1
|
Beavan AJS, Thuburn V, Fatkhullin B, Cunningham J, Hopes TS, Dimascio E, Chan T, Zhao N, Norris K, Chau C, Vasconcelos EJR, Wood A, Whitehouse A, Actis P, Davies B, Fontana J, O'Connell MJ, Thomson E, Aspden JL. Specialized ribosomes: integrating new insights and current challenges. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230377. [PMID: 40045788 PMCID: PMC11883436 DOI: 10.1098/rstb.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
Variation in the composition of different ribosomes, termed ribosome heterogeneity, is a now well established phenomenon. However, the functional implications of this heterogeneity on the regulation of protein synthesis are only now beginning to be revealed. While there are numerous examples of heterogeneous ribosomes, there are comparatively few bona fide specialized ribosomes described. Specialization requires that compositionally distinct ribosomes, through their subtly altered structure, have a functional consequence to the translational output. Even for those examples of ribosome specialization that have been characterized, the precise mechanistic details of how changes in protein and rRNA composition enable the ribosome to regulate translation are still missing. Here, we suggest looking at the evolution of specialization across the tree of life may help reveal central principles of translation regulation. We consider functional and structural studies that have provided insight into the potential mechanisms through which ribosome heterogeneity could affect translation, including through mRNA and open reading frame selectivity, elongation dynamics and post-translational folding. Further, we highlight some of the challenges that must be addressed to show specialization and review the contribution of various models. Several studies are discussed, including recent studies that show how structural insight is starting to shed light on the molecular details of specialization. Finally, we discuss the future of ribosome specialization studies, where advances in technology will likely enable the next wave of research questions. Recent work has helped provide a more comprehensive understanding of how ribosome heterogeneity affects translational control.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Alan J. S. Beavan
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Veronica Thuburn
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Bulat Fatkhullin
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Joanne Cunningham
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Tayah S. Hopes
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Ella Dimascio
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Tessa Chan
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Nan Zhao
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Karl Norris
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Chalmers Chau
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | | | - Alison Wood
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Adrian Whitehouse
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Paolo Actis
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | - Brendan Davies
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Juan Fontana
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Mary J. O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Emma Thomson
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Julie L. Aspden
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
2
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
3
|
Herbert A. Neurodegenerative diseases reflect the reciprocal roles played by retroelements in regulating memory and immunity. Front Neurosci 2024; 18:1445540. [PMID: 39371608 PMCID: PMC11451048 DOI: 10.3389/fnins.2024.1445540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Tetrapod endogenous retroelements (ERE) encode proteins that have been exapted to perform many roles in development and also in innate immunity, including GAG (group specific antigen) proteins from the ERE long terminal repeat (LTR) family, some of which can assemble into viral-like capsids (VLCs) and transmit mRNA across synapses. The best characterized member of this family is ARC (activity-regulated cytoskeletal gene), that is involved in memory formation. Other types of EREs, such as LINES and SINES (long and short interspersed elements), have instead been exapted for immune defenses against infectious agents. These immune EREs identify host transcripts by forming the unusual left-handed Z-DNA and Z-RNA conformations to enable self/nonself discrimination. Elevated levels of immune EREs in the brain are associated with neurodegenerative disease. Here I address the question of how pathways based on immune EREs are relate to the memory EREs that mediate neural plasticity. I propose that during infection and in other inflammatory states, ERE encoded GAG capsids deliver interferon-induced immune EREs that rapidly inhibit translation of viral RNAs in the dendritic splines by activation of protein kinase R (PKR). The response limits transmission of viruses and autonomously replicating elements, while protecting bystander cells from stress-induced cell death. Further, the PKR-dependent phosphorylation of proteins, like tau, disrupts the endocytic pathways exploited by viruses to spread to other cells. The responses come at a cost. They impair memory formation and can contribute to pathology by increasing the deposition of amyloid beta.
Collapse
|
4
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms. Life Sci Alliance 2024; 7:e202302501. [PMID: 38803235 PMCID: PMC11109482 DOI: 10.26508/lsa.202302501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the developmental transcription factor CCAAT/enhancer-binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This choice between alternative start sites depends on sequence features of the CEBPA transcript, including a regulatory uORF, but the molecular basis is not fully understood. Here, we identify the factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescent reporter coupled with CRISPRi screening. Our screen uncovered a role of the ribosome rescue factor PELOTA (PELO) in promoting the expression of the longer C/EBPα isoform by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin kinase. Our work uncovers further links between ribosome recycling and translation reinitiation that regulate a key transcription factor, with implications for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Samantha G Fernandez
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Meril S, Muhlbauer Avni M, Lior C, Bahlsen M, Olender T, Savidor A, Krausz J, Belhanes Peled H, Birisi H, David N, Bialik S, Scherz-Shouval R, Ben David Y, Kimchi A. Loss of EIF4G2 mediates aggressiveness in distinct human endometrial cancer subpopulations with poor survival outcome in patients. Oncogene 2024; 43:1098-1112. [PMID: 38388710 PMCID: PMC10997518 DOI: 10.1038/s41388-024-02981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The non-canonical translation initiation factor EIF4G2 plays essential roles in cellular stress responses via translation of selective mRNA cohorts. Currently there is limited and conflicting information regarding its involvement in cancer development and progression. Here we assessed its role in endometrial cancer (EC), in a cohort of 280 EC patients across different types, grades, and stages, and found that low EIF4G2 expression highly correlated with poor overall- and recurrence-free survival in Grade 2 EC patients, monitored over a period of up to 12 years. To establish a causative connection between low EIF4G2 expression and cancer progression, we stably knocked-down EIF4G2 in two human EC cell lines in parallel. EIF4G2 depletion resulted in increased resistance to conventional therapies and increased the prevalence of molecular markers for aggressive cell subsets, altering their transcriptional and proteomic landscapes. Prominent among the proteins with decreased abundance were Kinesin-1 motor proteins, KIF5B and KLC1, 2, 3. Multiplexed imaging of the EC patient tumor cohort showed a correlation between decreased expression of the kinesin proteins, and poor survival in patients with tumors of certain grades and stages. These findings reveal potential novel biomarkers for Grade 2 EC with ramifications for patient stratification and therapeutic interventions.
Collapse
Affiliation(s)
- Sara Meril
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Muhlbauer Avni
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Chen Lior
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Marcela Bahlsen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Savidor
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Judit Krausz
- Pathology Department, Emek Medical Center, Afula, Israel
| | | | - Hila Birisi
- Pathology Department, Emek Medical Center, Afula, Israel
| | - Nofar David
- Pathology Department, Emek Medical Center, Afula, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Ben David
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
7
|
Meril S, Bahlsen M, Eisenstein M, Savidor A, Levin Y, Bialik S, Pietrokovski S, Kimchi A. Loss-of-function cancer-linked mutations in the EIF4G2 non-canonical translation initiation factor. Life Sci Alliance 2024; 7:e202302338. [PMID: 38129098 PMCID: PMC10746786 DOI: 10.26508/lsa.202302338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.
Collapse
Affiliation(s)
- Sara Meril
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Marcela Bahlsen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Grove DJ, Russell PJ, Kearse MG. To initiate or not to initiate: A critical assessment of eIF2A, eIF2D, and MCT-1·DENR to deliver initiator tRNA to ribosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1833. [PMID: 38433101 PMCID: PMC11260288 DOI: 10.1002/wrna.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Selection of the correct start codon is critical for high-fidelity protein synthesis. In eukaryotes, this is typically governed by a multitude of initiation factors (eIFs), including eIF2·GTP that directly delivers the initiator tRNA (Met-tRNAi Met ) to the P site of the ribosome. However, numerous reports, some dating back to the early 1970s, have described other initiation factors having high affinity for the initiator tRNA and the ability of delivering it to the ribosome, which has provided a foundation for further work demonstrating non-canonical initiation mechanisms using alternative initiation factors. Here we provide a critical analysis of current understanding of eIF2A, eIF2D, and the MCT-1·DENR dimer, the evidence surrounding their ability to initiate translation, their implications in human disease, and lay out important key questions for the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Daisy J. Grove
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul J. Russell
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G. Kearse
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Zhang T, Xue Y, Su S, Altouma V, Ho K, Martindale JL, Lee SK, Shen W, Park A, Zhang Y, De S, Gorospe M, Wang W. RNA-binding protein Nocte regulates Drosophila development by promoting translation reinitiation on mRNAs with long upstream open reading frames. Nucleic Acids Res 2024; 52:885-905. [PMID: 38000373 PMCID: PMC10810208 DOI: 10.1093/nar/gkad1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.
Collapse
Affiliation(s)
- Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Valerie Altouma
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Katherine Ho
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung-Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
10
|
Shestakova ED, Tumbinsky RS, Andreev DE, Rozov FN, Shatsky IN, Terenin IM. The Roles of eIF4G2 in Leaky Scanning and Reinitiation on the Human Dual-Coding POLG mRNA. Int J Mol Sci 2023; 24:17149. [PMID: 38138978 PMCID: PMC10742948 DOI: 10.3390/ijms242417149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Upstream open reading frames (uORFs) are a frequent feature of eukaryotic mRNAs. Upstream ORFs govern main ORF translation in a variety of ways, but, in a nutshell, they either filter out scanning ribosomes or allow downstream translation initiation via leaky scanning or reinitiation. Previous reports concurred that eIF4G2, a long-known but insufficiently studied eIF4G1 homologue, can rescue the downstream translation, but disagreed on whether it is leaky scanning or reinitiation that eIF4G2 promotes. Here, we investigated a unique human mRNA that encodes two highly conserved proteins (POLGARF with unknown function and POLG, the catalytic subunit of the mitochondrial DNA polymerase) in overlapping reading frames downstream of a regulatory uORF. We show that the uORF renders the translation of both POLGARF and POLG mRNAs reliant on eIF4G2. Mechanistically, eIF4G2 enhances both leaky scanning and reinitiation, and it appears that ribosomes can acquire eIF4G2 during the early steps of reinitiation. This emphasizes the role of eIF4G2 as a multifunctional scanning guardian that replaces eIF4G1 to facilitate ribosome movement but not ribosome attachment to an mRNA.
Collapse
Affiliation(s)
- Ekaterina D. Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia (R.S.T.)
| | - Roman S. Tumbinsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia (R.S.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
| | - Dmitri E. Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia
| | - Fedor N. Rozov
- Department of Biochemistry, School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
| | - Ilya M. Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (I.N.S.)
- Translational Medicine Research Center, Sirius University of Science and Technology, Olimpiyskiy ave. b.1, 354349 Sochi, Russia
| |
Collapse
|
11
|
Shin S, Han MJ, Jedrychowski MP, Zhang Z, Shokat KM, Plas DR, Dephoure N, Yoon SO. mTOR inhibition reprograms cellular proteostasis by regulating eIF3D-mediated selective mRNA translation and promotes cell phenotype switching. Cell Rep 2023; 42:112868. [PMID: 37494188 PMCID: PMC10528759 DOI: 10.1016/j.celrep.2023.112868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.
Collapse
Affiliation(s)
- Sejeong Shin
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Min-Joon Han
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| | - Sang-Oh Yoon
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Shestakova ED, Smirnova VV, Shatsky IN, Terenin IM. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. RNA (NEW YORK, N.Y.) 2023; 29:282-299. [PMID: 36517212 PMCID: PMC9945437 DOI: 10.1261/rna.079462.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.
Collapse
Affiliation(s)
- Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Sirius University of Science and Technology, Sochi 354349, Russia
| |
Collapse
|
13
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
14
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice and protein isoform levels of transcription factor C/EBP α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524343. [PMID: 36711859 PMCID: PMC9882168 DOI: 10.1101/2023.01.16.524343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the hematopoietic transcription factor CCAAT-enhancer binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This alternative initiation depends on sequence features of the CEBPA transcript, including a regulatory upstream open reading frame (uORF), but the molecular basis is not fully understood. Here we identify trans-acting factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescence reporter coupled with CRISPRi screening. Our screen uncovered a role for the ribosome rescue factor PELOTA (PELO) in promoting expression of the longer C/EBPα isoform, by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin (mTOR) kinase. Our work provides further mechanistic insights into coupling between ribosome recycling and translation reinitiation in regulation of a key transcription factor, with implications for normal hematopoiesis and leukemiagenesis.
Collapse
Affiliation(s)
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley
| |
Collapse
|