1
|
Spiewla T, Grab K, Depaix A, Ziemkiewicz K, Warminski M, Jemielity J, Kowalska J. An MST-based assay reveals new binding preferences of IFIT1 for canonically and noncanonically capped RNAs. RNA (NEW YORK, N.Y.) 2025; 31:181-192. [PMID: 39643445 PMCID: PMC11789485 DOI: 10.1261/rna.080089.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
IFITs (interferon-induced proteins with tetratricopeptide repeats) are components of the innate immune response that bind to viral and cellular RNA targets to inhibit translation and replication. The RNA target recognition is guided by molecular patterns, particularly at the RNA 5' ends. IFIT1 preferably binds RNAs modified with the m7G cap-0 structure, while RNAs with cap-1 structure are recognized with lower affinity. Less is known about the propensity of IFIT1 to recognize noncanonical RNA 5' ends, including hypermethylated and noncanonical RNA caps. Further insights into the structure-function relationship for IFIT1-RNA interactions are needed but require robust analytical methods. Here, we report a biophysical assay for quick, direct, in-solution affinity assessment of differently capped RNAs with IFIT1. The procedure, which relies on measuring microscale thermophoresis of fluorescently labeled protein as a function of increasing ligand concentration, is applicable to RNAs of various lengths and sequences without the need for their labeling or affinity tagging. Using the assay, we examined 13 canonically and noncanonically 5'-capped RNAs, revealing new binding preferences of IFIT1. The 5' terminal m6A mark in the m7G cap had a protective function against IFIT1, which was additive with the effect observed for the 2'-O position (m6Am cap-1). In contrast, an increased affinity for IFIT1 was observed for several noncanonical caps, including trimethylguanosine, unmethylated (G), and flavin-adenine dinucleotide caps. The results suggest new potential cellular targets of IFIT1 and may contribute to broadening the knowledge of the innate immune response mechanisms and the more effective design of chemically modified mRNAs.
Collapse
Affiliation(s)
- Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Anais Depaix
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Geng J, Chrabaszczewska M, Kurpiejewski K, Stankiewicz-Drogon A, Jankowska-Anyszka M, Darzynkiewicz E, Grzela R. Cap-related modifications of RNA regulate binding to IFIT proteins. RNA (NEW YORK, N.Y.) 2024; 30:1292-1305. [PMID: 39009378 PMCID: PMC11404448 DOI: 10.1261/rna.080011.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m6Am modification. The results show that the cap-adjacent m6Am modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m7Gpppm6Am-RNA much more effectively than other cap modifications. In contrast, m6A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-O and m6Am modifications modulate the availability of mRNA molecules for proteins of innate immune response.
Collapse
Affiliation(s)
- Jingping Geng
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Chrabaszczewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
4
|
Kurpiejewski K, Stankiewicz-Drogon A, Piecyk K, Rajkowska E, Skrzypczyk P, Geng J, Darzynkiewicz E, Grzela R, Jankowska-Anyszka M. The potential of N2-modified cap analogues for precise genetic manipulation through mRNA engineering. Front Mol Biosci 2024; 10:1269028. [PMID: 38380271 PMCID: PMC10878308 DOI: 10.3389/fmolb.2023.1269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 02/22/2024] Open
Abstract
The technology of mRNA-based drugs is currently being intensively developed and implemented. Medical products of this type are already being used as viral vaccines and could potentially find application in a wide range of diseases. The tremendous interest in mRNA is due to the relatively easy production process, which can be quickly adapted to meet societal needs. The properties of this molecule depend on the structure of its individual components, such as the structure of the cap at the 5' end. Modifications of the cap significantly affect the translational potential and lifespan of the whole mRNA. In the current work, we present the synthesis of derivatives of cap analogues modified at the N2 position of 7-methylguanosine. In addition to the substituent at the N2 position, the derivatives had either an extended triphosphate chain, a thiophosphate modification, an added cap1-modified nucleotide or an extended linker between the substituent and 7-methylguanosine. The compounds were tested for use as translation inhibitors and as components for mRNA preparation and appeared of interest for both applications.
Collapse
Affiliation(s)
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | | | - Jingping Geng
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
5
|
Kurpiejewski K, Jankowska-Anyszka M, Grzela R. N2 modified cap analogues as translation inhibitors and substrates for preparation of therapeutic mRNA. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:511-519. [PMID: 37656232 PMCID: PMC10618310 DOI: 10.1007/s00249-023-01676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In recent years many scientists have begun to focus on the mRNA molecule's emeregence as a new type of drug. Its fast-moving and successful career as a vaccine technology cannot be underestimated. mRNA provides new opportunities and allows for the rapid preparation of effective drugs at low cost. These extensive possibilities stem from a number of factors, but the small cap structure located at the 5' end of the mRNA is one contributing factor. Cap protects mRNA and ensures efficient recruitment to the biosynthesis machinery. Furthermore, it allows for the easy introduction of various modifications that influence the activity of the entire mRNA. Among the many different cap analogues that have been reported, those modified at the N2 position of guanosine have been systematically developed. N2-modified caps in the form of nucleoside monophosphates or dinucleotides show favorable biological properties, as well as a high capacity to inhibit the translation process in the cell-free RRL system. Modified N2 dinucleotides are efficiently incorporated into the structure of the mRNA transcript, and in specific circumstances with the correct orientation, making them an interesting alternative for ARCA-type analogues. Moreover, mRNA transcripts containing cap structures modified within the exocyclic amino group show very high translational activity. Therefore, analogues modified at the N2 position may have future applications as therapeutics against various manifestations of cancer and as desirable tools in RNA engineering.
Collapse
Affiliation(s)
| | | | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Andrzejewska A, Grzela R, Stankiewicz-Drogon A, Rogujski P, Nagaraj S, Darzynkiewicz E, Lukomska B, Janowski M. Mesenchymal stem cell engineering by ARCA analog-capped mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:454-468. [PMID: 37588684 PMCID: PMC10425852 DOI: 10.1016/j.omtn.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
We previously have shown that mRNA-based engineering may enhance mesenchymal stem cell (MSC) trafficking. However, optimal conditions for in vitro mRNA engineering of MSCs are unknown. Here, we investigated several independent variables: (1) transfection factor (Lipofectamine 2000 vs. TransIT), (2) mRNA purification method (spin column vs. high-performance liquid chromatography [HPLC] column), and (3) mRNA capping (ARCA vs. β-S-ARCA D1 and β-S-ARCA D2). Dependent variables included protein production based on mRNA template (measured by the bioluminescence of reporter gene luciferase over hours), MSC metabolic activity corresponding with their wellbeing measured by CCK-8 over days, and endogenous expression of genes by RT-qPCR related to innate intracellular immune response and decapping at two time points: days 2 and 5. We have found that Lipofectamine 2000 outperforms TransIT, and used it throughout the study. Then, we showed that mRNA must be purified by HPLC to be relatively neutral to MSCs in terms of metabolic activity and endogenous protein production. Ultimately, we demonstrated that β-S-ARCA D1 enables higher protein production but at the cost of lower MSC metabolic activity, with no impact on RT-qPCR results. Thus Lipofectamine 2000-based in vitro transfection of HPLC-purified and ARCA- or β-S-ARCA D1-capped mRNA is optimal for MSC engineering.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Grzela R, Piecyk K, Stankiewicz-Drogon A, Pietrow P, Lukaszewicz M, Kurpiejewski K, Darzynkiewicz E, Jankowska-Anyszka M. N2 modified dinucleotide cap analogs as a potent tool for mRNA engineering. RNA (NEW YORK, N.Y.) 2023; 29:200-216. [PMID: 36418172 PMCID: PMC9891257 DOI: 10.1261/rna.079460.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
mRNA-based vaccines are relatively new technologies that have been in the field of interest of research centers and pharmaceutical companies in recent years. Such therapeutics are an attractive alternative for DNA-based vaccines since they provide material that can be used with no risk of genomic integration. Additionally, mRNA can be quite easily engineered to introduce modifications for different applications or to modulate its properties, for example, to increase translational efficiency or stability, which is not available for DNA vectors. Here, we describe the use of N2 modified dinucleotide cap analogs as components of mRNA transcripts. The compounds obtained showed very promising biological properties while incorporated into mRNA. The presented N2-guanine modifications within the cap structure ensure proper attachment of the dinucleotide to the transcripts in the IVT reaction, guarantees their incorporation only in the correct orientation, and enables highly efficient translation of mRNA both in the in vitro translation system and in human HEK293 cells.
Collapse
Affiliation(s)
- Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Paulina Pietrow
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland
- Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | |
Collapse
|
8
|
Budniak U, Karolak NK, Kulik M, Młynarczyk K, Górna MW, Dominiak PM. The Role of Electrostatic Interactions in IFIT5-RNA Complexes Predicted by the UBDB+EPMM Method. J Phys Chem B 2022; 126:9152-9167. [PMID: 36326196 PMCID: PMC9677429 DOI: 10.1021/acs.jpcb.2c04519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrostatic energy has a significant contribution to intermolecular interaction energy, especially in biological systems. Unfortunately, precise quantum mechanics calculations are not feasible for large biological systems; hence, simpler calculation methods are required. We propose a method called UBDB+EPMM (University at Buffalo Pseudoatom DataBank + Exact Potential Multipole Moments), which shortens computational time without losing accuracy. Here, we characterize electrostatic interactions in selected complexes of IFIT proteins with RNA. IFIT proteins are effectors of the innate immune system, and by binding foreign RNA, they prevent the synthesis of viral proteins in human host cells; hence, they block the propagation of viruses. We show that by using the UBDB+EPMM method it is possible to describe protein-RNA interactions not only qualitatively but also quantitatively. Looking at the charge penetration contribution to electrostatic interactions, we find all amino acid residues with strong local interactions. Moreover, we confirm that electrostatic interaction of IFIT5 with pppRNA does not depend on the sequence of the RNA.
Collapse
Affiliation(s)
- Urszula
Anna Budniak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Natalia Katarzyna Karolak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland,Nencki
Institute of Experimental Biology, Polish
Academy of Sciences, ul. Ludwika Pasteura 3, 02-093 Warszawa, Poland
| | - Marta Kulik
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Młynarczyk
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Maria Wiktoria Górna
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland,E-mail:
| | - Paulina Maria Dominiak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland,E-mail:
| |
Collapse
|
9
|
Nagaraj S, Stankiewicz-Drogon A, Darzynkiewicz E, Grzela R. RNA sensor response in HeLa cells for transfected mRNAs prepared in vitro by SP6 and HiT7 RNA polymerases: A comparative study. Front Bioeng Biotechnol 2022; 10:1017934. [PMID: 36406230 PMCID: PMC9669293 DOI: 10.3389/fbioe.2022.1017934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 08/18/2023] Open
Abstract
In vitro transcribed (IVT) synthetic mRNAs are in high demand due to their attractive bench to clinic translational processes. Mainly, the procedure to make IVT mRNA using bacteriophage RNA polymerases (RNAP) is relatively uncomplicated and scalable to produce large quantities in a short time period. However, IVT mRNA preparations are accompanied by contaminants such as double-stranded RNA (dsRNA) as by-products that elicit undesired cellular immune responses upon transfections. Therefore, removing dsRNA contaminants is critical in IVT mRNA preparations for therapeutic applications. One such method to minimize dsRNA contaminants is to use genetically modified thermostable bacteriophage polymerase, HiT7 RNAP that performs IVT reaction at a higher temperature than typically used. However, the cellular RNA sensor response for IVT mRNA preparations by HiT7 RNAP is not characterized. Here, we compared the cellular RNA sensor response for mRNAs prepared by HiT7 RNAP (at 50°C) and SP6 RNAP (at 37°C) in HeLa cells. We show that IVT mRNA preparations by HiT7 RNAP reduced the dsRNA levels and dsRNA specific RNA sensor response (retinoic acid-inducible gene I, RIG-I and melanoma differentiation-associated 5, MDA5) compared to the IVT mRNA preparations by SP6 RNAP. Similarly, the incorporation of pseudouridine nucleotides instead of uridine nucleotides reduced dsRNA sensor response and increased the mRNA translation. Overall, the least dsRNA mediated RNA sensor response is observed when mRNA is synthesized by HiT7 RNAP and incorporated with pseudouridine nucleotides.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of WarsawWarsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of WarsawWarsaw, Poland
| | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of WarsawWarsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of WarsawWarsaw, Poland
| | - Renata Grzela
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of WarsawWarsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of WarsawWarsaw, Poland
| |
Collapse
|
10
|
Mattay J. Noncanonical metabolite RNA caps: Classification, quantification, (de)capping, and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1730. [PMID: 35675554 DOI: 10.1002/wrna.1730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The 5' cap of eukaryotic mRNA is a hallmark for cellular functions from mRNA stability to translation. However, the discovery of novel 5'-terminal RNA caps derived from cellular metabolites has challenged this long-standing singularity in both eukaryotes and prokaryotes. Reminiscent of the 7-methylguanosine (m7G) cap structure, these noncanonical caps originate from abundant coenzymes such as NAD, FAD, or CoA and from metabolites like dinucleoside polyphosphates (NpnN). As of now, the significance of noncanonical RNA caps is elusive: they differ for individual transcripts, occur in distinct types of RNA, and change in response to environmental stimuli. A thorough comparison of their prevalence, quantity, and characteristics is indispensable to define the distinct classes of metabolite-capped RNAs. This is achieved by a structured analysis of all present studies covering functional, quantitative, and sequencing data which help to uncover their biological impact. The biosynthetic strategies of noncanonical RNA capping and the elaborate decapping machinery reveal the regulation and turnover of metabolite-capped RNAs. With noncanonical capping being a universal and ancient phenomenon, organisms have developed diverging strategies to adapt metabolite-derived caps to their metabolic needs, but ultimately to establish noncanonical RNA caps as another intriguing layer of RNA regulation. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Johanna Mattay
- Institute of Biochemistry, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Nowacka M, Latoch P, Izert MA, Karolak NK, Tomecki R, Koper M, Tudek A, Starosta AL, Górna M. A cap 0-dependent mRNA capture method to analyze the yeast transcriptome. Nucleic Acids Res 2022; 50:e132. [PMID: 36259646 PMCID: PMC9825183 DOI: 10.1093/nar/gkac903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 01/29/2023] Open
Abstract
Analysis of the protein coding transcriptome by the RNA sequencing requires either enrichment of the desired fraction of coding transcripts or depletion of the abundant non-coding fraction consisting mainly of rRNA. We propose an alternative mRNA enrichment strategy based on the RNA-binding properties of the human IFIT1, an antiviral protein recognizing cap 0 RNA. Here, we compare for Saccharomyces cerevisiae an IFIT1-based mRNA pull-down with yeast targeted rRNA depletion by the RiboMinus method. IFIT1-based RNA capture depletes rRNA more effectively, producing high quality RNA-seq data with an excellent coverage of the protein coding transcriptome, while depleting cap-less transcripts such as mitochondrial or some non-coding RNAs. We propose IFIT1 as a cost effective and versatile tool to prepare mRNA libraries for a variety of organisms with cap 0 mRNA ends, including diverse plants, fungi and eukaryotic microbes.
Collapse
Affiliation(s)
| | | | - Matylda A Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Warsaw 02-093, Poland
| | - Natalia K Karolak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Warsaw 02-093, Poland,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Warsaw 02-093, Poland
| | - Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Warsaw 02-106, Poland,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Warsaw 02-106, Poland
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Warsaw 02-106, Poland
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Warsaw 02-106, Poland
| | - Agata L Starosta
- Correspondence may also be addressed to Agata L. Starosta. Tel: +48 22 592 33 41;
| | - Maria W Górna
- To whom correspondence should be addressed. Tel: +48 22 55 26 685;
| |
Collapse
|
12
|
Abstract
The mRNA epitranscriptome imparts diversity to gene expression by installing chemical modifications. Advances in detection methods have identified chemical modifications in eukaryotic, bacterial, and viral messenger RNAs (mRNAs). The biological functions of modifications in mRNAs still remain to be understood. Chemical modifications are introduced in synthetic mRNAs meant for therapeutic applications to maximize expression from the synthetic mRNAs and to evade the host immune response. This overview provides a background of chemical modifications found in mRNAs, with an emphasis on pseudouridine and its known effects on the mRNA life cycle, its potential applications in synthetic mRNA, and the methods used to assess its effects on mRNA translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- RNA and Genome Editing, New England Biolabs Inc, Ipswich, MA, USA.
| |
Collapse
|