1
|
Li P, Li JY, Ma YJ, Wang XW, Chen JP, Li YY. DNA Damaging Agents Induce RNA Structural and Transcriptional Changes for Genes Associated with Redox Homeostasis in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:780. [PMID: 40094761 PMCID: PMC11901513 DOI: 10.3390/plants14050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Living organisms are constantly exposed to various DNA damaging agents. While the mechanisms of DNA damage and DNA repair are well understood, the impact of these agents on RNA secondary structure and subsequent function remains elusive. In this study, we explore the effects of DNA damaging reagent methyl methanesulfonate (MMS) on arabidopsis gene expression and RNA secondary structure using the dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq) method. Our analyses reveal that changes in transcriptional levels and mRNA structure are key factors in response to DNA damaging agents. MMS treatment leads to the up-regulation of arabidopsis RBOHs (respiratory burst oxidase homologues) and alteration in the RNA secondary structure of GSTF9 and GSTF10, thereby enhancing mRNA translation efficiency. Redox homeostasis manipulated by RBOHs and GSTFs plays a crucial role in MMS-induced primary root growth inhibition. In conclusion, our findings shed light on the effects of DNA damaging agents on RNA structure and potential mRNA translation, which provide a new insight to understand the mechanism of DNA damage.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiong-Yi Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Jiao Ma
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiao-Wei Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Ping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yi-Yuan Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
3
|
Chen S, Sibley CD, Latifi B, Balaratnam S, Dorn RS, Lupták A, Schneekloth JS, Prescher JA. Bioorthogonal cyclopropenones for investigating RNA structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619649. [PMID: 39484557 PMCID: PMC11527001 DOI: 10.1101/2024.10.22.619649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
RNA sequences encode secondary and tertiary structures that impact protein production and other cellular processes. Misfolded RNAs can also potentiate disease, but the complete picture is lacking. To establish more comprehensive and accurate RNA structure-function relationships, new methods are needed to interrogate RNA and trap native conformations in cellular environments. Existing tools primarily rely on electrophiles that are constitutively "on" or triggered by UV light, often resulting in high background reactivity. We developed an alternative, chemically triggered approach to crosslink RNAs using bioorthogonal cyclopropenones (CpOs). These reagents selectively react with phosphines to provide ketenes-electrophiles that can trap neighboring nucleophiles to forge covalent crosslinks. As proof-of-concept, we synthesized a panel of CpOs and appended them to thiazole orange (TO-1). The TO-1 conjugates bound selectively to a model RNA aptamer (Mango) with nanomolar affinity, confirmed by fluorescence turn-on. After phosphine administration, covalent crosslinks were formed between the CpO probes and RNA. The degree of crosslinking was both time and dose-dependent. We further applied the chemically triggered tools to model RNAs in biologically relevant conditions. Collectively, this work expands the toolkit of probes for studying RNA and its native conformations.
Collapse
Affiliation(s)
- Sharon Chen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Brandon Latifi
- Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702
| | - Robert S. Dorn
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrej Lupták
- Departments of Chemistry, University of California, Irvine, California 92697, United States
- Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States
- Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702
| | - Jennifer A. Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States
- Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States
- Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
4
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
5
|
Douds CA, Babitzke P, Bevilacqua PC. A new reagent for in vivo structure probing of RNA G and U residues that improves RNA structure prediction alone and combined with DMS. RNA (NEW YORK, N.Y.) 2024; 30:901-919. [PMID: 38670632 PMCID: PMC11182018 DOI: 10.1261/rna.079974.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
A key to understanding the roles of RNA in regulating gene expression is knowing their structures in vivo. One way to obtain this information is through probing the structures of RNA with chemicals. To probe RNA structure directly in cells, membrane-permeable reagents that modify the Watson-Crick (WC) face of unpaired nucleotides can be used. Although dimethyl sulfate (DMS) has led to substantial insight into RNA structure, it has limited nucleotide specificity in vivo, with WC face reactivity only at adenine (A) and cytosine (C) at neutral pH. The reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was recently shown to modify the WC face of guanine (G) and uracil (U). Although useful at lower concentrations in experiments that measure chemical modifications by reverse transcription (RT) stops, at higher concentrations necessary for detection by mutational profiling (MaP), EDC treatment leads to degradation of RNA. Here, we demonstrate EDC-stimulated degradation of RNA in Gram-negative and Gram-positive bacteria. In an attempt to overcome these limitations, we developed a new carbodiimide reagent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide methiodide (ETC), which we show specifically modifies unpaired Gs and Us in vivo without substantial degradation of RNA. We establish ETC as a probe for MaP and optimize the RT conditions and computational analysis in Escherichia coli Importantly, we demonstrate the utility of ETC as a probe for improving RNA structure prediction both alone and with DMS.
Collapse
Affiliation(s)
- Catherine A Douds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Sieg JP, Jolley EA, Huot MJ, Babitzke P, Bevilacqua P. In vivo-like nearest neighbor parameters improve prediction of fractional RNA base-pairing in cells. Nucleic Acids Res 2023; 51:11298-11317. [PMID: 37855684 PMCID: PMC10639048 DOI: 10.1093/nar/gkad807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
We conducted a thermodynamic analysis of RNA stability in Eco80 artificial cytoplasm, which mimics in vivo conditions, and compared it to transcriptome-wide probing of mRNA. Eco80 contains 80% of Escherichia coli metabolites, with biological concentrations of metal ions, including 2 mM free Mg2+ and 29 mM metabolite-chelated Mg2+. Fluorescence-detected binding isotherms (FDBI) were used to conduct a thermodynamic analysis of 24 RNA helices and found that these helices, which have an average stability of -12.3 kcal/mol, are less stable by ΔΔGo37 ∼1 kcal/mol. The FDBI data was used to determine a set of Watson-Crick free energy nearest neighbor parameters (NNPs), which revealed that Eco80 reduces the stability of three NNPs. This information was used to adjust the NN model using the RNAstructure package. The in vivo-like adjustments have minimal effects on the prediction of RNA secondary structures determined in vitro and in silico, but markedly improve prediction of fractional RNA base pairing in E. coli, as benchmarked with our in vivo DMS and EDC RNA chemical probing data. In summary, our thermodynamic and chemical probing analyses of RNA helices indicate that RNA secondary structures are less stable in cells than in artificially stable in vitro buffer conditions.
Collapse
Affiliation(s)
- Jacob P Sieg
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Melanie J Huot
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Williams AM, Jolley EA, Santiago-Martínez MG, Chan CX, Gutell RR, Ferry JG, Bevilacqua PC. In vivo structure probing of RNA in Archaea: novel insights into the ribosome structure of Methanosarcina acetivorans. RNA (NEW YORK, N.Y.) 2023; 29:1610-1620. [PMID: 37491319 PMCID: PMC10578495 DOI: 10.1261/rna.079687.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.
Collapse
Affiliation(s)
- Allison M Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Mitchell D, Cotter J, Saleem I, Mustoe AM. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. Nucleic Acids Res 2023; 51:8744-8757. [PMID: 37334863 PMCID: PMC10484685 DOI: 10.1093/nar/gkad522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Chemical probing experiments have transformed RNA structure analysis, enabling high-throughput measurement of base-pairing in living cells. Dimethyl sulfate (DMS) is one of the most widely used structure probing reagents and has played a pivotal role in enabling next-generation single-molecule probing analyses. However, DMS has traditionally only been able to probe adenine and cytosine nucleobases. We previously showed that, using appropriate conditions, DMS can also be used to interrogate base-pairing of uracil and guanines in vitro at reduced accuracy. However, DMS remained unable to informatively probe guanines in cells. Here, we develop an improved DMS mutational profiling (MaP) strategy that leverages the unique mutational signature of N1-methylguanine DMS modifications to enable high-fidelity structure probing at all four nucleotides, including in cells. Using information theory, we show that four-base DMS reactivities convey greater structural information than current two-base DMS and SHAPE probing strategies. Four-base DMS experiments further enable improved direct base-pair detection by single-molecule PAIR analysis, and ultimately support RNA structure modeling at superior accuracy. Four-base DMS probing experiments are straightforward to perform and will broadly facilitate improved RNA structural analysis in living cells.
Collapse
Affiliation(s)
- David Mitchell
- Therapeutic Innovation Center, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Cotter
- Therapeutic Innovation Center, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
10
|
Xiao K, Ghalei H, Khoshnevis S. RNA structural probing of guanine and uracil nucleotides in yeast. PLoS One 2023; 18:e0288070. [PMID: 37418367 DOI: 10.1371/journal.pone.0288070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023] Open
Abstract
RNA structure can be essential for its cellular function. Therefore, methods to investigate the structure of RNA in vivo are of great importance for understanding the role of cellular RNAs. RNA structure probing is an indirect method to asess the three-dimensional structure of RNA by analyzing the reactivity of different nucleotides to chemical modifications. Dimethyl sulfate (DMS) is a well-established compound that reports on base pairing context of adenine (A) and cytidine (C) in-vitro and in-vivo, but is not reactive to guanine (G) or uracil (U). Recently, new compounds were used to modify Gs and Us in plant, bacteria, and human cells. To complement the scope of RNA structural probing by chemical modifications in the model organism yeast, we analyze the effectiveness of guanine modification by the glyoxal family in Saccharomyces cerevisiae and Candida albicans. We show that within glyoxal family of compounds, phenylglyoxal (PGO) is the best guanine probe for structural probing in S. cerevisiae and C. albicans. Further, we show that PGO treatment does not affect the processing of different RNA species in the cell and is not toxic for the cells under the conditions we have established for RNA structural probing. We also explore the effectiveness of uracil modification by Cyclohexyl-3-(2-Morpholinoethyl) Carbodiimide metho-p-Toluenesulfonate (CMCT) in vivo and demonstrate that uracils can be modified by CMCT in S. cerevisiae in vivo. Our results provide the conditions for in vivo probing the reactivity of guanine and uracil nucleotides in RNA structures in yeast and offer a valuable tool for studying RNA structure and function in two widely used yeast model systems.
Collapse
Affiliation(s)
- Kevin Xiao
- Department of Chemistry, Emory University, Atlandta, GA, United States of America
- Department of Biochemistry, Emory University School of Medicine, Atlandta, GA, United States of America
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlandta, GA, United States of America
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlandta, GA, United States of America
| |
Collapse
|
11
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Zhao R, Fang X, Mai Z, Chen X, Mo J, Lin Y, Xiao R, Bao X, Weng X, Zhou X. Transcriptome-wide identification of single-stranded RNA binding proteins. Chem Sci 2023; 14:4038-4047. [PMID: 37063799 PMCID: PMC10094363 DOI: 10.1039/d3sc00957b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
RNA-protein interactions are precisely regulated by RNA secondary structures in various biological processes. Large-scale identification of proteins that interact with particular RNA structure is important to the RBPome. Herein, a kethoxal assisted single-stranded RNA interactome capture (KASRIC) strategy was developed to globally identify single-stranded RNA binding proteins (ssRBPs). This approach combines RNA secondary structure probing technology with the conventional method of RNA-binding proteins profiling, realizing the transcriptome-wide identification of ssRBPs. Applying KASRIC, we identified 3180 candidate RBPs and 244 candidate ssRBPs in HeLa cells. Importantly, the 244 candidate ssRBPs contained 55 previously reported ssRBPs and 189 novel ssRBPs. Function analysis of the candidate ssRBPs exhibited enrichment in cellular processes related to RNA splicing and RNA degradation. The KASRIC strategy will facilitate the investigation of RNA-protein interactions.
Collapse
Affiliation(s)
- Ruiqi Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zhibiao Mai
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yingying Lin
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University Wuhan Hubei 430071 China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Xichen Bao
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| |
Collapse
|
13
|
Mitchell D, Cotter J, Saleem I, Mustoe AM. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536308. [PMID: 37090560 PMCID: PMC10120657 DOI: 10.1101/2023.04.10.536308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chemical probing experiments have transformed RNA structure analysis, enabling high-throughput measurement of base-pairing in living cells. Dimethyl sulfate (DMS) is one of the most widely used structure probing reagents and has played a prominent role in enabling next-generation single-molecule probing analyses. However, DMS has traditionally only been able to probe adenine and cytosine nucleobases. We previously showed that, using appropriate conditions, DMS can also be used to interrogate base-pairing of uracil and guanines in vitro at reduced accuracy. However, DMS remained unable to informatively probe guanines in cells. Here, we develop an improved DMS mutational profiling (MaP) strategy that leverages the unique mutational signature of N 1 -methylguanine DMS modifications to enable robust, high-fidelity structure probing at all four nucleotides, including in cells. Using information theory, we show that four-base DMS reactivities convey greater structural information than comparable two-base DMS and SHAPE probing strategies. Four-base DMS experiments further enable improved direct base-pair detection by single-molecule PAIR analysis, and ultimately support RNA structure modeling at superior accuracy. Four-base DMS probing experiments are easily performed and will broadly facilitate improved RNA structural analysis in living cells.
Collapse
Affiliation(s)
- David Mitchell
- Therapeutic Innovation Center, and Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Jennifer Cotter
- Therapeutic Innovation Center, and Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Irfana Saleem
- Therapeutic Innovation Center, and Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Anthony M. Mustoe
- Therapeutic Innovation Center, and Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
14
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
15
|
Abstract
RNA is a key regulator of almost every cellular process, and the structures adopted by RNA molecules are thought to be central to their functions. The recent fast-paced evolution of high-throughput sequencing-based RNA structure mapping methods has enabled the rapid in vivo structural interrogation of entire cellular transcriptomes. Collectively, these studies are shedding new light on the long underestimated complexity of the structural organization of the transcriptome - the RNA structurome. Moreover, recent analyses are challenging the view that the RNA structurome is a static entity by revealing how RNA molecules establish intricate networks of alternative intramolecular and intermolecular interactions and that these ensembles of RNA structures are dynamically regulated to finely tune RNA functions in living cells. This new understanding of how RNA can shape cell phenotypes has important implications for the development of RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Zhang J, Fei Y, Sun L, Zhang QC. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat Methods 2022; 19:1193-1207. [PMID: 36203019 DOI: 10.1038/s41592-022-01623-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Beyond transferring genetic information, RNAs are molecules with diverse functions that include catalyzing biochemical reactions and regulating gene expression. Most of these activities depend on RNAs' specific structures. Therefore, accurately determining RNA structure is integral to advancing our understanding of RNA functions. Here, we summarize the state-of-the-art experimental and computational technologies developed to evaluate RNA secondary and tertiary structures. We also highlight how the rapid increase of experimental data facilitates the integrative modeling approaches for better resolving RNA structures. Finally, we provide our thoughts on the latest advances and challenges in RNA structure determination methods, as well as on future directions for both experimental approaches and artificial intelligence-based computational tools to model RNA structure. Ultimately, we hope the technological advances will deepen our understanding of RNA biology and facilitate RNA structure-based biomedical research such as designing specific RNA structures for therapeutics and deploying RNA-targeting small-molecule drugs.
Collapse
Affiliation(s)
- Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuhan Fei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lei Sun
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
17
|
Aviran S, Incarnato D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J Mol Biol 2022; 434:167635. [PMID: 35595163 DOI: 10.1016/j.jmb.2022.167635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
RNA structure probing experiments have emerged over the last decade as a straightforward way to determine the structure of RNA molecules in a number of different contexts. Although powerful, the ability of RNA to dynamically interconvert between, and to simultaneously populate, alternative structural configurations, poses a nontrivial challenge to the interpretation of data derived from these experiments. Recent efforts aimed at developing computational methods for the reconstruction of coexisting alternative RNA conformations from structure probing data are paving the way to the study of RNA structure ensembles, even in the context of living cells. In this review, we critically discuss these methods, their limitations and possible future improvements.
Collapse
Affiliation(s)
- Sharon Aviran
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
18
|
A New Anodic Electrochemiluminescence of Tris(2,2′- bipyridine)ruthenium(II) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a Coreactant for Determination of Hydrogen peroxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Abstract
Fast and efficient site-specific labeling of long RNAs is one of the main bottlenecks limiting distance measurements by means of Förster resonance energy transfer (FRET) or electron paramagnetic resonance (EPR) spectroscopy. Here, we present an optimized protocol for dual end-labeling with different fluorophores at the same time meeting the restrictions of highly labile and degradation-sensitive RNAs. We describe in detail the dual-labeling of a catalytically active wild-type group II intron as a typical representative of long functional RNAs. The modular procedure chemically activates the 5'-phosphate and the 3'-ribose for bioconjugation with a pair of fluorophores, as shown herein, or with spin labels. The mild reaction conditions preserve the structural and functional integrity of the biomacromolecule and results in covalent, dual-labeled RNA in its pre-catalytic state in yields suitable for both ensemble and single-molecule FRET experiments.
Collapse
Affiliation(s)
- Esra Ahunbay
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Sakurada T, Miyahara R, Kawazoe R, Nagata Y, Kikukawa Y, Sasaki S, Taniguchi Y. Simple and Easy Synthesis of γ-Amido-dNTPs in Water and Their Polymerase Reaction Properties. Chem Pharm Bull (Tokyo) 2021; 69:1061-1066. [PMID: 34719587 DOI: 10.1248/cpb.c21-00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
γ-Amido-modified 2'-deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs) are becoming increasingly important as biological tools. We herein describe the simple and easy synthesis of γ-amido-dNTPs and -NTPs from commercially available corresponding dNTPs and NTPs in a one-pot reaction using water-soluble carbodiimide and ammonia solution. We examined the effects of synthesized γ-amido-dNTPs on the DNA polymerase reaction. The results obtained showed the incorporation of these derivatives into the DNA primer while maintaining nucleobase selectivity; however, their incorporation efficiency by DNA polymerase was lower than that of dNTP. This is the first study to demonstrate the successful synthesis of four sets of γ-amido-dNTPs and clarify their properties.
Collapse
Affiliation(s)
- Takato Sakurada
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Ryo Miyahara
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Ryoji Kawazoe
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yusuke Nagata
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | | |
Collapse
|
21
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
22
|
Williams AM, Poudyal RR, Bevilacqua PC. Long Tracts of Guanines Drive Aggregation of RNA G-Quadruplexes in the Presence of Spermine. Biochemistry 2021; 60:2715-2726. [PMID: 34448586 DOI: 10.1021/acs.biochem.1c00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-Quadruplexes (GQs) are compact, stable structures in DNA and RNA comprised of two or more tiers of quartets whose G-rich motif of tracts of two or more G's occurs commonly within genomes and transcriptomes. While thermodynamically stable in vitro, these structures remain difficult to study in vivo. One approach to understanding GQ in vivo behavior is to test whether conditions and molecules found in cells facilitate their folding. Polyamines are biogenic polycations that interact with RNA. Among common polyamines, spermine contains the highest charge and is found in eukaryotes, making it a good candidate for association with high-charge density nucleic acid structures like GQs. Using a variety of techniques, including ultraviolet-detected thermal denaturation, circular dichroism, size exclusion chromatography, and confocal microscopy, on an array of quadruplex sequence variants, we find that eukaryotic biological concentrations of spermine induce microaggregation of three-tiered G-rich sequences, but not of purely two-tiered structures, although higher spermine concentrations induce aggregation of even these. The formation of microaggregates can also be induced by addition of as little as a single G to a two-tiered structure; moreover, they form at biological temperatures, are sensitive to salt, and can form in the presence of at least some flanking sequence. Notably, GQ aggregation is not observed under prokaryotic-like conditions of no spermine and higher NaCl concentrations. The sequence, polyamine, and salt specificity of microaggregation reported herein have implications for the formation and stability of G-rich nucleic acid aggregates in vivo and for functional roles for understudied GQ sequences with only two quadruplex tiers.
Collapse
Affiliation(s)
- Allison M Williams
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raghav R Poudyal
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Liu Z, Hsu J, Lin C. Synthesis and Application of Ionic Liquid‐Supported Carbodiimides. ChemistrySelect 2021. [DOI: 10.1002/slct.202101169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zi‐Ying Liu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan
| | - Jun‐Hao Hsu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan
| | - Cheng‐Kun Lin
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan
| |
Collapse
|
24
|
England WE, Garfio CM, Spitale RC. Chemical Approaches To Analyzing RNA Structure Transcriptome-Wide. Chembiochem 2021; 22:1114-1121. [PMID: 32737940 PMCID: PMC8769560 DOI: 10.1002/cbic.202000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Indexed: 11/09/2022]
Abstract
RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide. Within this review, we outline the recent advancements in chemical probe design for interrogating RNA structures inside cells and discuss the recent advances in our understanding of RNA biology through the lens of chemical probing.
Collapse
Affiliation(s)
- Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Chely M Garfio
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cellular Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Marinus T, Fessler AB, Ogle CA, Incarnato D. A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy. Nucleic Acids Res 2021; 49:e34. [PMID: 33398343 PMCID: PMC8034653 DOI: 10.1093/nar/gkaa1255] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo.
Collapse
Affiliation(s)
- Tycho Marinus
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Adam B Fessler
- Department of Chemistry, The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Craig A Ogle
- Department of Chemistry, The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| |
Collapse
|
26
|
Kadagathur M, Shaikh AS, Jadhav GS, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Cyclodesulfurization: An Enabling Protocol for Synthesis of Various Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
27
|
Huang J, Zhao R, Mo J, Wang F, Weng X, Zhou X. N 3 -Kethoxal-Based Bioorthogonal Intracellular RNA Labeling. Chembiochem 2021; 22:1559-1562. [PMID: 33393712 DOI: 10.1002/cbic.202000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Indexed: 11/11/2022]
Abstract
There is growing interest in developing intracellular RNA tools. Herein, we describe a strategy for N3 -kethoxal (N3 K)-based bioorthogonal intracellular RNA functionalization. With N3 K labeling followed by an in vivo click reaction with DBCO derivatives, RNA can be modified with fluorescent or phenol groups. This strategy provides a new way of labeling RNA inside cells.
Collapse
Affiliation(s)
- Jinguo Huang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ruiqi Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
28
|
Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, Daugharthy ER, Bando Y, Kajita A, Xue AG, Marrett K, Prior R, Cui Y, Payne AC, Yao CC, Suk HJ, Wang R, Yu CCJ, Tillberg P, Reginato P, Pak N, Liu S, Punthambaker S, Iyer EPR, Kohman RE, Miller JA, Lein ES, Lako A, Cullen N, Rodig S, Helvie K, Abravanel DL, Wagle N, Johnson BE, Klughammer J, Slyper M, Waldman J, Jané-Valbuena J, Rozenblatt-Rosen O, Regev A, Church GM, Marblestone AH, Boyden ES. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021; 371:eaax2656. [PMID: 33509999 PMCID: PMC7900882 DOI: 10.1126/science.aax2656] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Methods for highly multiplexed RNA imaging are limited in spatial resolution and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to the mouse brain, which yielded the readout of thousands of genes, including splice variants. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in the neurons of the mouse hippocampus, revealing patterns across multiple cell types, layer-specific cell types across the mouse visual cortex, and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus, ExSeq enables highly multiplexed mapping of RNAs from nanoscale to system scale.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Faculty of Engineering, Gonda Brain Research Center and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel R Goodwin
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Anubhav Sinha
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Fei Chen
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan R Daugharthy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Yosuke Bando
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Kioxia Corporation, Minato-ku, Tokyo, Japan
| | | | - Andrew G Xue
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | | | | | - Yi Cui
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Andrew C Payne
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chun-Chen Yao
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ho-Jun Suk
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Ru Wang
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Paul Tillberg
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Paul Reginato
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nikita Pak
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Eswar P R Iyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ana Lako
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Cullen
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel L Abravanel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Edward S Boyden
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
29
|
Bubenik JL, Hale M, McConnell O, Wang E, Swanson MS, Spitale R, Berglund JA. RNA structure probing to characterize RNA-protein interactions on a low abundance pre-mRNA in living cells. RNA (NEW YORK, N.Y.) 2020; 27:rna.077263.120. [PMID: 33310817 PMCID: PMC7901844 DOI: 10.1261/rna.077263.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
In vivo RNA structure analysis has become a powerful tool in molecular biology, largely due to the coupling of an increasingly diverse set of chemical approaches with high-throughput sequencing. This has resulted in a transition from single target to transcriptome-wide approaches. However, these methods require sequencing depths that preclude studying low abundance targets, which are not sufficiently captured in transcriptome-wide approaches. Here we present a ligation-free method to enrich for low abundance RNA sequences, which improves the diversity of molecules analyzed and results in improved analysis. In addition, this method is compatible with any choice of chemical adduct or read-out approach. We utilized this approach to study an autoregulated event in the pre-mRNA of the splicing factor, muscleblind-like splicing regulator 1 (MBNL1).
Collapse
|
30
|
Twittenhoff C, Brandenburg VB, Righetti F, Nuss AM, Mosig A, Dersch P, Narberhaus F. Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions. Nucleic Acids Res 2020; 48:e71. [PMID: 32463449 PMCID: PMC7337928 DOI: 10.1093/nar/gkaa404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The dynamic conformation of RNA molecules within living cells is key to their function. Recent advances in probing the RNA structurome in vivo, including the use of SHAPE (Selective 2'-Hydroxyl Acylation analyzed by Primer Extension) or kethoxal reagents or DMS (dimethyl sulfate), provided unprecedented insights into the architecture of RNA molecules in the living cell. Here, we report the establishment of lead probing in a global RNA structuromics approach. In order to elucidate the transcriptome-wide RNA landscape in the enteric pathogen Yersinia pseudotuberculosis, we combined lead(II) acetate-mediated cleavage of single-stranded RNA regions with high-throughput sequencing. This new approach, termed 'Lead-seq', provides structural information independent of base identity. We show that the method recapitulates secondary structures of tRNAs, RNase P RNA, tmRNA, 16S rRNA and the rpsT 5'-untranslated region, and that it reveals global structural features of mRNAs. The application of Lead-seq to Y. pseudotuberculosis cells grown at two different temperatures unveiled the first temperature-responsive in vivo RNA structurome of a bacterial pathogen. The translation of candidate genes derived from this approach was confirmed to be temperature regulated. Overall, this study establishes Lead-seq as complementary approach to interrogate intracellular RNA structures on a global scale.
Collapse
Affiliation(s)
| | | | | | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 381214 Braunschweig, Germany
| | - Axel Mosig
- Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 381214 Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
31
|
Tomezsko P, Swaminathan H, Rouskin S. Viral RNA structure analysis using DMS-MaPseq. Methods 2020; 183:68-75. [PMID: 32251733 DOI: 10.1016/j.ymeth.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
RNA structure is critically important to RNA viruses in every part of the replication cycle. RNA structure is also utilized by DNA viruses in order to regulate gene expression and interact with host factors. Advances in next-generation sequencing have greatly enhanced the utility of chemical probing in order to analyze RNA structure. This review will cover some recent viral RNA structural studies using chemical probing and next-generation sequencing as well as the advantages of dimethyl sulfate (DMS)-mutational profiling and sequencing (MaPseq). DMS-MaPseq is a robust assay that can easily modify RNA in vitro, in cell and in virion. A detailed protocol for whole-genome DMS-MaPseq from cells transfected with HIV-1 and the structure of TAR as determined by DMS-MaPseq is presented. DMS-MaPseq has the ability to answer a variety of integral questions about viral RNA, including how they change in different environments and when interacting with different host factors.
Collapse
Affiliation(s)
- Phillip Tomezsko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Program in Virology, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | | | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
32
|
Tack DC, Su Z, Yu Y, Bevilacqua PC, Assmann SM. Tissue-specific changes in the RNA structurome mediate salinity response in Arabidopsis. RNA (NEW YORK, N.Y.) 2020; 26:492-511. [PMID: 31937672 PMCID: PMC7075263 DOI: 10.1261/rna.072850.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.
Collapse
Affiliation(s)
- David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Spectrum Health Office of Research, Grand Rapids, Michigan 49503, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yunqing Yu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
33
|
Weng X, Gong J, Chen Y, Wu T, Wang F, Yang S, Yuan Y, Luo G, Chen K, Hu L, Ma H, Wang P, Zhang QC, Zhou X, He C. Keth-seq for transcriptome-wide RNA structure mapping. Nat Chem Biol 2020; 16:489-492. [PMID: 32015521 PMCID: PMC7182492 DOI: 10.1038/s41589-019-0459-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
RNA secondary structure is critical to RNA regulation and function. We report a new N3-kethoxal reagent that allows fast and reversible labeling of single-stranded guanine bases in live cells. This N3-kethoxal-based chemistry allows efficient RNA labeling under mild conditions and transcriptome-wide RNA secondary structure mapping.
Collapse
Affiliation(s)
- Xiaocheng Weng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.,College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Jing Gong
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Fang Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.,Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Shixi Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Yushu Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Guanzheng Luo
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Kai Chen
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Lulu Hu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Honghui Ma
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
34
|
Mitchell D, Assmann SM, Bevilacqua PC. Probing RNA structure in vivo. Curr Opin Struct Biol 2019; 59:151-158. [PMID: 31521910 DOI: 10.1016/j.sbi.2019.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023]
Abstract
RNA structure underpins many essential functions in biology. New chemical reagents and techniques for probing RNA structure in living cells have emerged in recent years. High-throughput, genome-wide techniques such as Structure-seq2 and DMS-MaPseq exploit nucleobase modification by dimethylsulfate (DMS) to obtain complete structuromes, and are applicable to multiple domains of life and conditions. New reagents such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), glyoxal, and nicotinoyl azide (NAz) greatly expand the capabilities of nucleobase probing in cells. Additionally, ribose-targeting reagents in selective 2'-hydroxyl acylation and primer extension (SHAPE) detect RNA flexibility in vivo. These techniques, coupled with crosslinking nucleobases in psoralen analysis of RNA interactions and structures (PARIS), provide new and diverse ways to elucidate RNA secondary and tertiary structure in vivo and genome-wide.
Collapse
Affiliation(s)
- David Mitchell
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sarah M Assmann
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
Adams RL, Huston NC, Tavares RCA, Pyle AM. Sensitive detection of structural features and rearrangements in long, structured RNA molecules. Methods Enzymol 2019; 623:249-289. [PMID: 31239050 DOI: 10.1016/bs.mie.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Technical innovations in structural probing have drastically advanced the field of RNA structure analysis. These advances have led to parallel approaches developed in separate labs for analyzing RNA structure and dynamics. With the wealth of methodologies available, it can be difficult to determine which is best suited for a given application. Here, using a long, highly structured viral RNA as an example (the positive strand genome of Hepatitis C Virus), we present a semi-comprehensive analysis and describe the major approaches for analyzing the architecture of RNA that is modified with structure-sensitive probes. Additionally, we present an updated method for generating in vitro transcribed and folded RNA that maintains native secondary structures in long RNA molecules. We anticipate that the methods described here will streamline the use of current approaches and help investigators who are unfamiliar with structure probing, obviating the need for time-consuming and expensive optimization.
Collapse
Affiliation(s)
- Rebecca L Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Nicholas C Huston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Rafael C A Tavares
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
36
|
Cole KH, Lupták A. High-throughput methods in aptamer discovery and analysis. Methods Enzymol 2019; 621:329-346. [PMID: 31128787 DOI: 10.1016/bs.mie.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aptamers are small, functional nucleic acids that bind a variety of targets, often with high specificity and affinity. Genomic aptamers constitute the ligand-binding domains of riboswitches, whereas synthetic aptamers find applications as diagnostic and therapeutic tools, and as ligand-binding domains of regulatory RNAs in synthetic biology. Discovery and characterization of aptamers has been limited by a lack of high-throughput approaches that uncover the target-binding domains and the biochemical properties of individual sequences. With the advent of high-throughput sequencing, large-scale analysis of in vitro selected populations of aptamers (and catalytic nucleic acids, such as ribozymes and DNAzmes) became possible. In recent years the development of new experimental approaches and software tools has led to significant streamlining of the selection-pool analysis. This article provides an overview of post-selection data analysis and describes high-throughput methods that facilitate rapid discovery and biochemical characterization of aptamers.
Collapse
Affiliation(s)
- Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States; Department of Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|