1
|
Chokkalla AK, Mehta SL, Jeong S, Sun HL, Dai Q, Vemuganti R. FTO promotes post-stroke neuroprotection by m 6A demethylation of c-Jun. J Cereb Blood Flow Metab 2025:271678X251340808. [PMID: 40370319 DOI: 10.1177/0271678x251340808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
N6-methyladenosine (m6A) is a critical epitranscriptomic regulator of neuronal function. Cerebral ischemia induces m6A hypermethylation due to decreased expression of m6A demethylase fat mass and obesity-associated (FTO) protein. Previously, we showed that cerebral overexpression of FTO with an adeno-associated virus (AAV) 9 protects the post-stroke brain. We presently evaluated the mechanistic basis for FTO-dependent m6A demethylation in post-ischemic neuroprotection using the mice transient middle cerebral artery occlusion model of experimental stroke. Based on the bioinformatic predictions and m6A abundance, pro-apoptotic transcription factor Jun proto-oncogene (c-Jun) with 19 m6A sites was chosen as an exemplary target. FTO overexpression normalized the post-stroke m6A hypermethylation of c-Jun without altering its transcript levels. FTO-dependent m6A demethylation suppressed translation of c-Jun. Consequently, several c-Jun target genes are transcriptionally repressed, and the post-ischemic neuronal apoptosis is decelerated, as seen by decreased cleaved caspase-3 levels and TUNEL+ neurons in the FTO AAV9 treated group compared to the control AAV9 treated group. Moreover, replenishing c-Jun precluded the FTO-mediated post-stroke neuroprotection and functional recovery. Collectively, this study demonstrated that the FTO/m6A/c-Jun axis ameliorates post-stroke neuronal apoptosis and brain damage, leading to better functional outcomes.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Hui-Lung Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
2
|
Sun Q, Li H, Lin Z, Cao G, Yang D, Tang D, Chen X, Pan Y, Guo M. Mass-Spectrometry-Based Assay at Single-Base Resolution for Simultaneously Detecting m 6A and m 6Am in RNA. Anal Chem 2024; 96:11126-11136. [PMID: 38913599 DOI: 10.1021/acs.analchem.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The methylation modifications of adenosine, especially N6-methyladenosine (m6A) and N6, 2'-odimethyladenosine (m6Am), play vital roles in various biological, physiological, and pathological processes. However, current methods for detecting these modifications at single-base resolution have limitations. Mass spectrometry (MS), a highly accurate and sensitive technique, can be utilized to differentiate between m6A and m6Am by analyzing the molecular weight differences in their fragments during tandem MS analysis. In this study, we present an MS-based method that allows for the simultaneous determination of m6A and m6Am sites in targeted RNA fragments at single-nucleotide resolution. The approach involves the utilization of tandem MS in conjunction with targeted RNA enrichment and enzymatic digestion, eliminating the need for PCR amplification. By employing this strategy, we can accurately identify m6A and m6Am sites in targeted RNA fragments with high confidence. To evaluate the effectiveness of our method, we applied it to detect m6A and m6Am sites in cell and tissue samples. Furthermore, we verified the accuracy of our approach by performing CRISPR/Cas9-mediated knockout of the corresponding methyltransferases. Overall, our MS-based method offers a reliable and precise means for the simultaneous detection of m6A and m6Am modifications in targeted RNA fragments, providing valuable insights into the functional characterization of these modifications in various biological contexts.
Collapse
Affiliation(s)
- Qiang Sun
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Center for RNA Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine and Internation School of Medicine, Zhejiang University, Yiwu 310027, Zhejiang, China
| | - Haijuan Li
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ziwei Lin
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Dongzhi Yang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Daoquan Tang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xi Chen
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Mengzhe Guo
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
3
|
Wang D, Booth JL, Wu W, Kiger N, Lettow M, Bates A, Pan C, Metcalf J, Schroeder SJ. Nanopore Direct RNA Sequencing Reveals Virus-Induced Changes in the Transcriptional Landscape in Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600852. [PMID: 38979243 PMCID: PMC11230378 DOI: 10.1101/2024.06.26.600852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Direct RNA nanopore sequencing reveals changes in gene expression, polyadenylation, splicing, m6A methylation, and pseudouridylation in response to influenza virus exposure in primary human bronchial epithelial cells. This study focuses on the epitranscriptomic profile of genes in the host immune response. In addition to polyadenylated noncoding RNA, we purified and sequenced nonpolyadenylated noncoding RNA and observed changes in expression, N6-methyl-adenosine (m6A), and pseudouridylation (Ψ) in these novel RNA. Two recently discovered lincRNA with roles in immune response, Chaserr and LEADR , became highly methylated in response to influenza exposure. Several H/ACA type snoRNAs that guide pseudouridylation are decreased in expression in response to influenza, and there is a corresponding decrease in the pseudouridylation of two novel lncRNA. Thus, novel epitranscriptomic changes revealed by direct RNA sequencing with nanopore technology provides unique insights into the host epitranscriptomic changes in epithelial gene networks that respond to influenza virus infection.
Collapse
|
4
|
Horner SM, Thompson MG. Challenges to mapping and defining m 6A function in viral RNA. RNA (NEW YORK, N.Y.) 2024; 30:482-490. [PMID: 38531643 PMCID: PMC11019751 DOI: 10.1261/rna.079959.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Viral RNA molecules contain multiple layers of regulatory information. This includes features beyond the primary sequence, such as RNA structures and RNA modifications, including N6-methyladenosine (m6A). Many recent studies have identified the presence and location of m6A in viral RNA and have found diverse regulatory roles for this modification during viral infection. However, to date, viral m6A mapping strategies have limitations that prevent a complete understanding of the function of m6A on individual viral RNA molecules. While m6A sites have been profiled on bulk RNA from many viruses, the resulting m6A maps of viral RNAs described to date present a composite picture of m6A across viral RNA molecules in the infected cell. Thus, for most viruses, it is unknown if unique viral m6A profiles exist throughout infection, nor if they regulate specific viral life cycle stages. Here, we describe several challenges to defining the function of m6A in viral RNA molecules and provide a framework for future studies to help in the understanding of how m6A regulates viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|