to autocorrelation functions that agree with those obtained from live-cell imaging.
Collapse
Affiliation(s)
- Xiaoming Fu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and TechnologyShanghaiChina
- School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-RossendorfGörlitzGermany
| | - Heta P Patel
- The Netherlands Cancer Institute, Oncode Institute, Division of Gene RegulationAmsterdamNetherlands
| | - Stefano Coppola
- The Netherlands Cancer Institute, Oncode Institute, Division of Gene RegulationAmsterdamNetherlands
| | - Libin Xu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and TechnologyShanghaiChina
| | - Zhixing Cao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and TechnologyShanghaiChina
| | - Tineke L Lenstra
- The Netherlands Cancer Institute, Oncode Institute, Division of Gene RegulationAmsterdamNetherlands
| | - Ramon Grima
- School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
30
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
31
|
Sun P, Zou W. Research progress of live-cell RNA imaging techniques. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:362-372. [PMID: 36207827 PMCID: PMC9511491 DOI: 10.3724/zdxbyxb-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
RNA molecules play diverse roles in many physiological and pathological processes as they interact with various nucleic acids and proteins. The various biological processes of RNA are highly dynamic. Tracking RNA dynamics in living cells is crucial for a better understanding of the spatiotemporal control of gene expression and the regulatory roles of RNA. Genetically encoded RNA-tagging systems include MS2/MCP, PP7/PCP, boxB/λN22 and CRISPR-Cas. The MS2/MCP system is the most widely applied, and it has the advantages of stable binding and high signal-to-noise ratio, while the realization of RNA imaging requires gene editing of the target RNA, which may change the characteristics of the target RNA. Recently developed CRISPR-dCas13 system does not require RNA modification, but the uncertainty in CRISPR RNA (crRNA) efficiency and low signal-to-noise ratio are its limitations. Fluorescent dye-based RNA-tagging systems include molecular beacons and fluorophore-binding aptamers. The molecular beacons have high specificity and high signal-to-noise ratio; Mango and Peppers outperform the other RNA-tagging system in signal-to-noise, but they also need gene editing. Live-cell RNA imaging allows us to visualize critical steps of RNA activities, including transcription, splicing, transport, translation (for message RNA only) and subcellular localization. It will contribute to studying biological processes such as cell differentiation and the transcriptional regulation mechanism when cells adapt to the external environment, and it improves our understanding of the pathogenic mechanism of various diseases caused by abnormal RNA behavior and helps to find potential therapeutic targets. This review provides an overview of current progress of live-cell RNA imaging techniques and highlights their major strengths and limitations.
Collapse
Affiliation(s)
- Pingping Sun
- 1. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
- 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Zou
- 1. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
- 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Guo Y, Lee RE. Long-term imaging of individual mRNA molecules in living cells. CELL REPORTS METHODS 2022; 2:100226. [PMID: 35784652 PMCID: PMC9243547 DOI: 10.1016/j.crmeth.2022.100226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022]
Abstract
Single-cell imaging of individual mRNAs has revealed core mechanisms of the central dogma. However, most approaches require cell fixation or have limited sensitivity for live-cell applications. Here, we describe SunRISER (SunTag-based reporter for imaging signal-enriched mRNA), a computationally and experimentally optimized approach for unambiguous detection of single mRNA molecules in living cells. When viewed by epifluorescence microscopy, SunRISER-labeled mRNAs show strong signal to background and resistance to photobleaching, which together enable long-term mRNA imaging studies. SunRISER variants, using 8× and 10× stem-loop arrays, demonstrate effective mRNA detection while significantly reducing alterations to target mRNA sequences. We characterize SunRISER to observe mRNA inheritance during mitosis and find that stressors enhance diversity among post-mitotic sister cells. Taken together, SunRISER enables a glimpse into living cells to observe aspects of the central dogma and the role of mRNAs in rare and dynamical trafficking events.
Collapse
Affiliation(s)
- Yue Guo
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robin E.C. Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
33
|
Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat Commun 2022; 13:3345. [PMID: 35688806 PMCID: PMC9187665 DOI: 10.1038/s41467-022-30976-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
A major challenge to our understanding of translational control has been deconvolving the individual impact specific regulatory factors have on the complex dynamics of mRNA translation. MicroRNAs (miRNAs), for example, guide Argonaute and associated proteins to target mRNAs, where they direct gene silencing in multiple ways that are not well understood. To better deconvolve these dynamics, we have developed technology to directly visualize and quantify the impact of human Argonaute2 (Ago2) on the translation and subcellular localization of individual reporter mRNAs in living cells. We show that our combined translation and Ago2 tethering sensor reflects endogenous miRNA-mediated gene silencing. Using the sensor, we find that Ago2 association leads to progressive silencing of translation at individual mRNA. Silencing was occasionally interrupted by brief bursts of translational activity and took 3–4 times longer than a single round of translation, consistent with a gradual increase in the inhibition of translation initiation. At later time points, Ago2-tethered mRNAs cluster and coalesce with P-bodies, where a translationally silent state is maintained. These results provide a framework for exploring miRNA-mediated gene regulation in live cells at the single-molecule level. Furthermore, our tethering-based, single-molecule reporter system will likely have wide-ranging application in studying RNA-protein interactions. Guided by miRNA, Argonaute proteins silence mRNA in multiple ways that are not well understood. Here, the authors develop live-cell biosensors to image the impact tethered regulatory factors, such as Argonaute, have on single-mRNA translation dynamics.
Collapse
Affiliation(s)
- Charlotte A Cialek
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ning Zhao
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
34
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
36
|
Chen M, Sui T, Yang L, Qian Y, Liu Z, Liu Y, Wang G, Lai L, Li Z. Live imaging of RNA and RNA splicing in mammalian cells via the dcas13a-SunTag-BiFC system. Biosens Bioelectron 2022; 204:114074. [PMID: 35149451 DOI: 10.1016/j.bios.2022.114074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/26/2022]
Abstract
Dynamic tracking of the localization of RNA molecules (nucleus and/or cytoplasm) and RNA splicing in living cells plays an important role in understanding their functions. However, a lack of dynamic imaging and high background fluorescence have been reported in the fluorescence in situ hybridization (FISH). Here, we developed a new tool, the dcas13a-SunTag-BiFC system, which fused the dLwacas13a and SunTag systems. dLwacas13a is used as a tracker to target specific RNAs, while SunTag recruits split Venus fluorescent proteins to label targeted RNAs. Our results showed that 4 × NLS-dCas13a-24 × SunTag-BiFC and 2 × NLS- dCas13a-24 × SunTag-BiFC systems can be used for imaging of endogenous RNA foci in the nucleus (Xist) and cytoplasm (Ppib and stress granules) in living cells, respectively. Compared to 12x MS2-MCP system, the dcas13a-SunTag-BiFC system showed a better performance of mRNA foci tracking in live cells. Furthermore, we confirmed the premature termination codon (PTC)-induced exon skipping of Oxt RNA using the dcas13a-SunTag-BiFC and MS2-MCP systems in the nucleus. Thus, the dcas13a-SunTag-BiFC system will facilitate the study of RNA localization in living cells and provide new insights into RNA translocation and splicing.
Collapse
Affiliation(s)
- Mao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Tingting Sui
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yuqiang Qian
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yongsai Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Gerong Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
37
|
Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. Subcellular Transcriptomics and Proteomics: A Comparative Methods Review. Mol Cell Proteomics 2022; 21:100186. [PMID: 34922010 PMCID: PMC8864473 DOI: 10.1016/j.mcpro.2021.100186] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The internal environment of cells is molecularly crowded, which requires spatial organization via subcellular compartmentalization. These compartments harbor specific conditions for molecules to perform their biological functions, such as coordination of the cell cycle, cell survival, and growth. This compartmentalization is also not static, with molecules trafficking between these subcellular neighborhoods to carry out their functions. For example, some biomolecules are multifunctional, requiring an environment with differing conditions or interacting partners, and others traffic to export such molecules. Aberrant localization of proteins or RNA species has been linked to many pathological conditions, such as neurological, cancer, and pulmonary diseases. Differential expression studies in transcriptomics and proteomics are relatively common, but the majority have overlooked the importance of subcellular information. In addition, subcellular transcriptomics and proteomics data do not always colocate because of the biochemical processes that occur during and after translation, highlighting the complementary nature of these fields. In this review, we discuss and directly compare the current methods in spatial proteomics and transcriptomics, which include sequencing- and imaging-based strategies, to give the reader an overview of the current tools available. We also discuss current limitations of these strategies as well as future developments in the field of spatial -omics.
Collapse
Affiliation(s)
- Josie A Christopher
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - Charlotte S Dawson
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Owen L Vennard
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
38
|
Truong DJJ, Armbrust N, Geilenkeuser J, Lederer EM, Santl TH, Beyer M, Ittermann S, Steinmaßl E, Dyka M, Raffl G, Phlairaharn T, Greisle T, Živanić M, Grosch M, Drukker M, Westmeyer GG. Intron-encoded cistronic transcripts for minimally invasive monitoring of coding and non-coding RNAs. Nat Cell Biol 2022; 24:1666-1676. [PMID: 36344775 PMCID: PMC9643161 DOI: 10.1038/s41556-022-00998-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Despite their fundamental role in assessing (patho)physiological cell states, conventional gene reporters can follow gene expression but leave scars on the proteins or substantially alter the mature messenger RNA. Multi-time-point measurements of non-coding RNAs are currently impossible without modifying their nucleotide sequence, which can alter their native function, half-life and localization. Thus, we developed the intron-encoded scarless programmable extranuclear cistronic transcript (INSPECT) as a minimally invasive transcriptional reporter embedded within an intron of a gene of interest. Post-transcriptional excision of INSPECT results in the mature endogenous RNA without sequence alterations and an additional engineered transcript that leaves the nucleus by hijacking the nuclear export machinery for subsequent translation into a reporter or effector protein. We showcase its use in monitoring interleukin-2 (IL2) after T cell activation and tracking the transcriptional dynamics of the long non-coding RNA (lncRNA) NEAT1 during CRISPR interference-mediated perturbation. INSPECT is a method for monitoring gene transcription without altering the mature lncRNA or messenger RNA of the target of interest.
Collapse
Affiliation(s)
- Dong-Jiunn Jeffery Truong
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julian Geilenkeuser
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Maria Lederer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Heinrich Santl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Beyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Ittermann
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emily Steinmaßl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Mariya Dyka
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerald Raffl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Teeradon Phlairaharn
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Greisle
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Milica Živanić
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Grosch
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Micha Drukker
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Birot A, Kus K, Priest E, Al Alwash A, Castello A, Mohammed S, Vasiljeva L, Kilchert C. RNA-binding protein Mub1 and the nuclear RNA exosome act to fine-tune environmental stress response. Life Sci Alliance 2021; 5:5/2/e202101111. [PMID: 34848435 PMCID: PMC8645331 DOI: 10.26508/lsa.202101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Comparative RNA interactome capture identifies potential regulators of RNA metabolism in fission yeast and reveals RNA exosome–dependent buffering of stress-responsive gene expression networks. The nuclear RNA exosome plays a key role in controlling the levels of multiple protein-coding and non-coding RNAs. Recruitment of the exosome to specific RNA substrates is mediated by RNA-binding co-factors. The transient interaction between co-factors and the exosome as well as the rapid decay of RNA substrates make identification of exosome co-factors challenging. Here, we use comparative poly(A)+ RNA interactome capture in fission yeast expressing three different mutants of the exosome to identify proteins that interact with poly(A)+ RNA in an exosome-dependent manner. Our analyses identify multiple RNA-binding proteins whose association with RNA is altered in exosome mutants, including the zinc-finger protein Mub1. Mub1 is required to maintain the levels of a subset of exosome RNA substrates including mRNAs encoding for stress-responsive proteins. Removal of the zinc-finger domain leads to loss of RNA suppression under non-stressed conditions, altered expression of heat shock genes in response to stress, and reduced growth at elevated temperature. These findings highlight the importance of exosome-dependent mRNA degradation in buffering gene expression networks to mediate cellular adaptation to stress.
Collapse
Affiliation(s)
- Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ahmad Al Alwash
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Chen M, Long Q, Borrie MS, Sun H, Zhang C, Yang H, Shi D, Gartenberg MR, Deng W. Nucleoporin TPR promotes tRNA nuclear export and protein synthesis in lung cancer cells. PLoS Genet 2021; 17:e1009899. [PMID: 34793452 PMCID: PMC8639082 DOI: 10.1371/journal.pgen.1009899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/02/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
The robust proliferation of cancer cells requires vastly elevated levels of protein synthesis, which relies on a steady supply of aminoacylated tRNAs. Delivery of tRNAs to the cytoplasm is a highly regulated process, but the machinery for tRNA nuclear export is not fully elucidated. In this study, using a live cell imaging strategy that visualizes nascent transcripts from a specific tRNA gene in yeast, we identified the nuclear basket proteins Mlp1 and Mlp2, two homologs of the human TPR protein, as regulators of tRNA export. TPR expression is significantly increased in lung cancer tissues and correlated with poor prognosis. Consistently, knockdown of TPR inhibits tRNA nuclear export, protein synthesis and cell growth in lung cancer cell lines. We further show that NXF1, a well-known mRNA nuclear export factor, associates with tRNAs and mediates their transport through nuclear pores. Collectively, our findings uncover a conserved mechanism that regulates nuclear export of tRNAs, which is a limiting step in protein synthesis in eukaryotes.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Qian Long
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Melinda S. Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Haohui Sun
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Changlin Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Han Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dingbo Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Marc R. Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- The Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Basyuk E, Rage F, Bertrand E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol 2021; 18:1221-1237. [PMID: 33111627 PMCID: PMC8354613 DOI: 10.1080/15476286.2020.1842631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transport of mRNAs is an important step of gene expression, which brings the genetic message from the DNA in the nucleus to a precise cytoplasmic location in a regulated fashion. Perturbation of this process can lead to pathologies such as developmental and neurological disorders. In this review, we discuss recent advances in the field of mRNA transport made using single molecule fluorescent imaging approaches. We present an overview of these approaches in fixed and live cells and their input in understanding the key steps of mRNA journey: transport across the nucleoplasm, export through the nuclear pores and delivery to its final cytoplasmic location. This review puts a particular emphasis on the coupling of mRNA transport with translation, such as localization-dependent translational regulation and translation-dependent mRNA localization. We also highlight the recently discovered translation factories, and how cellular and viral RNAs can hijack membrane transport systems to travel in the cytoplasm.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS-UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
- Equipe Labélisée Ligue Nationale Contre Le Cancer, Montpellier, France
| |
Collapse
|
42
|
Rombouts S, Nollmann M. RNA imaging in bacteria. FEMS Microbiol Rev 2021; 45:5917984. [PMID: 33016325 DOI: 10.1093/femsre/fuaa051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
The spatiotemporal regulation of gene expression plays an essential role in many biological processes. Recently, several imaging-based RNA labeling and detection methods, both in fixed and live cells, were developed and now enable the study of transcript abundance, localization and dynamics. Here, we review the main single-cell techniques for RNA visualization with fluorescence microscopy and describe their applications in bacteria.
Collapse
Affiliation(s)
- Sara Rombouts
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 Rue de Navacelles, 34090, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 Rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
43
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Nair RR, Zabezhinsky D, Gelin-Licht R, Haas BJ, Dyhr MC, Sperber HS, Nusbaum C, Gerst JE. Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology. eLife 2021; 10:66050. [PMID: 33942720 PMCID: PMC8137142 DOI: 10.7554/elife.66050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/02/2021] [Indexed: 02/02/2023] Open
Abstract
Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete messenger ribonucleoprotein (mRNP) complexes (called transperons). Chromatin capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact; thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4, and its depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.
Collapse
Affiliation(s)
- Rohini R Nair
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dmitry Zabezhinsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Gelin-Licht
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Brian J Haas
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Michael Ca Dyhr
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hannah S Sperber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Escalante LE, Gasch AP. The role of stress-activated RNA-protein granules in surviving adversity. RNA (NEW YORK, N.Y.) 2021; 27:rna.078738.121. [PMID: 33931500 PMCID: PMC8208049 DOI: 10.1261/rna.078738.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 05/17/2023]
Abstract
Severe environmental stress can trigger a plethora of physiological changes and, in the process, significant cytoplasmic reorganization. Stress-activated RNA-protein granules have been implicated in this cellular overhaul by sequestering pre-existing mRNAs and influencing their fates during and after stress acclimation. While the composition and dynamics of stress-activated granule formation has been well studied, their function and impact on RNA-cargo has remained murky. Several recent studies challenge the view that these granules degrade and silence mRNAs present at the onset of stress and instead suggest new roles for these structures in mRNA storage, transit, and inheritance. Here we discuss recent evidence for revised models of stress-activated granule functions and the role of these granules in stress survival and recovery.
Collapse
|
46
|
Morales-Polanco F, Bates C, Lui J, Casson J, Solari CA, Pizzinga M, Forte G, Griffin C, Garner KEL, Burt HE, Dixon HL, Hubbard S, Portela P, Ashe MP. Core Fermentation (CoFe) granules focus coordinated glycolytic mRNA localization and translation to fuel glucose fermentation. iScience 2021; 24:102069. [PMID: 33554071 PMCID: PMC7859310 DOI: 10.1016/j.isci.2021.102069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Glycolysis is a fundamental metabolic pathway for glucose catabolism across biology, and glycolytic enzymes are among the most abundant proteins in cells. Their expression at such levels provides a particular challenge. Here we demonstrate that the glycolytic mRNAs are localized to granules in yeast and human cells. Detailed live cell and smFISH studies in yeast show that the mRNAs are actively translated in granules, and this translation appears critical for the localization. Furthermore, this arrangement is likely to facilitate the higher level organization and control of the glycolytic pathway. Indeed, the degree of fermentation required by cells is intrinsically connected to the extent of mRNA localization to granules. On this basis, we term these granules, core fermentation (CoFe) granules; they appear to represent translation factories, allowing high-level coordinated enzyme synthesis for a critical metabolic pathway.
Collapse
Affiliation(s)
- Fabian Morales-Polanco
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christian Bates
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jennifer Lui
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Joseph Casson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Clara A Solari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mariavittoria Pizzinga
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Gabriela Forte
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Claire Griffin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Kirsten E L Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Harriet E Burt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Hannah L Dixon
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Hubbard
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Paula Portela
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mark P Ashe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
47
|
Rosenblum SL, Lorenz DA, Garner AL. A live-cell assay for the detection of pre-microRNA-protein interactions. RSC Chem Biol 2021; 2:241-247. [PMID: 33817642 PMCID: PMC8006716 DOI: 10.1039/d0cb00055h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Recent efforts in genome-wide sequencing and proteomics have revealed the fundamental roles that RNA-binding proteins (RBPs) play in the life cycle and function of coding and non-coding RNAs. While these methodologies provide a systems-level view of the networking of RNA and proteins, approaches to enable the cellular validation of discovered interactions are lacking. Leveraging the power of bioorthogonal chemistry- and split-luciferase-based assay technologies, we have devised a conceptually new assay for the live-cell detection of RNA-protein interactions (RPIs), RNA interaction with Protein-mediated Complementation Assay, or RiPCA. As proof-of-concept, we utilized the interaction of the pre-microRNA, pre-let-7, with its binding partner, Lin28. Using this system, we have demonstrated the selective detection of the pre-let-7-Lin28 RPI in both the cytoplasm and nucleus. Furthermore, we determined that this technology can be used to discern relative affinities for specific sequences as well as of individual RNA binding domains. Thus, RiPCA has the potential to serve as a useful tool in supporting the investigation of cellular RPIs.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Daniel A Lorenz
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Amanda L Garner
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
- Department of Medicinal Chemistry , College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , USA
| |
Collapse
|
48
|
Braselmann E, Rathbun C, Richards EM, Palmer AE. Illuminating RNA Biology: Tools for Imaging RNA in Live Mammalian Cells. Cell Chem Biol 2020; 27:891-903. [PMID: 32640188 PMCID: PMC7595133 DOI: 10.1016/j.chembiol.2020.06.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
The central dogma teaches us that DNA makes RNA, which in turn makes proteins, the main building blocks of the cell. But this over simplified linear transmission of information overlooks the vast majority of the genome produces RNAs that do not encode proteins and the myriad ways that RNA regulates cellular functions. Historically, one of the challenges in illuminating RNA biology has been the lack of tools for visualizing RNA in live cells. But clever approaches for exploiting RNA binding proteins, in vitro RNA evolution, and chemical biology have resulted in significant advances in RNA visualization tools in recent years. This review provides an overview of current tools for tagging RNA with fluorescent probes and tracking their dynamics, localization andfunction in live mammalian cells.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Colin Rathbun
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Erin M Richards
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Amy E Palmer
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA.
| |
Collapse
|
49
|
Dave P, Chao JA. Insights into mRNA degradation from single-molecule imaging in living cells. Curr Opin Struct Biol 2020; 65:89-95. [PMID: 32659634 DOI: 10.1016/j.sbi.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Single-molecule fluorescence microscopy techniques have enabled the lifecycle of individual RNA transcripts to be quantitatively measured in living cells. The application of these approaches to monitor mRNA degradation, however, has presented a challenge to unequivocally detect these events due to the inherent loss-of-signal resulting from decay of a transcript. Here, we highlight the recent technological developments that have enabled the spatial and temporal dynamics of mRNA degradation of individual transcripts to be visualized within living cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.
| |
Collapse
|
50
|
Vera M, Tutucci E, Singer RH. Imaging Single mRNA Molecules in Mammalian Cells Using an Optimized MS2-MCP System. Methods Mol Biol 2020; 2038:3-20. [PMID: 31407274 DOI: 10.1007/978-1-4939-9674-2_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Visualization of single mRNAs in their native cellular environment provides key information to study gene expression regulation. This fundamental biological question triggered the development of the MS2-MCP (MS2-Capsid Protein) system to tag mRNAs and image their life cycle using widefield fluorescence microscopy. The last two decades have evolved toward improving the qualitative and quantitative characteristics of the MS2-MCP system. Here, we provide a protocol to use the latest versions, MS2V6 and MS2V7, to tag and visualize mRNAs in mammalian cells in culture. The motivation behind engineering MS2V6 and MS2V7 was to overcome a degradation caveat observed in S. cerevisiae with the previous MS2-MCP systems. While for yeast we recommend the use of MS2V6, we found that for live-cell imaging experiments in mammalian cells, the MS2V7 has improved reporter properties.
Collapse
Affiliation(s)
- Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Janelia Research Campus of the HHMI, Ashburn, Virginia, USA.
| |
Collapse
|