1
|
Ghosh S, Sanchez AM, Schwer B, Prucker I, Jork N, Jessen HJ, Shuman S. Activities and genetic interactions of fission yeast Aps1, a Nudix-type inositol pyrophosphatase and inorganic polyphosphatase. mBio 2024; 15:e0108424. [PMID: 38940614 PMCID: PMC11323792 DOI: 10.1128/mbio.01084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
2
|
Schwer B, Innokentev A, Sanchez AM, Garg A, Shuman S. Suppression of inositol pyrophosphate toxicosis and hyper-repression of the fission yeast PHO regulon by loss-of-function mutations in chromatin remodelers Snf22 and Sol1. mBio 2024; 15:e0125224. [PMID: 38899862 PMCID: PMC11253589 DOI: 10.1128/mbio.01252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes pho1, pho84, and tgp1) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP8 levels derepress the PHO regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP8 are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1. IP8 toxicosis is ameliorated by mutations in cleavage/polyadenylation and termination factors, perturbations of the Pol2 CTD code, and mutations in SPX domain proteins that act as inositol pyrophosphate sensors. Here, we show that IP8 toxicity is alleviated by deletion of snf22+, the gene encoding the ATPase subunit of the SWI/SNF chromatin remodeling complex, by an ATPase-inactivating snf22-(D996A-E997A) allele, and by deletion of the gene encoding SWI/SNF subunit Sol1. Deletion of snf22+ hyper-repressed pho1 expression in phosphate-replete cells; suppressed the pho1 derepression elicited by mutations in Pol2 CTD, termination factor Seb1, Asp1 pyrophosphatase, and 14-3-3 protein Rad24 (that favor precocious prt lncRNA termination); and delayed pho1 induction during phosphate starvation. RNA analysis and lack of mutational synergies suggest that Snf22 is not impacting 3'-processing/termination. Using reporter assays, we find that Snf22 is important for the activity of the tgp1 and pho1 promoters, but not for the promoters that drive the synthesis of the PHO-repressive lncRNAs. Transcription profiling of snf22∆ and snf22-(D996A-E997A) cells identified an additional set of 66 protein-coding genes that were downregulated in both mutants.IMPORTANCERepression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to inositol pyrophosphate dynamics. Cytotoxic asp1-STF alleles derepress the PHO genes via the action of IP8 as an agonist of precocious lncRNA 3'-processing/termination. IP8 toxicosis is alleviated by mutations of the Pol2 CTD and the 3'-processing/termination machinery that dampen the impact of toxic IP8 levels on termination. In this study, a forward genetic screen revealed that IP8 toxicity is suppressed by mutations of the Snf22 and Sol1 subunits of the SWI/SNF chromatin remodeling complex. Genetic and biochemical evidence indicates that the SWI/SNF is not affecting 3'-processing/termination or lncRNA promoter activity. Rather, SWI/SNF is critical for firing the PHO mRNA promoters. Our results implicate the ATP-dependent nucleosome remodeling activity of SWI/SNF as necessary to ensure full access of PHO-activating transcription factor Pho7 to its binding sites in the PHO mRNA promoters.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Aleksei Innokentev
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
Bednor L, Sanchez AM, Garg A, Shuman S, Schwer B. Genetic suppressor screen identifies Tgp1 (glycerophosphocholine transporter), Kcs1 (IP 6 kinase), and Plc1 (phospholipase C) as determinants of inositol pyrophosphate toxicosis in fission yeast. mBio 2024; 15:e0306223. [PMID: 38133430 PMCID: PMC10865970 DOI: 10.1128/mbio.03062-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.
Collapse
Affiliation(s)
- Lauren Bednor
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
- Weill Cornell Graduate School of Medical Sciences, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
4
|
Garg A, Schwer B, Shuman S. Fission yeast poly(A) polymerase active site mutation Y86D alleviates the rad24Δ asp1-H397A synthetic growth defect and up-regulates mRNAs targeted by MTREC and Mmi1. RNA (NEW YORK, N.Y.) 2023; 29:1738-1753. [PMID: 37586723 PMCID: PMC10578478 DOI: 10.1261/rna.079722.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA-mediated interference is alleviated by genetic perturbations that elicit precocious lncRNA 3'-processing and transcription termination, such as (i) the inositol pyrophosphate pyrophosphatase-defective asp1-H397A allele, which results in elevated levels of IP8, and (ii) absence of the 14-3-3 protein Rad24. Combining rad24Δ with asp1-H397A causes a severe synthetic growth defect. A forward genetic screen for SRA (Suppressor of Rad24 Asp1-H397A) mutations identified a novel missense mutation (Tyr86Asp) of Pla1, the essential poly(A) polymerase subunit of the fission yeast cleavage and polyadenylation factor (CPF) complex. The pla1-Y86D allele was viable but slow-growing in an otherwise wild-type background. Tyr86 is a conserved active site constituent that contacts the RNA primer 3' nt and the incoming ATP. The Y86D mutation elicits a severe catalytic defect in RNA-primed poly(A) synthesis in vitro and in binding to an RNA primer. Yet, analyses of specific mRNAs indicate that poly(A) tails in pla1-Y86D cells are not different in size than those in wild-type cells, suggesting that other RNA interactors within CPF compensate for the defects of isolated Pla1-Y86D. Transcriptome profiling of pla1-Y86D cells revealed the accumulation of multiple RNAs that are normally rapidly degraded by the nuclear exosome under the direction of the MTREC complex, with which Pla1 associates. We suggest that Pla1-Y86D is deficient in the hyperadenylation of MTREC targets that precedes their decay by the exosome.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
5
|
Jiang W, Chen Y, Sun M, Huang X, Zhang H, Fu Z, Wang J, Zhang S, Lian C, Tang B, Xiang D, Wang Y, Zhang Y, Jian C, Yang C, Zhang J, Zhang D, Chen T, Zhang J. LncRNA DGCR5-encoded polypeptide RIP aggravates SONFH by repressing nuclear localization of β-catenin in BMSCs. Cell Rep 2023; 42:112969. [PMID: 37573506 DOI: 10.1016/j.celrep.2023.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
The differentiation fate of bone marrow mesenchymal stem cells (BMSCs) affects the progression of steroid-induced osteonecrosis of the femoral head (SONFH). We find that lncRNA DGCR5 encodes a 102-amino acid polypeptide, RIP (Rac1 inactivated peptide), which promotes the adipogenic differentiation of BMSCs and aggravates the progression of SONFH. RIP, instead of lncRNA DGCR5, binds to the N-terminal motif of RAC1, and inactivates the RAC1/PAK1 cascade, resulting in decreased Ser675 phosphorylation of β-catenin. Ultimately, the nuclear localization of β-catenin decreases, and the differentiation balance of BMSCs tilts toward the adipogenesis lineage. In the femoral head of rats, overexpression of RIP causes trabecular bone disorder and adipocyte accumulation, which can be rescued by overexpressing RAC1. This finding expands the regulatory role of lncRNAs in BMSCs and suggests RIP as a potential therapeutic target.
Collapse
Affiliation(s)
- Weiqian Jiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Chen
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjie Sun
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Huang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrui Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Fu
- Department of Orthopedics, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Jingjiang Wang
- Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shichun Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengjie Lian
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Boyu Tang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dulei Xiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Changchun Jian
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohua Yang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Zhang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Sanchez AM, Garg A, Schwer B, Shuman S. Duf89 abets lncRNA control of fission yeast phosphate homeostasis via its antagonism of precocious lncRNA transcription termination. RNA (NEW YORK, N.Y.) 2023; 29:808-825. [PMID: 36882296 PMCID: PMC10187668 DOI: 10.1261/rna.079595.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 05/18/2023]
Abstract
Fission yeast phosphate homeostasis gene pho1 is actively repressed during growth in phosphate-rich medium by transcription in cis of a long noncoding (lnc) RNA from the 5' flanking prt(nc-pho1) gene. Pho1 expression is: (i) derepressed by genetic maneuvers that favor precocious lncRNA 3'-processing and termination, in response to DSR and PAS signals in prt; and (ii) hyperrepressed in genetic backgrounds that dampen 3'-processing/termination efficiency. Governors of 3'-processing/termination include the RNA polymerase CTD code, the CPF (cleavage and polyadenylation factor) complex, termination factors Seb1 and Rhn1, and the inositol pyrophosphate signaling molecule 1,5-IP8 Here, we present genetic and biochemical evidence that fission yeast Duf89, a metal-dependent phosphatase/pyrophosphatase, is an antagonist of precocious 3'-processing/termination. We show that derepression of pho1 in duf89Δ cells correlates with squelching the production of full-length prt lncRNA and is erased or attenuated by: (i) DSR/PAS mutations in prt; (ii) loss-of-function mutations in components of the 3'-processing and termination machinery; (iii) elimination of the CTD Thr4-PO4 mark; (iv) interdicting CTD prolyl isomerization by Pin1; (v) inactivating the Asp1 kinase that synthesizes IP8; and (vi) loss of the putative IP8 sensor Spx1. The findings that duf89Δ is synthetically lethal with pho1-derepressive mutations CTD-S7A and aps1Δ-and that this lethality is rescued by CTD-T4A, CPF/Rhn1/Pin1 mutations, and spx1Δ-implicate Duf89 more broadly as a collaborator in cotranscriptional regulation of essential fission yeast genes. The duf89-D252A mutation, which abolishes Duf89 phosphohydrolase activity, phenocopied duf89 +, signifying that duf89Δ phenotypes are a consequence of Duf89 protein absence, not absence of Duf89 catalysis.
Collapse
Affiliation(s)
- Ana M Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
7
|
Garg A, Sanchez AM, Miele M, Schwer B, Shuman S. Cellular responses to long-term phosphate starvation of fission yeast: Maf1 determines fate choice between quiescence and death associated with aberrant tRNA biogenesis. Nucleic Acids Res 2023; 51:3094-3115. [PMID: 36794724 PMCID: PMC10123115 DOI: 10.1093/nar/gkad063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Matthew Miele
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beate Schwer
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| |
Collapse
|
8
|
Ohtsuka H, Sakata H, Kitazaki Y, Tada M, Shimasaki T, Otsubo Y, Maekawa Y, Kobayashi M, Imada K, Yamashita A, Aiba H. The ecl family gene ecl3+ is induced by phosphate starvation and contributes to sexual differentiation in fission yeast. J Cell Sci 2023; 136:287015. [PMID: 36779416 PMCID: PMC10038150 DOI: 10.1242/jcs.260759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroki Sakata
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuto Kitazaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanobu Tada
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Imada
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
9
|
Activities and Structure-Function Analysis of Fission Yeast Inositol Pyrophosphate (IPP) Kinase-Pyrophosphatase Asp1 and Its Impact on Regulation of pho1 Gene Expression. mBio 2022; 13:e0103422. [PMID: 35536002 PMCID: PMC9239264 DOI: 10.1128/mbio.01034-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inositol pyrophosphates (IPPs) are signaling molecules that regulate cellular phosphate homeostasis in diverse eukaryal taxa. In fission yeast, mutations that increase 1,5-IP8 derepress the PHO regulon while mutations that ablate IP8 synthesis are PHO hyper-repressive. Fission yeast Asp1, the principal agent of 1,5-IP8 dynamics, is a bifunctional enzyme composed of an N-terminal IPP kinase domain and a C-terminal IPP pyrophosphatase domain. Here we conducted a biochemical characterization and mutational analysis of the autonomous Asp1 kinase domain (aa 1-385). Reaction of Asp1 kinase with IP6 and ATP resulted in both IP6 phosphorylation to 1-IP7 and hydrolysis of the ATP γ-phosphate, with near-equal partitioning between productive 1-IP7 synthesis and unproductive ATP hydrolysis under optimal kinase conditions. By contrast, reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus ATP hydrolysis. Alanine scanning identified essential constituents of the active site. We deployed the Ala mutants to show that derepression of pho1 expression correlated with Asp1's kinase activity. In the case of full-length Asp1, the activity of the C-terminal pyrophosphatase domain stifled net phosphorylation of the 1-position during reaction of Asp1 with ATP and either IP6 or 5-IP7. We report that inorganic phosphate is a concentration-dependent enabler of net IP8 synthesis by full-length Asp1 in vitro, by virtue of its antagonism of IP8 turnover. IMPORTANCE Expression of the fission yeast phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate (IPP) signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme comprising N-terminal IPP 1-kinase and C-terminal IPP 1-pyrophosphatase domains that catalyze IP8 synthesis and catabolism, respectively. Here, we interrogated the activities and specificities of the Asp1 kinase domain and full length Asp1. We find that reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus the significant unproductive ATP hydrolysis seen during its reaction with IP6. We report that full-length Asp1 catalyzes futile cycles of 1-phosphate phosphorylation by its kinase component and 1-pyrophosphate hydrolysis by its pyrophosphatase component that result in unproductive net consumption of the ATP substrate. Net synthesis of 1,5-IP8 is enabled by physiological concentrations of inorganic phosphate that selectively antagonize IP8 turnover.
Collapse
|
10
|
Cleavage-Polyadenylation Factor Cft1 and SPX Domain Proteins Are Agents of Inositol Pyrophosphate Toxicosis in Fission Yeast. mBio 2022; 13:e0347621. [PMID: 35012333 PMCID: PMC8749416 DOI: 10.1128/mbio.03476-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inositol pyrophosphate (IPP) dynamics govern expression of the fission yeast phosphate homeostasis regulon via their effects on lncRNA-mediated transcription interference. The growth defects (ranging from sickness to lethality) elicited by fission yeast mutations that inactivate IPP pyrophosphatase enzymes are exerted via the agonistic effects of too much 1,5-IP8 on RNA 3'-processing and transcription termination. To illuminate determinants of IPP toxicosis, we conducted a genetic screen for spontaneous mutations that suppressed the sickness of Asp1 pyrophosphatase mutants. We identified a missense mutation, C823R, in the essential Cft1 subunit of the cleavage and polyadenylation factor complex that suppresses even lethal Asp1 IPP pyrophosphatase mutations, thereby fortifying the case for 3'-processing/termination as the target of IPP toxicity. The suppressor screen also identified Gde1 and Spx1 (SPAC6B12.07c), both of which have an IPP-binding SPX domain and both of which are required for lethality elicited by Asp1 mutations. A survey of other SPX proteins in the proteome identified the Vtc4 and Vtc2 subunits of the vacuolar polyphosphate polymerase as additional agents of IPP toxicosis. Gde1, Spx1, and Vtc4 contain enzymatic modules (glycerophosphodiesterase, RING finger ubiquitin ligase, and polyphosphate polymerase, respectively) fused to their IPP-sensing SPX domains. Structure-guided mutagenesis of the IPP-binding sites and the catalytic domains of Gde1 and Spx1 indicated that both modules are necessary to elicit IPP toxicity. Whereas Vtc4 polymerase catalytic activity is required for IPP toxicity, its IPP-binding site is not. Epistasis analysis, transcriptome profiling, and assays of Pho1 expression implicate Spx1 as a transducer of IP8 signaling to the 3'-processing/transcription termination machinery. IMPORTANCE Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis. Alleviation of IPP lethality by a missense mutation in the essential Cft1 subunit of the cleavage and polyadenylation factor consolidates previous evidence that toxicity results from IP8 action as an agonist of RNA 3'-processing and transcription termination. Novel findings are that IP8 toxicity depends on IPP-sensing SPX domain proteins with associated enzymatic functions: Gde1 (glycerophosphodiesterase), Spx1 (ubiquitin ligase), and Vtc2/4 (polyphosphate polymerase). The effects of Spx1 deletion on phosphate homeostasis imply a role for Spx1 in communicating an IP8-driven signal to the transcription and RNA processing apparatus.
Collapse
|
11
|
Garg A, Shuman S, Schwer B. Genetic screen for suppression of transcriptional interference reveals fission yeast 14-3-3 protein Rad24 as an antagonist of precocious Pol2 transcription termination. Nucleic Acids Res 2021; 50:803-819. [PMID: 34967420 PMCID: PMC8789043 DOI: 10.1093/nar/gkab1263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA control of pho1 mRNA synthesis is influenced by inositol pyrophosphate (IPP) kinase Asp1, deletion of which results in pho1 hyper-repression. A forward genetic screen for ADS (Asp1 Deletion Suppressor) mutations identified the 14–3–3 protein Rad24 as a governor of phosphate homeostasis. Production of full-length interfering prt lncRNA was squelched in rad24Δ cells, concomitant with increased production of pho1 mRNA and increased Pho1 activity, while shorter precociously terminated non-interfering prt transcripts persisted. Epistasis analysis showed that pho1 de-repression by rad24Δ depends on: (i) 3′-processing and transcription termination factors CPF, Pin1, and Rhn1; and (ii) Threonine-4 of the Pol2 CTD. Combining rad24Δ with the IPP pyrophosphatase-dead asp1-H397A allele caused a severe synthetic growth defect that was ameliorated by loss-of-function mutations in CPF, Pin1, and Rhn1, and by CTD phospho-site mutations T4A and Y1F. Rad24 function in repressing pho1 was effaced by mutation of its phosphate-binding pocket. Our findings instate a new role for a 14–3–3 protein as an antagonist of precocious RNA 3′-processing/termination.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
12
|
Genetic screen for suppression of transcriptional interference identifies a gain-of-function mutation in Pol2 termination factor Seb1. Proc Natl Acad Sci U S A 2021; 118:2108105118. [PMID: 34389684 DOI: 10.1073/pnas.2108105118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The system of long noncoding RNA (lncRNA)-mediated transcriptional interference that represses fission yeast phosphate homoeostasis gene pho1 provides a sensitive readout of genetic influences on cotranscriptional 3'-processing and termination and a tool for discovery of regulators of this phase of the Pol2 transcription cycle. Here, we conducted a genetic screen for relief of transcriptional interference that unveiled a mechanism by which Pol2 termination is enhanced via a gain-of-function mutation, G476S, in the RNA-binding domain of an essential termination factor, Seb1. The genetic and physical evidence for gain-of-function is compelling: 1) seb1-G476S de-represses pho1 and tgp1, both of which are subject to lncRNA-mediated transcriptional interference; 2) seb1-G476S elicits precocious lncRNA transcription termination in response to lncRNA 5'-proximal poly(A) signals; 3) seb1-G476S derepression of pho1 is effaced by loss-of-function mutations in cleavage and polyadenylation factor (CPF) subunits and termination factor Rhn1; 4) synthetic lethality of seb1-G476S with pho1 derepressive mutants rpb1-CTD-S7A and aps1∆ is rescued by CPF/Rhn1 loss-of-function alleles; and 5) seb1-G476S elicits an upstream shift in poly(A) site preference in several messenger RNA genes. A crystal structure of the Seb1-G476S RNA-binding domain indicates potential for gain of contacts from Ser476 to RNA nucleobases. To our knowledge, this is a unique instance of a gain-of-function phenotype in a eukaryal transcription termination protein.
Collapse
|
13
|
Andric V, Rougemaille M. Long Non-Coding RNAs in the Control of Gametogenesis: Lessons from Fission Yeast. Noncoding RNA 2021; 7:ncrna7020034. [PMID: 34208016 PMCID: PMC8293462 DOI: 10.3390/ncrna7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe, the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis.
Collapse
Affiliation(s)
- Vedrana Andric
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Institute Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75005 Paris, France;
| | - Mathieu Rougemaille
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
14
|
Li J, Liu X, Yin Z, Hu Z, Zhang KQ. An Overview on Identification and Regulatory Mechanisms of Long Non-coding RNAs in Fungi. Front Microbiol 2021; 12:638617. [PMID: 33995298 PMCID: PMC8113380 DOI: 10.3389/fmicb.2021.638617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
For decades, more and more long non-coding RNAs (lncRNAs) have been confirmed to play important functions in key biological processes of different organisms. At present, most identified lncRNAs and those with known functional roles are from mammalian systems. However, lncRNAs have also been found in primitive eukaryotic fungi, and they have different functions in fungal development, metabolism, and pathogenicity. In this review, we highlight some recent researches on lncRNAs in the primitive eukaryotic fungi, particularly focusing on the identification of lncRNAs and their regulatory roles in diverse biological processes.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhihong Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
15
|
Benjamin B, Sanchez AM, Garg A, Schwer B, Shuman S. Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genet 2021; 17:e1009452. [PMID: 33711009 PMCID: PMC7990198 DOI: 10.1371/journal.pgen.1009452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.
Collapse
Affiliation(s)
- Bradley Benjamin
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (BS); (SS)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail: (BS); (SS)
| |
Collapse
|
16
|
Garg A, Sanchez AM, Schwer B, Shuman S. Transcriptional profiling of fission yeast RNA polymerase II CTD mutants. RNA (NEW YORK, N.Y.) 2021; 27:rna.078682.121. [PMID: 33579781 PMCID: PMC8051263 DOI: 10.1261/rna.078682.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 05/08/2023]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase II (Pol2) consists of tandem repeats of a consensus heptapeptide Y1 S2 P3 T4 S5 P6 S7 The CTD recruits numerous proteins that drive or regulate gene expression. The trafficking of CTD-interacting proteins is orchestrated by remodeling CTD primary structure via Ser/Thr/Tyr phosphorylation and proline cis-trans isomerization, which collectively inscribe a CTD code. The fission yeast CTD consists of 29 heptad repeats. To decipher the output of the fission yeast CTD code, we genetically manipulated CTD length and amino acid content and then gauged the effects of these changes on gene expression. Whereas deleting 11 consensus heptads has no obvious effect on fission yeast growth, RNA-seq revealed that 25% of the protein-coding transcripts were dysregulated by CTD truncation. We profiled the transcriptomes of full-length CTD mutants, in which: all Tyr1 residues were replaced by Phe; all Ser2, Thr4, or Ser7 positions were changed to Ala; and half of the essential CTD code "letters" Pro3, Ser5, and Pro6 were mutated to Ala. Overlapping RNA-seq profiles suggested that a quarter of the complement of up-regulated mRNAs and half of the down-regulated mRNAs seen in full-length CTD mutants might be attributable to a decrement in wild-type CTD heptad number. Concordant mutant-specific transcriptional profiles were observed for Y1F, S2A, and T4A cells, and for P6•P6A and S5•S5A cells, suggesting that Tyr1-Ser2-Thr4 and Ser5-Pro6 comprise distinct "words" in the fission yeast CTD code. The phosphate regulon, which is repressed by lncRNA-mediated transcription interference, is de-repressed by CTD mutations P6•P6A and S5•S5A. De-repression of pho1 in P6•P6A and S5•S5A cells depends on cleavage and polyadenylation factor subunits Swd22 and Ppn1 and transcription termination factor Rhn1, signifying that Pro6 and Ser5 mutations elicit precocious lncRNA 3'-processing/termination.
Collapse
|
17
|
Garg A, Shuman S, Schwer B. A genetic screen for suppressors of hyper-repression of the fission yeast PHO regulon by Pol2 CTD mutation T4A implicates inositol 1-pyrophosphates as agonists of precocious lncRNA transcription termination. Nucleic Acids Res 2020; 48:10739-10752. [PMID: 33010152 PMCID: PMC7641756 DOI: 10.1093/nar/gkaa776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Fission yeast phosphate homeostasis genes are repressed in phosphate-rich medium by transcription of upstream lncRNAs that interferes with activation of the flanking mRNA promoters. lncRNA control of PHO gene expression is influenced by the Thr4 phospho-site in the RNA polymerase II CTD and the 3′ processing/termination factors CPF and Rhn1, mutations of which result in hyper-repression of the PHO regulon. Here, we performed a forward genetic screen for mutations that de-repress Pho1 acid phosphatase expression in CTD-T4A cells. Sequencing of 18 independent STF (Suppressor of Threonine Four) isolates revealed, in every case, a mutation in the C-terminal pyrophosphatase domain of Asp1, a bifunctional inositol pyrophosphate (IPP) kinase/pyrophosphatase that interconverts 5-IP7 and 1,5-IP8. Focused characterization of two STF strains identified 51 coding genes coordinately upregulated vis-à-vis the parental T4A strain, including all three PHO regulon genes (pho1, pho84, tgp1). Whereas these STF alleles—asp1-386(Stop) and asp1-493(Stop)—were lethal in a wild-type CTD background, they were viable in combination with mutations in CPF and Rhn1, in which context Pho1 was also de-repressed. Our findings implicate Asp1 pyrophosphatase in constraining 1,5-IP8 or 1-IP7 synthesis by Asp1 kinase, without which 1-IPPs can accumulate to toxic levels that elicit precocious termination by CPF/Rhn1.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
18
|
Shuman S. Transcriptional interference at tandem lncRNA and protein-coding genes: an emerging theme in regulation of cellular nutrient homeostasis. Nucleic Acids Res 2020; 48:8243-8254. [PMID: 32720681 PMCID: PMC7470944 DOI: 10.1093/nar/gkaa630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Tandem transcription interference occurs when the act of transcription from an upstream promoter suppresses utilization of a co-oriented downstream promoter. Because eukaryal genomes are liberally interspersed with transcription units specifying long non-coding (lnc) RNAs, there are many opportunities for lncRNA synthesis to negatively affect a neighboring protein-coding gene. Here, I review two eukaryal systems in which lncRNA interference with mRNA expression underlies a regulated biological response to nutrient availability. Budding yeast SER3 is repressed under serine-replete conditions by transcription of an upstream SRG1 lncRNA that traverses the SER3 promoter and elicits occlusive nucleosome rearrangements. SER3 is de-repressed by serine withdrawal, which leads to shut-off of SRG1 synthesis. The fission yeast phosphate homeostasis (PHO) regulon comprises three phosphate acquisition genes – pho1, pho84, and tgp1 – that are repressed under phosphate-replete conditions by 5′ flanking lncRNAs prt, prt2, and nc-tgp1, respectively. lncRNA transcription across the PHO mRNA promoters displaces activating transcription factor Pho7. PHO mRNAs are transcribed during phosphate starvation when lncRNA synthesis abates. The PHO regulon is de-repressed in phosphate-replete cells by genetic manipulations that favor ‘precocious’ lncRNA 3′-processing/termination upstream of the mRNA promoters. PHO lncRNA termination is governed by the Pol2 CTD code and is subject to metabolite control by inositol pyrophosphates.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Garg A. A lncRNA-regulated gene expression system with rapid induction kinetics in the fission yeast Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2020; 26:1743-1752. [PMID: 32788323 PMCID: PMC7566572 DOI: 10.1261/rna.076000.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism for the study of eukaryotic cellular physiology. The organism is genetically tractable and several tools to study the functions of individual genes are available. One such tool is regulatable gene expression and overproduction of proteins. Limitations of currently available overexpression systems include delay in expression after induction, narrow dynamic range, and system-wide changes due to induction conditions. Here I describe a new long noncoding RNA (lncRNA)-regulated, thiamine-inducible expression system that integrates lncRNA-based transcriptional interference at the fission yeast tgp1 promoter with the fast repression kinetics of the thiamine-repressible nmt1 promoter. This hybrid system has rapid induction kinetics, broad dynamic range, and tunable expression via thiamine concentration. The lncRNA-regulated thiamine-inducible system will be advantageous for the study of individual genes and for potential applications in the production of heterologous proteins in fission yeast.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
20
|
Schwer B, Sanchez AM, Shuman S. Inactivation of fission yeast Erh1 de-represses pho1 expression: evidence that Erh1 is a negative regulator of prt lncRNA termination. RNA (NEW YORK, N.Y.) 2020; 26:1334-1344. [PMID: 32546512 PMCID: PMC7491324 DOI: 10.1261/rna.076463.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Fission yeast Erh1 exists in a complex with RNA-binding protein Mmi1. Deletion of erh1 up-regulates the phosphate homeostasis gene pho1, which is normally repressed by transcription in cis of a 5' flanking prt lncRNA. Here we present evidence that de-repression of pho1 by erh1Δ is achieved through precocious 3'-processing/termination of prt lncRNA synthesis, to wit: (i) erh1Δ does not affect the activity of the prt or pho1 promoters per se; (ii) de-repression by erh1Δ depends on CPF (cleavage and polyadenylation factor) subunits Ctf1, Dis2, Ssu72, Swd22, and Ppn1 and on termination factor Rhn1; (iii) de-repression requires synthesis by the Asp1 IPP kinase of inositol 1-pyrophosphates (1-IPPs); (iv) de-repression is effaced by mutating Thr4 of the RNA polymerase II CTD to alanine; and (v) erh1Δ exerts an additive effect on pho1 de-repression in combination with mutating CTD Ser7 to alanine and with deletion of the IPP pyrophosphatase Aps1. These findings point to Erh1 as an antagonist of lncRNA termination in the prt-pho1 axis. In contrast, in mmi1Δ cells there is a reduction in pho1 mRNA and increase in the formation of a prt-pho1 read-through transcript, consistent with Mmi1 being an agonist of prt termination. We envision that Erh1 acts as a brake on Mmi1's ability to promote CPF-dependent termination during prt lncRNA synthesis. Consistent with this idea, erh1Δ de-repression of pho1 was eliminated by mutating the Mmi1-binding sites in the prt lncRNA.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Ana M Sanchez
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
21
|
Sanchez AM, Garg A, Shuman S, Schwer B. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Nucleic Acids Res 2020; 48:4811-4826. [PMID: 32282918 PMCID: PMC7229847 DOI: 10.1093/nar/gkaa212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
The phosphorylation pattern of Pol2 CTD Y1S2P3T4S5P6S7 repeats comprises an informational code coordinating transcription and RNA processing. cis-trans isomerization of CTD prolines expands the scope of the code in ways that are not well understood. Here we address this issue via analysis of fission yeast peptidyl-prolyl isomerase Pin1. A pin1Δ allele that does not affect growth per se is lethal in the absence of cleavage-polyadenylation factor (CPF) subunits Ppn1 and Swd22 and elicits growth defects absent CPF subunits Ctf1 and Dis2 and termination factor Rhn1. Whereas CTD S2A, T4A, and S7A mutants thrive in combination with pin1Δ, a Y1F mutant does not, nor do CTD mutants in which half the Pro3 or Pro6 residues are replaced by alanine. Phosphate-acquisition genes pho1, pho84 and tgp1 are repressed by upstream lncRNAs and are sensitive to changes in lncRNA 3' processing/termination. pin1Δ hyper-represses PHO gene expression and erases the de-repressive effect of CTD-S7A. Transcriptional profiling delineated sets of 56 and 22 protein-coding genes that are down-regulated and up-regulated in pin1Δ cells, respectively, 77% and 100% of which are downregulated/upregulated when the cis-proline-dependent Ssu72 CTD phosphatase is inactivated. Our results implicate Pin1 as a positive effector of 3' processing/termination that acts via Ssu72.
Collapse
Affiliation(s)
- Ana M Sanchez
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| |
Collapse
|
22
|
Yague-Sanz C, Vanrobaeys Y, Fernandez R, Duval M, Larochelle M, Beaudoin J, Berro J, Labbé S, Jacques PÉ, Bachand F. Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation. Genes Dev 2020; 34:883-897. [PMID: 32499400 PMCID: PMC7328516 DOI: 10.1101/gad.337212.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). We unveil two mechanisms by which APA affects gene expression in the slow mutant: 3' UTR shortening and gene derepression by premature transcription termination of upstream interfering noncoding RNAs. Strikingly, the genes affected by these mechanisms are enriched for functions involved in phosphate uptake and purine synthesis, processes essential for maintenance of the intracellular nucleotide pool. As nucleotide concentration regulates transcription elongation, our findings argue that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Yann Vanrobaeys
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Ronan Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Maxime Duval
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marc Larochelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jude Beaudoin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon Labbé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | | | - François Bachand
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
23
|
Sanchez AM, Garg A, Shuman S, Schwer B. Inositol pyrophosphates impact phosphate homeostasis via modulation of RNA 3' processing and transcription termination. Nucleic Acids Res 2019; 47:8452-8469. [PMID: 31276588 PMCID: PMC6895273 DOI: 10.1093/nar/gkz567] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.
Collapse
Affiliation(s)
- Ana M Sanchez
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
24
|
Garg A, Goldgur Y, Schwer B, Shuman S. Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis. Nucleic Acids Res 2019; 46:11262-11273. [PMID: 30212894 PMCID: PMC6265462 DOI: 10.1093/nar/gky827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023] Open
Abstract
Pho7, a member of the Zn2Cys6 family of fungal transcription factors, is the key transcriptional activator underlying fission yeast phosphate homeostasis, a physiological response to phosphate starvation in which the pho1, pho84 and tgp1 genes are upregulated. Here, we delineated a minimized 61-amino-acid Pho7 DNA-binding domain (DBD) and determined the 1.7 Å crystal structure of the DBD at its target site in the tgp1 promoter. Two distinctive features of the Pho7 DBD are: it binds DNA as a monomer, unlike most other fungal zinc-cluster factors that bind as homodimers; and it makes extensive interactions with its asymmetric target sequence over a 14-bp footprint that entails hydrogen bonding to 13 individual bases within, and remote from, the CGG triplet typically recognized by other Zn2Cys6 DBDs. Base pair substitutions at Pho7 sites in the tgp1 and pho1 promoters highlight the importance of the 5′-CGG triplet for Pho7 binding in vitro and Pho7-dependent gene expression in vivo. We identify several DBD amino acids at which alanine substitution effaced or attenuated the pho1 phosphate starvation response and concordantly reduced Pho7 binding to a pho1 promoter site.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
25
|
RNA polymerase II CTD interactome with 3' processing and termination factors in fission yeast and its impact on phosphate homeostasis. Proc Natl Acad Sci U S A 2018; 115:E10652-E10661. [PMID: 30355770 DOI: 10.1073/pnas.1810711115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carboxy-terminal domain (CTD) code encrypted within the Y1S2P3T4S5P6S7 heptad repeats of RNA polymerase II (Pol2) is deeply rooted in eukaryal biology. Key steps to deciphering the code are identifying the events in gene expression that are governed by individual "letters" and then defining a vocabulary of multiletter "words" and their meaning. Thr4 and Ser7 exert opposite effects on the fission yeast pho1 gene, expression of which is repressed under phosphate-replete conditions by transcription of an upstream flanking long noncoding RNA (lncRNA). Here we attribute the derepression of pho1 by a CTD-S7A mutation to precocious termination of lncRNA synthesis, an effect that is erased by mutations of cleavage-polyadenylation factor (CPF) subunits Ctf1, Ssu72, Ppn1, Swd22, and Dis2 and termination factor Rhn1. By contrast, a CTD-T4A mutation hyperrepresses pho1, as do CPF subunit and Rhn1 mutations, implying that T4A reduces lncRNA termination. Moreover, CTD-T4A is synthetically lethal with ppn1∆ and swd22∆, signifying that Thr4 and the Ppn1•Swd22 module play important, functionally redundant roles in promoting Pol2 termination. We find that Ppn1 and Swd22 become essential for viability when the CTD array is curtailed and that S7A overcomes the need for Ppn1•Swd22 in the short CTD context. Mutational synergies highlight redundant essential functions of (i) Ppn1•Swd22 and Rhn1, (ii) Ppn1•Swd22 and Ctf1, and (iii) Ssu72 and Dis2 phosphatases. CTD alleles Y1F, S2A, and T4A have overlapping synthetic lethalities with ppn1∆ and swd22∆, suggesting that Tyr1-Ser2-Thr4 form a three-letter CTD word that abets termination, with Rhn1 being a likely "reader" of this word.
Collapse
|
26
|
A current view on long noncoding RNAs in yeast and filamentous fungi. Appl Microbiol Biotechnol 2018; 102:7319-7331. [PMID: 29974182 PMCID: PMC6097775 DOI: 10.1007/s00253-018-9187-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial players in epigenetic regulation. They were initially discovered in human, yet they emerged as common factors involved in a number of central cellular processes in several eukaryotes. For example, in the past decade, research on lncRNAs in yeast has steadily increased. Several examples of lncRNAs were described in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Also, screenings for lncRNAs in ascomycetes were performed and, just recently, the first full characterization of a lncRNA was performed in the filamentous fungus Trichoderma reesei. In this review, we provide a broad overview about currently known fugal lncRNAs. We make an attempt to categorize them according to their functional context, regulatory strategies or special properties. Moreover, the potential of lncRNAs as a biotechnological tool is discussed.
Collapse
|
27
|
Garg A, Sanchez AM, Shuman S, Schwer B. A long noncoding (lnc)RNA governs expression of the phosphate transporter Pho84 in fission yeast and has cascading effects on the flanking prt lncRNA and pho1 genes. J Biol Chem 2018; 293:4456-4467. [PMID: 29414789 DOI: 10.1074/jbc.ra117.001352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
The expression of the phosphate transporter Pho84 in fission yeast Schizosaccharomyces pombe is repressed in phosphate-rich medium and induced during phosphate starvation. Two other phosphate-responsive genes in S. pombe (pho1 and tgp1) had been shown to be repressed in cis by transcription of a long noncoding (lnc) RNA from the upstream flanking gene, but whether pho84 expression is regulated in this manner is unclear. Here, we show that repression of pho84 is enforced by transcription of the SPBC8E4.02c locus upstream of pho84 to produce a lncRNA that we name prt2 ( pho-repressive transcript 2). We identify two essential elements of the prt2 promoter, a HomolD box and a TATA box, mutations of which inactivate the prt2 promoter and de-repress the downstream pho84 promoter under phosphate-replete conditions. We find that prt2 promoter inactivation also elicits a cascade effect on the adjacent downstream prt (lncRNA) and pho1 (acid phosphatase) genes, whereby increased pho84 transcription down-regulates prt lncRNA transcription and thereby de-represses pho1 Our results establish a unified model for the repressive arm of fission yeast phosphate homeostasis, in which transcription of prt2, prt, and nc-tgp1 lncRNAs interferes with the promoters of the flanking pho84, pho1, and tgp1 genes, respectively.
Collapse
Affiliation(s)
- Angad Garg
- From the Molecular Biology Program, Sloan-Kettering Institute, New York and
| | - Ana M Sanchez
- the Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - Stewart Shuman
- From the Molecular Biology Program, Sloan-Kettering Institute, New York and
| | - Beate Schwer
- the Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|