1
|
Borck PC, Boyle I, Jankovic K, Bick N, Foster K, Lau AC, Parker-Burns LI, Lubicki DA, Li T, Borah AA, Lofaso NJ, Das Sharma S, Chan T, Kishen RV, Adeagbo A, Raghavan S, Aquilanti E, Prensner JR, Krill-Burger JM, Golub TR, Campbell CD, Dempster JM, Chan EM, Vazquez F. SKI complex loss renders 9p21.3-deleted or MSI-H cancers dependent on PELO. Nature 2025; 638:1104-1111. [PMID: 39910293 PMCID: PMC11864980 DOI: 10.1038/s41586-024-08509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Cancer genome alterations often lead to vulnerabilities that can be used to selectively target cancer cells. Various inhibitors of such synthetic lethal targets have been approved by the FDA or are in clinical trials, highlighting the potential of this approach1-3. Here we analysed large-scale CRISPR knockout screening data from the Cancer Dependency Map and identified a new synthetic lethal target, PELO, for two independent molecular subtypes of cancer: biallelic deletion of chromosomal region 9p21.3 or microsatellite instability-high (MSI-H). In 9p21.3-deleted cancers, PELO dependency emerges from biallelic deletion of the 9p21.3 gene FOCAD, a stabilizer of the superkiller complex (SKIc). In MSI-H cancers, PELO is required owing to MSI-H-associated mutations in TTC37 (also known as SKIC3), a critical component of the SKIc. We show that both cancer subtypes converge to destabilize the SKIc, which extracts mRNA from stalled ribosomes. In SKIc-deficient cells, PELO depletion induces the unfolded protein response, a stress response to accumulation of misfolded or unfolded nascent polypeptides. Together, our findings indicate PELO as a promising therapeutic target for a large patient population with cancers characterized as MSI-H with deleterious TTC37 mutations or with biallelic 9p21.3 deletions involving FOCAD.
Collapse
Affiliation(s)
| | | | - Kristina Jankovic
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nolan Bick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyla Foster
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anthony C Lau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucy I Parker-Burns
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tianxia Li
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashir A Borah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Lofaso
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sohani Das Sharma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tessla Chan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Riya V Kishen
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisa Aquilanti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics and Biological Chemistry, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Edmond M Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | |
Collapse
|
2
|
Jiang Y, Liu X, Zhang H, Xu L. Targeted therapy: P2X3 receptor silencing in bone cancer pain relief. J Biochem Mol Toxicol 2024; 38:e70026. [PMID: 39526508 DOI: 10.1002/jbt.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Bone cancer pain remains a significant clinical challenge, often refractory to conventional treatments. The upregulation of the P2X3 receptor in the dorsal root ganglia has been implicated in the pathogenesis of bone cancer pain. This study aimed to elucidate the role of the P2X3 receptor in this context and assess the therapeutic potential of receptor silencing. Utilizing a rat model with Walker 256 cells to simulate bone cancer pain, researchers conducted molecular analyses, including semi-quantitative RT-PCR and Western Blot, to investigate P2X3 receptor expression in the dorsal root ganglia. Results demonstrated a marked increase in P2X3 receptor levels in the dorsal root ganglia of the bone cancer pain model. Targeted silencing of the P2X3 receptor using specific shRNA delivered via lentiviral vectors significantly reduced pain sensitivity, underscoring the receptor's potential as a valuable therapeutic target. In addition, a comprehensive gene expression analysis leveraging the GEO data set GSE249443 was performed to explore the underlying biological pathways linked to bone cancer pain. This analysis provided insights into the intricate interplay between bone cancer pain and associated biological processes, offering a deeper understanding of the mechanisms involved in pain modulation and progression. In conclusion, this research identifies the P2X3 receptor as a critical molecular target for mitigating bone cancer pain. The selective silencing of the P2X3 receptor emerges as a promising and innovative therapeutic strategy, presenting novel avenues for managing bone cancer pain and potentially revolutionizing treatment approaches in this challenging domain.
Collapse
Affiliation(s)
- Yuge Jiang
- Department of Emergency, The Second Center of PLA General Hospital, Beijing, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Hong Zhang
- Department of Anesthesiology, The First center of PLA General Hospital, Beijing, China
| | - Longhe Xu
- Department of Anesthesiology, The Third Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Zeng H, Zhang Y, Liu N, Wei Q, Yang F, Li J. Stimulus-Responsive Nanodelivery and Release Systems for Cancer Gene Therapy: Efficacy Improvement Strategies. Int J Nanomedicine 2024; 19:7099-7121. [PMID: 39045344 PMCID: PMC11265383 DOI: 10.2147/ijn.s470637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction of exogenous genes into target cells to overcome various tumor diseases caused by genetic defects or abnormalities and gene therapy, a new treatment method, provides a promising strategy for tumor treatment. Over the past decade, gene therapy has made exciting progress; however, it still faces the challenge of low nucleic acid delivery and release efficiencies. The emergence of nonviral vectors, primarily nanodelivery and release systems (NDRS), has resulted in a historic breakthrough in the application of gene therapy. NDRS, especially stimulus-responsive NDRS that can respond in a timely manner to changes in the internal and external microenvironment (eg, low pH, high concentration of glutathione/reactive oxygen species, overexpressed enzymes, temperature, light, ultrasound, and magnetic field), has shown excellent loading and release advantages in the precision and efficiency of tumor gene therapy and has been widely applied. The only disadvantage is that poor transfection efficiency limits the in-depth application of gene therapy in clinical practice, owing to the presence of biological barriers in the body. Therefore, this review first introduces the development history of gene therapy, the current obstacles faced by gene delivery, strategies to overcome these obstacles, and conventional vectors, and then focuses on the latest research progress in various stimulus-responsive NDRS for improving gene delivery efficiency. Finally, the future challenges and prospects that stimulus-responsive NDRS may face in clinical application and transformation are discussed to provide references for enhancing in-depth research on tumor gene therapy.
Collapse
Affiliation(s)
- Huamin Zeng
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
| | - Yiran Zhang
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
- School of Medical and Life Sciences, Chengdu University of traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Ningyi Liu
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637007, People’s Republic of China
| | - Qingqing Wei
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637007, People’s Republic of China
| | - Fan Yang
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
| | - Jie Li
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| |
Collapse
|
4
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Sapkota S, Pillman K, Dredge B, Liu D, Bracken J, Kachooei S, Chereda B, Gregory P, Bracken C, Goodall G. On the rules of engagement for microRNAs targeting protein coding regions. Nucleic Acids Res 2023; 51:9938-9951. [PMID: 37522357 PMCID: PMC10570018 DOI: 10.1093/nar/gkad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
MiRNAs post-transcriptionally repress gene expression by binding to mRNA 3'UTRs, but the extent to which they act through protein coding regions (CDS regions) is less well established. MiRNA interaction studies show a substantial proportion of binding occurs in CDS regions, however sequencing studies show much weaker effects on mRNA levels than from 3'UTR interactions, presumably due to competition from the translating ribosome. Consequently, most target prediction algorithms consider only 3'UTR interactions. However, the consequences of CDS interactions may have been underestimated, with the reporting of a novel mode of miRNA-CDS interaction requiring base pairing of the miRNA 3' end, but not the canonical seed site, leading to repression of translation with little effect on mRNA turnover. Using extensive reporter, western blotting and bioinformatic analyses, we confirm that miRNAs can indeed suppress genes through CDS-interaction in special circumstances. However, in contrast to that previously reported, we find repression requires extensive base-pairing, including of the canonical seed, but does not strictly require base pairing of the 3' miRNA terminus and is mediated through reducing mRNA levels. We conclude that suppression of endogenous genes can occur through miRNAs binding to CDS, but the requirement for extensive base-pairing likely limits the regulatory impacts to modest effects on a small subset of targets.
Collapse
Affiliation(s)
- Sunil Sapkota
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Dawei Liu
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Julie M Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Saba Ataei Kachooei
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Bradley Chereda
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Adelaide
| | - Gregory J Goodall
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Adelaide
| |
Collapse
|
6
|
Viscardi MJ, Arribere JA. NMD targets experience deadenylation during their maturation and endonucleolytic cleavage during their decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560204. [PMID: 37808772 PMCID: PMC10557752 DOI: 10.1101/2023.09.29.560204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Premature stop codon-containing mRNAs can produce truncated and dominantly acting proteins that harm cells. Eukaryotic cells protect themselves by degrading such mRNAs via the Nonsense-Mediated mRNA Decay (NMD) pathway. The precise reactions by which cells attack NMD target mRNAs remain obscure, precluding a mechanistic understanding of NMD and hampering therapeutic efforts to control NMD. A key step in NMD is the decay of the mRNA, which is proposed to occur via several competing models including deadenylation, exonucleolytic decay, and/or endonucleolytic decay. We set out to clarify the relative contributions of these decay mechanisms to NMD, and to identify the role of key factors. Here, we modify and deploy single-molecule nanopore mRNA sequencing to capture full-length NMD targets and their degradation intermediates, and we obtain single-molecule measures of splicing isoform, cleavage state, and poly(A) tail length. We observe robust endonucleolytic cleavage of NMD targets in vivo that depends on the nuclease SMG-6 and we use the occurence of cleavages to identify several known NMD targets. We show that NMD target mRNAs experience deadenylation, but similar to the extent that normal mRNAs experience as they enter the translational pool. Furthermore, we show that a factor (SMG-5) that historically was ascribed a function in deadenylation, is in fact required for SMG-6-mediated cleavage. Our results support a model in which NMD factors act in concert to degrade NMD targets in animals via an endonucleolytic cleavage near the stop codon, and suggest that deadenylation is a normal part of mRNA (and NMD target) maturation rather than a facet unique to NMD. Our work clarifies the route by which NMD target mRNAs are attacked in an animal.
Collapse
Affiliation(s)
- Marcus J. Viscardi
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua A. Arribere
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
7
|
Haluck-Kangas A, Fink M, Bartom ET, Peter ME. CD95/Fas ligand mRNA is toxic to cells through more than one mechanism. MOLECULAR BIOMEDICINE 2023; 4:11. [PMID: 37059938 PMCID: PMC10105004 DOI: 10.1186/s43556-023-00119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 04/16/2023] Open
Abstract
CD95/Fas ligand (CD95L) induces apoptosis through protein binding to the CD95 receptor. However, CD95L mRNA also induces toxicity in the absence of CD95 through induction of DISE (Death Induced by Survival Gene Elimination), a form of cell death mediated by RNA interference (RNAi). We now report that CD95L mRNA processing generates a short (s)RNA nearly identical to shL3, a commercial CD95L-targeting shRNA that led to the discovery of DISE. Neither of the miRNA biogenesis proteins Drosha nor Dicer are required for this processing. Interestingly, CD95L toxicity depends on the core component of the RISC, Ago2, in some cell lines, but not in others. In the HCT116 colon cancer cell line, Ago 1-4 appear to function redundantly in RNAi. In fact, Ago 1/2/3 knockout cells retain sensitivity to CD95L mRNA toxicity. Toxicity was only blocked by mutation of all in-frame start codons in the CD95L ORF. Dying cells exhibited an enrichment of RISC bound (R)-sRNAs with toxic 6mer seed sequences, while expression of the non-toxic CD95L mutant enriched for loading of R-sRNAs with nontoxic 6mer seeds. However, CD95L is not the only source of these R-sRNAs. We find that CD95L mRNA may induce DISE directly and indirectly, and that alternate mechanisms may underlie CD95L mRNA processing and toxicity.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Madelaine Fink
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Chicago, IL, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Chicago, IL, USA.
| |
Collapse
|
8
|
Breznak SM, Kotb NM, Rangan P. Dynamic regulation of ribosome levels and translation during development. Semin Cell Dev Biol 2023; 136:27-37. [PMID: 35725716 DOI: 10.1016/j.semcdb.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The ability of ribosomes to translate mRNAs into proteins is the basis of all life. While ribosomes are essential for cell viability, reduction in levels of ribosomes can affect cell fate and developmental transitions in a tissue specific manner and can cause a plethora of related diseases called ribosomopathies. How dysregulated ribosomes homeostasis influences cell fate and developmental transitions is not fully understood. Model systems such as Drosophila and C. elegans oogenesis have been used to address these questions since defects in conserved steps in ribosome biogenesis result in stem cell differentiation and developmental defects. In this review, we first explore how ribosome levels affect stem cell differentiation. Second, we describe how ribosomal modifications and incorporation of ribosomal protein paralogs contribute to development. Third, we summarize how cells with perturbed ribosome biogenesis are sensed and eliminated during organismal growth.
Collapse
Affiliation(s)
- Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, 12222, USA
| | - Noor M Kotb
- Department of Biomedical Sciences, The School of Public Health, University at Albany SUNY, 11 Albany, NY 12222, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Kim JH, Modena MS, Sehgal E, Courney A, Neudorf C, Arribere J. SMG-6 mRNA cleavage stalls ribosomes near premature stop codons in vivo. Nucleic Acids Res 2022; 50:8852-8866. [PMID: 35950494 PMCID: PMC9410879 DOI: 10.1093/nar/gkac681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) protects cells from the toxic and potentially dominant effects of truncated proteins. Targeting of mRNAs with early stop codons is mediated by the ribosome and spatiotemporally aligned with translation termination. Previously we identified a novel NMD intermediate: ribosomes stalled on cleaved stop codons, raising the possibility that NMD begins even prior to ribosome removal from the stop codon. Here we show that this intermediate is the result of mRNA cleavage by the endonuclease SMG-6. Our work supports a model in which ribosomes stall secondary to SMG-6 mRNA cleavage in Caenorhabditis elegans and humans, i.e. that the novel NMD intermediate occurs after a prior ribosome elicits NMD. Our genetic analysis of C. elegans' SMG-6 supports a central role for SMG-6 in metazoan NMD, and provides a context for evaluating its function in other metazoans.
Collapse
Affiliation(s)
- John H Kim
- Department of MCD Biology, UC Santa Cruz, California, USA
| | | | - Enisha Sehgal
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Annie Courney
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Celine W Neudorf
- Department of Biomolecular Engineering, UC Santa Cruz, California, USA
| | | |
Collapse
|
10
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|
11
|
Singh M, Cornes E, Li B, Quarato P, Bourdon L, Dingli F, Loew D, Proccacia S, Cecere G. Translation and codon usage regulate Argonaute slicer activity to trigger small RNA biogenesis. Nat Commun 2021; 12:3492. [PMID: 34108460 PMCID: PMC8190271 DOI: 10.1038/s41467-021-23615-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
In the Caenorhabditis elegans germline, thousands of mRNAs are concomitantly expressed with antisense 22G-RNAs, which are loaded into the Argonaute CSR-1. Despite their essential functions for animal fertility and embryonic development, how CSR-1 22G-RNAs are produced remains unknown. Here, we show that CSR-1 slicer activity is primarily involved in triggering the synthesis of small RNAs on the coding sequences of germline mRNAs and post-transcriptionally regulates a fraction of targets. CSR-1-cleaved mRNAs prime the RNA-dependent RNA polymerase, EGO-1, to synthesize 22G-RNAs in phase with translating ribosomes, in contrast to other 22G-RNAs mostly synthesized in germ granules. Moreover, codon optimality and efficient translation antagonize CSR-1 slicing and 22G-RNAs biogenesis. We propose that codon usage differences encoded into mRNA sequences might be a conserved strategy in eukaryotes to regulate small RNA biogenesis and Argonaute targeting.
Collapse
Affiliation(s)
- Meetali Singh
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| | - Eric Cornes
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| | - Blaise Li
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Piergiuseppe Quarato
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Loan Bourdon
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Simone Proccacia
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
- Università di Trento, Trento TN, Italy
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France.
| |
Collapse
|
12
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|