1
|
Parker MT, Fica SM, Simpson GG. RNA splicing: a split consensus reveals two major 5' splice site classes. Open Biol 2025; 15:240293. [PMID: 39809319 PMCID: PMC11732430 DOI: 10.1098/rsob.240293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA. Separating the human 5' splice site consensus into its two major constituents can help us understand fundamental features of eukaryote genome architecture and splicing mechanisms and inform treatment design for diseases caused by genetic variation affecting splicing.
Collapse
|
2
|
Shen A, Hencel K, Parker M, Scott R, Skukan R, Adesina A, Metheringham C, Miska E, Nam Y, Haerty W, Simpson G, Akay A. U6 snRNA m6A modification is required for accurate and efficient splicing of C. elegans and human pre-mRNAs. Nucleic Acids Res 2024; 52:9139-9160. [PMID: 38808663 PMCID: PMC11347140 DOI: 10.1093/nar/gkae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.
Collapse
Affiliation(s)
- Aykut Shen
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Katarzyna Hencel
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Matthew T Parker
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robyn Scott
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberta Skukan
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | | | | | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Yunsun Nam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wilfried Haerty
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gordon G Simpson
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- Cell & Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Alper Akay
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| |
Collapse
|
3
|
Chen Y, Dawes R, Kim HC, Ljungdahl A, Stenton SL, Walker S, Lord J, Lemire G, Martin-Geary AC, Ganesh VS, Ma J, Ellingford JM, Delage E, D'Souza EN, Dong S, Adams DR, Allan K, Bakshi M, Baldwin EE, Berger SI, Bernstein JA, Bhatnagar I, Blair E, Brown NJ, Burrage LC, Chapman K, Coman DJ, Compton AG, Cunningham CA, D'Souza P, Danecek P, Délot EC, Dias KR, Elias ER, Elmslie F, Evans CA, Ewans L, Ezell K, Fraser JL, Gallacher L, Genetti CA, Goriely A, Grant CL, Haack T, Higgs JE, Hinch AG, Hurles ME, Kuechler A, Lachlan KL, Lalani SR, Lecoquierre F, Leitão E, Fevre AL, Leventer RJ, Liebelt JE, Lindsay S, Lockhart PJ, Ma AS, Macnamara EF, Mansour S, Maurer TM, Mendez HR, Metcalfe K, Montgomery SB, Moosajee M, Nassogne MC, Neumann S, O'Donoghue M, O'Leary M, Palmer EE, Pattani N, Phillips J, Pitsava G, Pysar R, Rehm HL, Reuter CM, Revencu N, Riess A, Rius R, Rodan L, Roscioli T, Rosenfeld JA, Sachdev R, Shaw-Smith CJ, Simons C, Sisodiya SM, Snell P, St Clair L, Stark Z, Stewart HS, Tan TY, Tan NB, Temple SEL, Thorburn DR, Tifft CJ, Uebergang E, VanNoy GE, Vasudevan P, Vilain E, Viskochil DH, et alChen Y, Dawes R, Kim HC, Ljungdahl A, Stenton SL, Walker S, Lord J, Lemire G, Martin-Geary AC, Ganesh VS, Ma J, Ellingford JM, Delage E, D'Souza EN, Dong S, Adams DR, Allan K, Bakshi M, Baldwin EE, Berger SI, Bernstein JA, Bhatnagar I, Blair E, Brown NJ, Burrage LC, Chapman K, Coman DJ, Compton AG, Cunningham CA, D'Souza P, Danecek P, Délot EC, Dias KR, Elias ER, Elmslie F, Evans CA, Ewans L, Ezell K, Fraser JL, Gallacher L, Genetti CA, Goriely A, Grant CL, Haack T, Higgs JE, Hinch AG, Hurles ME, Kuechler A, Lachlan KL, Lalani SR, Lecoquierre F, Leitão E, Fevre AL, Leventer RJ, Liebelt JE, Lindsay S, Lockhart PJ, Ma AS, Macnamara EF, Mansour S, Maurer TM, Mendez HR, Metcalfe K, Montgomery SB, Moosajee M, Nassogne MC, Neumann S, O'Donoghue M, O'Leary M, Palmer EE, Pattani N, Phillips J, Pitsava G, Pysar R, Rehm HL, Reuter CM, Revencu N, Riess A, Rius R, Rodan L, Roscioli T, Rosenfeld JA, Sachdev R, Shaw-Smith CJ, Simons C, Sisodiya SM, Snell P, St Clair L, Stark Z, Stewart HS, Tan TY, Tan NB, Temple SEL, Thorburn DR, Tifft CJ, Uebergang E, VanNoy GE, Vasudevan P, Vilain E, Viskochil DH, Wedd L, Wheeler MT, White SM, Wojcik M, Wolfe LA, Wolfenson Z, Wright CF, Xiao C, Zocche D, Rubenstein JL, Markenscoff-Papadimitriou E, Fica SM, Baralle D, Depienne C, MacArthur DG, Howson JMM, Sanders SJ, O'Donnell-Luria A, Whiffin N. De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome. Nature 2024; 632:832-840. [PMID: 38991538 PMCID: PMC11338827 DOI: 10.1038/s41586-024-07773-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 base pair region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals in whom it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologues. Using RNA sequencing, we show how 5' splice-site use is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 base pair region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide.
Collapse
Affiliation(s)
- Yuyang Chen
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ruebena Dawes
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hyung Chul Kim
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alicia Ljungdahl
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Sarah L Stenton
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jenny Lord
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gabrielle Lemire
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jialan Ma
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jamie M Ellingford
- Genomics England, London, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Erwan Delage
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Elston N D'Souza
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shan Dong
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - David R Adams
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kirsten Allan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Erin E Baldwin
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Ishita Bhatnagar
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ed Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly Chapman
- Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - David J Coman
- Department of Metabolic Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Medicine, Griffith university, Gold Coast, Queensland, Australia
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Chloe A Cunningham
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Precilla D'Souza
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Petr Danecek
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Emmanuèle C Délot
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
| | - Kerith-Rae Dias
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ellen R Elias
- Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA
- University of Colorado School of Medicine, University of Colorado, Aurora, CO, USA
| | - Frances Elmslie
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Care-Anne Evans
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Lisa Ewans
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children's Hospitals Network, Randwick, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, North South Wales, Australia
| | - Kimberly Ezell
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Fraser
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - Christina L Grant
- Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Jenny E Higgs
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Anjali G Hinch
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katherine L Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Trust, Southampton, UK
- Department of Human Genetics and Genomic Medicine, Southampton University, Southampton, UK
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - François Lecoquierre
- University of Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anna Le Fevre
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jan E Liebelt
- Paediatric and Reproductive Genetics Unit, South Australian Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| | - Sarah Lindsay
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alan S Ma
- Department of Clinical Genetics, Sydney Children's Hospitals Network Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ellen F Macnamara
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Sahar Mansour
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Taylor M Maurer
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hector R Mendez
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Stephen B Montgomery
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Department of Genetics, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Marie-Cécile Nassogne
- Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Serena Neumann
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Melanie O'Leary
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth E Palmer
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children's Hospitals Network, Randwick, New South Wales, Australia
| | - Nikhil Pattani
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - John Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Georgia Pitsava
- Institute for Clinical and Translational Research, University of California Irvine, Irvine, CA, USA
| | - Ryan Pysar
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children's Hospitals Network, Randwick, New South Wales, Australia
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Heidi L Rehm
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rocio Rius
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rani Sachdev
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children's Hospitals Network, Randwick, New South Wales, Australia
| | - Charles J Shaw-Smith
- Department of Clinical Genetics, Peninsula Regional Clinical Genetics Service, Royal Devon University Hospital, Exeter, UK
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- UK and Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Laura St Clair
- Department of Clinical Genetics, Sydney Children's Hospitals Network Westmead, Sydney, New South Wales, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Helen S Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie B Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Suzanna E L Temple
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cynthia J Tifft
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Eloise Uebergang
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Grace E VanNoy
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Vasudevan
- Medical Genetics, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California Irvine, Irvine, CA, USA
| | - David H Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Laura Wedd
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Matthew T Wheeler
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Monica Wojcik
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynne A Wolfe
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Zoe Wolfenson
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park and St Mark's Hospitals, London, UK
| | - John L Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Eirene Markenscoff-Papadimitriou
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joanna M M Howson
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre, Oxford, UK
| | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Beusch I, Madhani HD. Understanding the dynamic design of the spliceosome. Trends Biochem Sci 2024; 49:583-595. [PMID: 38641465 DOI: 10.1016/j.tibs.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.
Collapse
Affiliation(s)
- Irene Beusch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Sarka K, Katzman S, Zahler AM. A role for SNU66 in maintaining 5' splice site identity during spliceosome assembly. RNA (NEW YORK, N.Y.) 2024; 30:695-709. [PMID: 38443114 PMCID: PMC11098459 DOI: 10.1261/rna.079971.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
In spliceosome assembly, the 5' splice site is initially recognized by U1 snRNA. U1 leaves the spliceosome during the assembly process, therefore other factors contribute to the maintenance of 5' splice site identity as it is loaded into the catalytic site. Recent structural data suggest that human tri-snRNP 27K (SNRP27) M141 and SNU66 H734 interact to stabilize the U4/U6 quasi-pseudo knot at the base of the U6 snRNA ACAGAGA box in pre-B complex. Previously, we found that mutations in Caenorhabditis elegans at SNRP-27 M141 promote changes in alternative 5'ss usage. We tested whether the potential interaction between SNRP-27 M141 and SNU-66 H765 (the C. elegans equivalent position to human SNU66 H734) contributes to maintaining 5' splice site identity during spliceosome assembly. We find that SNU-66 H765 mutants promote alternative 5' splice site usage. Many of the alternative 5' splicing events affected by SNU-66(H765G) overlap with those affected SNRP-27(M141T). Double mutants of snrp-27(M141T) and snu-66(H765G) are homozygous lethal. We hypothesize that mutations at either SNRP-27 M141 or SNU-66 H765 allow the spliceosome to load alternative 5' splice sites into the active site. Tests with mutant U1 snRNA and swapped 5' splice sites indicate that the ability of SNRP-27 M141 and SNU-66 H765 mutants to affect a particular 5' splice alternative splicing event is dependent on both the presence of a weaker consensus 5'ss nearby and potentially nearby splicing factor binding sites. Our findings confirm a new role for the C terminus of SNU-66 in maintenance of 5' splice site identity during spliceosome assembly.
Collapse
Affiliation(s)
- Kenna Sarka
- Center for Molecular Biology of RNA and Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Alan M Zahler
- Center for Molecular Biology of RNA and Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
6
|
Chen Y, Dawes R, Kim HC, Stenton SL, Walker S, Ljungdahl A, Lord J, Ganesh VS, Ma J, Martin-Geary AC, Lemire G, D’Souza EN, Dong S, Ellingford JM, Adams DR, Allan K, Bakshi M, Baldwin EE, Berger SI, Bernstein JA, Brown NJ, Burrage LC, Chapman K, Compton AG, Cunningham CA, D’Souza P, Délot EC, Dias KR, Elias ER, Evans CA, Ewans L, Ezell K, Fraser JL, Gallacher L, Genetti CA, Grant CL, Haack T, Kuechler A, Lalani SR, Leitão E, Fevre AL, Leventer RJ, Liebelt JE, Lockhart PJ, Ma AS, Macnamara EF, Maurer TM, Mendez HR, Montgomery SB, Nassogne MC, Neumann S, O’Leary M, Palmer EE, Phillips J, Pitsava G, Pysar R, Rehm HL, Reuter CM, Revencu N, Riess A, Rius R, Rodan L, Roscioli T, Rosenfeld JA, Sachdev R, Simons C, Sisodiya SM, Snell P, Clair L, Stark Z, Tan TY, Tan NB, Temple SEL, Thorburn DR, Tifft CJ, Uebergang E, VanNoy GE, Vilain E, Viskochil DH, Wedd L, Wheeler MT, White SM, Wojcik M, Wolfe LA, Wolfenson Z, Xiao C, Zocche D, Rubenstein JL, Markenscoff-Papadimitriou E, Fica SM, Baralle D, Depienne C, MacArthur DG, Howson JMM, Sanders SJ, O’Donnell-Luria A, Whiffin N. De novo variants in the non-coding spliceosomal snRNA gene RNU4-2 are a frequent cause of syndromic neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.07.24305438. [PMID: 38645094 PMCID: PMC11030480 DOI: 10.1101/2024.04.07.24305438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.
Collapse
Affiliation(s)
- Yuyang Chen
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ruebena Dawes
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hyung Chul Kim
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah L Stenton
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Alicia Ljungdahl
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Jenny Lord
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jialan Ma
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gabrielle Lemire
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elston N D’Souza
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shan Dong
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Jamie M Ellingford
- Genomics England, London, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - David R Adams
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kirsten Allan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
| | - Erin E Baldwin
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, USA
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly Chapman
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Chloe A Cunningham
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Precilla D’Souza
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Emmanuèle C Délot
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, USA
| | - Kerith-Rae Dias
- Neuroscience Research Australia, Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ellen R Elias
- Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO, USA
- University of Colorado School of Medicine, University of Colorado, Aurora, CO, USA
| | - Carey-Anne Evans
- Neuroscience Research Australia, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Lisa Ewans
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Kimberly Ezell
- Division of Medical Genetics & Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Fraser
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, USA
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christina L Grant
- Division of Genetics and Metabolism, Children’s National Hospital, Washington, DC, USA
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anna Le Fevre
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Jan E Liebelt
- Paediatric and Reproductive Genetics Unit, South Australian Clinical Genetics Service, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Repromed, Dulwich, SA, Australia
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Alan S Ma
- Department of Clinical Genetics, Sydney Children’s Hospitals Network Westmead, Sydney, NSW, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Ellen F Macnamara
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Taylor M Maurer
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hector R Mendez
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Department of Genetics, Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie-Cécile Nassogne
- Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium
| | - Serena Neumann
- Division of Medical Genetics & Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melanie O’Leary
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth E Palmer
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
| | - John Phillips
- Division of Medical Genetics & Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Georgia Pitsava
- Institute for Clinical and Translational Research, University of California, Irvine, CA, USA
| | - Ryan Pysar
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Heidi L Rehm
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rocio Rius
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rani Sachdev
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, NSW, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- UK and Chalfont Centre for Epilepsy, Bucks, UK
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Laura Clair
- Department of Clinical Genetics, Sydney Children’s Hospitals Network Westmead, Sydney, NSW, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie B Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Suzanna EL Temple
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
- School of Women’s and Childrens’s Health, University of New South Wales, Sydney, NSW, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Cynthia J Tifft
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Eloise Uebergang
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Grace E VanNoy
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - David H Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Laura Wedd
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Matthew T Wheeler
- GREGoR Stanford Site, Stanford University School of Medicine, Stanford, CA, USA
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine - Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Monica Wojcik
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynne A Wolfe
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Zoe Wolfenson
- Undiagnosed Disesases Program, National Human Genome Research Institute, Bethesda, MD, USA
| | - Changrui Xiao
- Department of Neurology, University of California, Irvine, CA, USA
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark’s Hospitals, London, UK
| | - John L Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Eirene Markenscoff-Papadimitriou
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | | | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joanna MM Howson
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre, Oxford, UK
| | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Anne O’Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Jiang D, Zhu XL, An Y, Li YR. Clinical significance of small nuclear ribonucleoprotein U1 subunit 70 in patients with hepatocellular carcinoma. PeerJ 2024; 12:e16876. [PMID: 38500533 PMCID: PMC10946392 DOI: 10.7717/peerj.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/11/2024] [Indexed: 03/20/2024] Open
Abstract
Background & Aims Small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70) as one of the components of the U1 small nuclear ribonucleoprotein (snRNP) is rarely reported in cancers. This study aims to estimate the application potential of SNRNP70 in hepatocellular carcinoma (HCC) clinical practice. Methods Based on the TCGA database and cohort of HCC patients, we investigated the expression patterns and prognostic value of SNRNP70 in HCC. Then, the combination of SNRNP70 and alpha-fetoprotein (AFP) in 278 HCC cases was analyzed. Next, western blotting and immunohistochemistry were used to detect the expression of SNRNP70 in nucleus and cytoplasm. Finally, Cell Counting Kit-8 (CCK-8) and scratch wound healing assays were used to detect the effect of SNRNP70 on the proliferation and migration of HCC cells. Results SNRNP70 was highly expressed in HCC. Its expression was increasingly high during the progression of HCC and was positively related to immune infiltration cells. Higher SNRNP70 expression indicated a poor outcome of HCC patients. In addition, nuclear SNRNP70/AFP combination could be a prognostic biomarker for overall survival and recurrence. Cell experiments confirmed that knockdown of SNRNP70 inhibited the proliferation and migration of HCC cells. Conclusion SNRNP70 may be a new biomarker for HCC progression and HCC diagnosis as well as prognosis. SNRNP70 combined with serum AFP may indicate the prognosis and recurrence status of HCC patients after operation.
Collapse
Affiliation(s)
- Dong Jiang
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xia-Ling Zhu
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yan An
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-ran Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Shi H, Liu Y, Liu Z, Ge X, Wu J, Tang H, Zhang Y, Lu S. Prediction Model for Immunotherapy Efficacy in Hepatocellular Carcinoma Based on Alternative Splicing Sequencing Data. Technol Cancer Res Treat 2024; 23:15330338241265962. [PMID: 39118591 PMCID: PMC11311179 DOI: 10.1177/15330338241265962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Integrating immune checkpoint inhibitors with multi-target tyrosine kinase inhibitors presents an innovative and hopeful strategy in liver cancer treatment. Nonetheless, a degree of resistance to this treatment is noticeable in certain patients. Alternative splicing (AS) represents a common biological process that controls the variety of life functions via isoforms. Purpose: Investigating how gene AS affects the effectiveness of combined immunotherapy in treating hepatocellular carcinoma (HCC). Methods: Our retrospective examination focused on AS's effect on immune therapy effectiveness, utilizing accessible tissue sequencing and clinical records for HCC. For corroborating our results, we gathered samples of drug-resistant HCC tissue, nearby tissues, HCC tissue with high drug responsiveness, and healthy liver tissue from clinical studies. Results: The study revealed a link between the frequency of AS occurrences, the expression levels of programmed cell death 1 ligand 1, and the resistance to tumor medications. Our study detailed the AS occurrences in HCC, leading to the creation of a risk-assessment function and a predictive model using AS data. The results of our study revealed that the risk score effectively distinguished between various immune subtypes and the effectiveness of immune therapy. Additional examination of the chosen AS occurrences uncovered their effects on both the immune microenvironment and cellular immunity. Our investigation also delved into the regulatory framework of AS, uncovering the role of stringently controlled splicing factors in the emergence of tumors and the modulation of the body's immune response. Conclusions: Increased AS in HCC diminishes the efficacy of immunotherapy; conversely, more AS in peritumoral tissue elevates the likelihood of tumor immune evasion.
Collapse
Affiliation(s)
- Huizhong Shi
- Medical School of China PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLAGH, Beijing, China
| | - Yang Liu
- Medical School of China PLA, Beijing, China
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLAGH, Beijing, China
| | - Zhao Liu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences(Qingdao Central Hospital) Qingdao, China
| | - Xinlan Ge
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Jushan Wu
- General Surgery Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Haowen Tang
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLAGH, Beijing, China
| | - Yi Zhang
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shichun Lu
- The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLAGH, Beijing, China
| |
Collapse
|
9
|
Parker MT, Fica SM, Barton GJ, Simpson GG. Inter-species association mapping links splice site evolution to METTL16 and SNRNP27K. eLife 2023; 12:e91997. [PMID: 37787376 PMCID: PMC10581693 DOI: 10.7554/elife.91997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Eukaryotic genes are interrupted by introns that are removed from transcribed RNAs by splicing. Patterns of splicing complexity differ between species, but it is unclear how these differences arise. We used inter-species association mapping with Saccharomycotina species to correlate splicing signal phenotypes with the presence or absence of splicing factors. Here, we show that variation in 5' splice site sequence preferences correlate with the presence of the U6 snRNA N6-methyladenosine methyltransferase METTL16 and the splicing factor SNRNP27K. The greatest variation in 5' splice site sequence occurred at the +4 position and involved a preference switch between adenosine and uridine. Loss of METTL16 and SNRNP27K orthologs, or a single SNRNP27K methionine residue, was associated with a preference for +4 U. These findings are consistent with splicing analyses of mutants defective in either METTL16 or SNRNP27K orthologs and models derived from spliceosome structures, demonstrating that inter-species association mapping is a powerful orthogonal approach to molecular studies. We identified variation between species in the occurrence of two major classes of 5' splice sites, defined by distinct interaction potentials with U5 and U6 snRNAs, that correlates with intron number. We conclude that variation in concerted processes of 5' splice site selection by U6 snRNA is associated with evolutionary changes in splicing signal phenotypes.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian M Fica
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | | | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Cell & Molecular Sciences, James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
10
|
Shen A, Hencel K, Parker MT, Scott R, Skukan R, Adesina AS, Metheringham CL, Miska EA, Nam Y, Haerty W, Simpson GG, Akay A. U6 snRNA m6A modification is required for accurate and efficient cis- and trans-splicing of C. elegans mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558044. [PMID: 37745402 PMCID: PMC10516052 DOI: 10.1101/2023.09.16.558044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
pre-mRNA splicing is a critical feature of eukaryotic gene expression. Many eukaryotes use cis-splicing to remove intronic sequences from pre-mRNAs. In addition to cis-splicing, many organisms use trans-splicing to replace the 5' ends of mRNAs with a non-coding spliced-leader RNA. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that m6A modification of U6 snRNA A43 by the RNA methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of U6 snRNA m6A modification primarily leads to alternative splicing at 5' splice sites. Furthermore, weaker 5' splice site recognition by the unmodified U6 snRNA A43 affects splicing at 3' splice sites. U6 snRNA m6A43 and the splicing factor SNRNP27K function to recognise an overlapping set of 5' splice sites with an adenosine at +4 position. Finally, we show that U6 snRNA m6A43 is required for efficient SL trans-splicing at weak 3' trans-splice sites. We conclude that the U6 snRNA m6A modification is important for accurate and efficient cis- and trans-splicing in C. elegans.
Collapse
Affiliation(s)
- Aykut Shen
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich
| | - Katarzyna Hencel
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich
- These authors contributed equally
| | - Matthew T Parker
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- These authors contributed equally
| | - Robyn Scott
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberta Skukan
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich
| | | | | | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
| | - Yunsun Nam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wilfried Haerty
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gordon G Simpson
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Cell & Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Alper Akay
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich
| |
Collapse
|
11
|
Cartwright-Acar CH, Osterhoudt K, Suzuki JMNGL, Gomez D, Katzman S, Zahler AM. A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5' splice site identity. Nucleic Acids Res 2022; 50:11834-11857. [PMID: 36321655 PMCID: PMC9723624 DOI: 10.1093/nar/gkac991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
The spliceosome undergoes extensive rearrangements as it assembles onto precursor messenger RNAs. In the earliest assembly step, U1snRNA identifies the 5' splice site. However, U1snRNA leaves the spliceosome relatively early in assembly, and 5' splice site identity is subsequently maintained through interactions with U6snRNA, protein factor PRP8, and other components during the rearrangements that build the catalytic site. Using a forward genetic screen in Caenorhabditis elegans, we have identified suppressors of a locomotion defect caused by a 5'ss mutation. Here we report three new suppressor alleles from this screen, two in PRP8 and one in SNRNP200/BRR2. mRNASeq studies of these suppressor strains indicate that they also affect specific native alternative 5'ss, especially for suppressor PRP8 D1549N. A strong suppressor at the unstructured N-terminus of SNRNP200, N18K, indicates a novel role for this region. By examining distinct changes in the splicing of native genes, examining double mutants between suppressors, comparing these new suppressors to previously identified splicing suppressors from yeast, and mapping conserved suppressor residues onto cryoEM structural models of assembling human spliceosomes, we conclude that there are multiple interactions at multiple stages in spliceosome assembly responsible for maintaining the initial 5'ss identified by U1snRNA for entry into the catalytic core.
Collapse
Affiliation(s)
- Catiana H Cartwright-Acar
- Department of MCD Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Kenneth Osterhoudt
- Department of MCD Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jessie M N G L Suzuki
- Department of MCD Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Destiny R Gomez
- Department of MCD Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Sol Katzman
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Alan M Zahler
- Department of MCD Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
12
|
A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5' splice site identity. PLoS Genet 2022; 18:e1010028. [PMID: 35143478 PMCID: PMC8865678 DOI: 10.1371/journal.pgen.1010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/23/2022] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
Pre-mRNA splicing is an essential step of eukaryotic gene expression carried out by a series of dynamic macromolecular protein/RNA complexes, known collectively and individually as the spliceosome. This series of spliceosomal complexes define, assemble on, and catalyze the removal of introns. Molecular model snapshots of intermediates in the process have been created from cryo-EM data, however, many aspects of the dynamic changes that occur in the spliceosome are not fully understood. Caenorhabditis elegans follow the GU-AG rule of splicing, with almost all introns beginning with 5’ GU and ending with 3’ AG. These splice sites are identified early in the splicing cycle, but as the cycle progresses and “custody” of the pre-mRNA splice sites is passed from factor to factor as the catalytic site is built, the mechanism by which splice site identity is maintained or re-established through these dynamic changes is unclear. We performed a genetic screen in C. elegans for factors that are capable of changing 5’ splice site choice. We report that KIN17 and PRCC are involved in splice site choice, the first functional splicing role proposed for either of these proteins. Previously identified suppressors of cryptic 5’ splicing promote distal cryptic GU splice sites, however, mutations in KIN17 and PRCC instead promote usage of an unusual proximal 5’ splice site which defines an intron beginning with UU, separated by 1nt from a GU donor. We performed high-throughput mRNA sequencing analysis and found that mutations in PRCC, and to a lesser extent KIN17, changed alternative 5’ splice site usage at native sites genome-wide, often promoting usage of nearby non-consensus sites. Our work has uncovered both fine and coarse mechanisms by which the spliceosome maintains splice site identity during the complex assembly process. Pre-messenger RNA splicing is an important regulator of eukaryotic gene expression, changing the content, frame, and functionality of both coding and non-coding transcripts. Our understanding of how the spliceosome chooses where to cut has focused on the initial identification of splice sites. However, our results suggest that the spliceosome also relies on other components in later steps to maintain the identity of the splice donor sites. We are currently in the midst of a “resolution revolution”, with ever-clearer cryo-EM snapshots of stalled complexes, allowing researchers to visualize moments in time in the splicing cycle. These models are illuminating, but do not always elucidate mechanistic functioning of a highly dynamic ribonucleoprotein complex. Therefore, our lab takes a complementary approach, using the power of genetics in a multicellular animal to gain functional insights into the spliceosome. Using a C.elegans genetic screen, we have found novel functional splicing roles for two proteins, KIN17 and PRCC. Mutations in PRCC in particular promote nearby alternative 5’ splice sites at native loci. This work improves our understanding of how the spliceosome maintains the identity of where to cut the pre-mRNA, and thus how genes are expressed and used in multicellular animals.
Collapse
|
13
|
Jensen M, Tyryshkina A, Pizzo L, Smolen C, Das M, Huber E, Krishnan A, Girirajan S. Combinatorial patterns of gene expression changes contribute to variable expressivity of the developmental delay-associated 16p12.1 deletion. Genome Med 2021; 13:163. [PMID: 34657631 PMCID: PMC8522054 DOI: 10.1186/s13073-021-00982-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have suggested that individual variants do not sufficiently explain the variable expressivity of phenotypes observed in complex disorders. For example, the 16p12.1 deletion is associated with developmental delay and neuropsychiatric features in affected individuals, but is inherited in > 90% of cases from a mildly-affected parent. While children with the deletion are more likely to carry additional "second-hit" variants than their parents, the mechanisms for how these variants contribute to phenotypic variability are unknown. METHODS We performed detailed clinical assessments, whole-genome sequencing, and RNA sequencing of lymphoblastoid cell lines for 32 individuals in five large families with multiple members carrying the 16p12.1 deletion. We identified contributions of the 16p12.1 deletion and "second-hit" variants towards a range of expression changes in deletion carriers and their family members, including differential expression, outlier expression, alternative splicing, allele-specific expression, and expression quantitative trait loci analyses. RESULTS We found that the deletion dysregulates multiple autism and brain development genes such as FOXP1, ANK3, and MEF2. Carrier children also showed an average of 5323 gene expression changes compared with one or both parents, which matched with 33/39 observed developmental phenotypes. We identified significant enrichments for 13/25 classes of "second-hit" variants in genes with expression changes, where 4/25 variant classes were only enriched when inherited from the noncarrier parent, including loss-of-function SNVs and large duplications. In 11 instances, including for ZEB2 and SYNJ1, gene expression was synergistically altered by both the deletion and inherited "second-hits" in carrier children. Finally, brain-specific interaction network analysis showed strong connectivity between genes carrying "second-hits" and genes with transcriptome alterations in deletion carriers. CONCLUSIONS Our results suggest a potential mechanism for how "second-hit" variants modulate expressivity of complex disorders such as the 16p12.1 deletion through transcriptomic perturbation of gene networks important for early development. Our work further shows that family-based assessments of transcriptome data are highly relevant towards understanding the genetic mechanisms associated with complex disorders.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
- Neuroscience Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, 16802, University Park, USA.
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Neuroscience Program, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Choudhary B, Marx O, Norris AD. Spliceosomal component PRP-40 is a central regulator of microexon splicing. Cell Rep 2021; 36:109464. [PMID: 34348142 PMCID: PMC8378409 DOI: 10.1016/j.celrep.2021.109464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microexons (≤27 nt) play critical roles in nervous system development and function but create unique challenges for the splicing machinery. The mechanisms of microexon regulation are therefore of great interest. We performed a genetic screen for alternative splicing regulators in the C. elegans nervous system and identify PRP-40, a core component of the U1 snRNP. RNA-seq reveals that PRP-40 is required for inclusion of alternatively spliced, but not constitutively spliced, exons. PRP-40 is particularly required for inclusion of neuronal microexons, and our data indicate that PRP-40 is a central regulator of microexon splicing. Microexons can be relieved from PRP-40 dependence by artificially increasing exon size or reducing flanking intron size, indicating that PRP-40 is specifically required for microexons surrounded by conventionally sized introns. Knockdown of the orthologous PRPF40A in mouse neuroblastoma cells causes widespread dysregulation of microexons but not conventionally sized exons. PRP-40 regulation of neuronal microexons is therefore a widely conserved phenomenon.
Collapse
Affiliation(s)
- Bikash Choudhary
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Olivia Marx
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Adam D Norris
- Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA.
| |
Collapse
|
15
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
16
|
Fica SM. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr Opin Struct Biol 2020; 65:139-148. [PMID: 32717639 DOI: 10.1016/j.sbi.2020.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022]
Abstract
Introns are excised from pre-messenger RNAs by the spliceosome, which produces mRNAs with continuous protein-coding information. In humans, most pre-mRNAs undergo alternative splicing to expand proteomic diversity. Cryo-electron microscopy (cryo-EM) structures of the yeast spliceosome elucidated how proteins stabilize and remodel an RNA-based active site to effect splicing catalysis. More recent cryo-EM snapshots of the human spliceosome reveal a complex protein scaffold and provide insights into the role of specific human proteins in modulating spliceosome activation, splice site positioning, and the ATPase-mediated dynamics of the active site. The emerging molecular picture highlights how, compared to its yeast counterpart, the human spliceosome has coopted additional protein factors to allow increased plasticity of splice site recognition and remodeling, and potentially to regulate alternative splicing.
Collapse
Affiliation(s)
- Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
17
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
18
|
Charenton C, Wilkinson ME, Nagai K. Mechanism of 5' splice site transfer for human spliceosome activation. Science 2019; 364:362-367. [PMID: 30975767 DOI: 10.1126/science.aax3289] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The prespliceosome, comprising U1 and U2 small nuclear ribonucleoproteins (snRNPs) bound to the precursor messenger RNA 5' splice site (5'SS) and branch point sequence, associates with the U4/U6.U5 tri-snRNP to form the fully assembled precatalytic pre-B spliceosome. Here, we report cryo-electron microscopy structures of the human pre-B complex captured before U1 snRNP dissociation at 3.3-angstrom core resolution and the human tri-snRNP at 2.9-angstrom resolution. U1 snRNP inserts the 5'SS-U1 snRNA helix between the two RecA domains of the Prp28 DEAD-box helicase. Adenosine 5'-triphosphate-dependent closure of the Prp28 RecA domains releases the 5'SS to pair with the nearby U6 ACAGAGA-box sequence presented as a mobile loop. The structures suggest that formation of the 5'SS-ACAGAGA helix triggers remodeling of an intricate protein-RNA network to induce Brr2 helicase relocation to its loading sequence in U4 snRNA, enabling Brr2 to unwind the U4/U6 snRNA duplex to allow U6 snRNA to form the catalytic center of the spliceosome.
Collapse
Affiliation(s)
| | | | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Abstract
Pre-mRNA splicing must occur with extremely high fidelity. Spliceosomes assemble onto pre-mRNA guided by specific sequences (5' splice site, 3' splice site, and branchpoint). When splice sites are mutated, as in many hereditary diseases, the spliceosome can aberrantly select nearby pseudo- or "cryptic" splice sites, often resulting in nonfunctional protein. How the spliceosome distinguishes authentic splice sites from cryptic splice sites is poorly understood. We performed a Caenorhabditis elegans genetic screen to find cellular factors that affect the frequency with which the spliceosome uses cryptic splice sites and identified two alleles in core spliceosome component Prp8 that alter cryptic splicing frequency. Subsequent complementary genetic and structural analyses in yeast implicate these alleles in the stability of the spliceosome's catalytic core. However, despite a clear effect on cryptic splicing, high-throughput mRNA sequencing of these prp-8 mutant C. elegans reveals that overall alternative splicing patterns are relatively unchanged. Our data suggest the spliceosome evolved intrinsic mechanisms to reduce the occurrence of cryptic splicing and that these mechanisms are distinct from those that impact alternative splicing.
Collapse
|