1
|
Sherwood AV, Rivera-Rangel LR, Ryberg LA, Larsen HS, Anker KM, Costa R, Vågbø CB, Jakljevič E, Pham LV, Fernandez-Antunez C, Indrisiunaite G, Podolska-Charlery A, Grothen JER, Langvad NW, Fossat N, Offersgaard A, Al-Chaer A, Nielsen L, Kuśnierczyk A, Sølund C, Weis N, Gottwein JM, Holmbeck K, Bottaro S, Ramirez S, Bukh J, Scheel TKH, Vinther J. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature 2023; 619:811-818. [PMID: 37407817 PMCID: PMC7616780 DOI: 10.1038/s41586-023-06301-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.
Collapse
Affiliation(s)
- Anna V Sherwood
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Line A Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Helena S Larsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Klara M Anker
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Eva Jakljevič
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Gabriele Indrisiunaite
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Agnieszka Podolska-Charlery
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Julius E R Grothen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicklas W Langvad
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Christina Sølund
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Sandro Bottaro
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
2
|
The Pseudo-Circular Genomes of Flaviviruses: Structures, Mechanisms, and Functions of Circularization. Cells 2021; 10:cells10030642. [PMID: 33805761 PMCID: PMC7999817 DOI: 10.3390/cells10030642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5′ and 3′ ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.
Collapse
|
3
|
Infection of Aedes albopictus Mosquito C6/36 Cells with the wMelpop Strain of Wolbachia Modulates Dengue Virus-Induced Host Cellular Transcripts and Induces Critical Sequence Alterations in the Dengue Viral Genome. J Virol 2019; 93:JVI.00581-19. [PMID: 31092581 DOI: 10.1128/jvi.00581-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) causes frequent epidemics infecting ∼390 million people annually in over 100 countries. There are no approved vaccines or antiviral drugs for treatment of infected patients. However, there is a novel approach to control DENV transmission by the mosquito vectors, Aedes aegypti and Aedes albopictus, using the Wolbachia symbiont. The wMelPop strain of Wolbachia suppresses DENV transmission and shortens the mosquito life span. However, the underlying mechanism is poorly understood. To clarify this mechanism, either naive A. albopictus (C6/36) or wMelPop-C6/36 cells were infected with DENV serotype 2 (DENV2). Analysis of host transcript profiles by transcriptome sequencing (RNAseq) revealed that the presence of wMelPop dramatically altered the mosquito host cell transcription in response to DENV2 infection. The viral RNA evolved from wMelPop-C6/36 cells contained low-frequency mutations (∼25%) within the coding region of transmembrane domain 1 (TMD1) of E protein. Mutations with >97% frequencies were distributed within other regions of E, the NS5 RNA-dependent RNA polymerase (NS5POL) domain, and the TMDs of NS2A, NS2B, and NS4B. Moreover, while DENV2-infected naive C6/36 cells showed syncytium formation, DENV2-infected wMelPop-C6/36 cells did not. The Wolbachia-induced mutant DENV2 can readily infect and replicate in naive C6/36 cells, whereas in mutant DENV2-infected BHK-21 or Vero cells, virus replication was delayed. In LLC-MK2 cells, the mutant failed to produce plaques. Additionally, in BHK-21 cells, many mutations in the viral genome reverted to the wild type (WT) and compensatory mutations in NS3 gene appeared. Our results indicate that wMelPop impacts significantly the interactions of DENV2 with mosquito and mammalian host cells.IMPORTANCE Mosquito-borne diseases are of global significance causing considerable morbidity and mortality throughout the world. Dengue virus (DENV; serotypes 1 to 4), a member of the Flavivirus genus of the Flaviviridae family, causes millions of infections annually. Development of a safe vaccine is hampered due to absence of cross-protection and increased risk in secondary infections due to antibody-mediated immune enhancement. Infection of vector mosquitoes with Wolbachia bacteria offers a novel countermeasure to suppress DENV transmission, but the mechanisms are poorly understood. In this study, the host transcription profiles and viral RNA sequences were analyzed in naive A. albopictus (C6/36) and wMelPop-C6/36 cells by RNAseq. Our results showed that the wMelPop symbiont caused profound changes in host transcription profiles and morphology of DENV2-infected C6/36 cells. Accumulation of several mutations throughout DENV2 RNA resulted in loss of infectivity of progeny virions. Our findings offer new insights into the mechanism of Wolbachia-mediated suppression of DENV transmission.
Collapse
|
4
|
Wang Y, Yang ZY, Tian YP, Geng C, Yuan XF, Li XD. Role of Tobacco vein banding mosaic virus 3'-UTR on virus systemic infection in tobacco. Virology 2019; 527:38-46. [PMID: 30453210 DOI: 10.1016/j.virol.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022]
Abstract
To investigate the role of Tobacco vein banding mosaic virus (TVBMV) 3'-UTR in virus systemic infection, three types of deletions were introduced into TVBMV infectious clone pCaTVBMV-GFP. Mutants with deletions at the nucleotide position 8-42, 43-141, or 163-174 in the 3'-UTR failed to cause systemic infection in N. benthamiana plants. Other deletion mutants caused delayed systemic infection and milder vein clearing and mosaic symptoms. Most progeny mutant virus had acquired nucleotides, similar to or different from the deleted nucleotide sequences, after a single passage in the host plant. Nucleotides at the position 8-42 near the 5'-terminus of TVBMV 3'-UTR could form a stem-loop (SL) like structure which was crucial for TVBMV systemic movement in tobacco. We proposed that this SL like structure, and thus 3'-UTR, has an essential role in TVBMV systemic infection.
Collapse
Affiliation(s)
- Ying Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China; Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, PR China; College of Life Sciences, Linyi University, Linyi 276005, PR China
| | - Zheng-You Yang
- Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yan-Ping Tian
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chao Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Xue-Feng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| | - Xiang-Dong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| |
Collapse
|
5
|
Wang CC, Hsu YC, Wu HC, Wu HN. Insights into the coordinated interplay of the sHP hairpin and its co-existing and mutually-exclusive dengue virus terminal RNA elements for viral replication. Virology 2017; 505:56-70. [PMID: 28235683 DOI: 10.1016/j.virol.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Terminal RNA elements of the dengue virus (DENV) genome are necessary for balanced stability of linear and circular conformations during replication. We examined the small hairpin (sHP) and co-existing and mutually-exclusive terminal RNA elements by mutagenesis analysis, compensatory mutation screening, and by probing with RNA fragments to explore localized RNA folding and long-range RNA interactions. We found that the first base pair of the sHP and the stability of SLB and the 3'SL bottom stem affected circularization; sHPgc/C10631G+G10644C prohibited circularization, sHPuG accelerated and stabilized 5'-to-3' RNA hybridization, while C94A and A97G and C10649 mutations loosened SLB and 3'SL, respectively, for circularization. sHPuG+C10649G induced circularization and impeded replication, whereas point mutations that loosened the UAR or DAR ds region, strengthened the sHP, or reinforced the 3'SL bottom stem, rescued the replication deficiency. Overall, we reveal structural and sequence features and interplay of DENV genome terminal RNA elements essential to viral replication.
Collapse
Affiliation(s)
- Chun-Chung Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China; Faculty of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
The Golgi associated ERI3 is a Flavivirus host factor. Sci Rep 2016; 6:34379. [PMID: 27682269 PMCID: PMC5041148 DOI: 10.1038/srep34379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne Flavivirus classified into four serotypes (DENV-1-4) that causes Dengue fever (DF), Dengue hemorrhagic Fever (DHF) or Dengue shock syndrome (DSS). An estimated 390 million people are at risk for infection with DENV and there are no effective vaccines or therapeutics. We utilized RNA chromatography coupled with quantitative mass spectrometry (qMS) to identify host RNA binding proteins (RBPs) that interact with DENV-2 RNA. We identified ERI3 (also PRNPIP and PINT1), a putative 3′–5′ RNA exonuclease, which preferentially associates with DENV-2 genomic RNA via interactions with dumbbell structures in the 3′ UTR. ERI3 is required for accumulation of DENV-2 genomic RNA and production of infectious particles. Furthermore, the mosquito homologue of ERI3 is required for DENV-2 replication in adult Aedes aegypti mosquitos implying that the requirement for ERI3 is conserved in both DENV hosts. In human cells ERI3 localizes to the Golgi in uninfected cells, but relocalizes near sites of DENV-2 replication in infected cells. ERI3 is not required for maintaining DENV-2 RNA stability or translation of the viral polyprotein, but is required for viral RNA synthesis. Our results define a specific role for ERI3 and highlight the importance of Golgi proteins in DENV-2 replication.
Collapse
|
7
|
Padmanabhan R, Takhampunya R, Teramoto T, Choi KH. Flavivirus RNA synthesis in vitro. Methods 2015; 91:20-34. [PMID: 26272247 DOI: 10.1016/j.ymeth.2015.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Establishment of in vitro systems to study mechanisms of RNA synthesis for positive strand RNA viruses have been very useful in the past and have shed light on the composition of protein and RNA components, optimum conditions, the nature of the products formed, cis-acting RNA elements and trans-acting protein factors required for efficient synthesis. In this review, we summarize our current understanding regarding the requirements for flavivirus RNA synthesis in vitro. We describe details of reaction conditions, the specificity of template used by either the multi-component membrane-bound viral replicase complex or by purified, recombinant RNA-dependent RNA polymerase. We also discuss future perspectives to extend the boundaries of our knowledge.
Collapse
Affiliation(s)
- Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington DC 20057, United States.
| | - Ratree Takhampunya
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington DC 20057, United States
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington DC 20057, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
8
|
Niyomrattanakit P, Wan KF, Chung KY, Abas SN, Seh CC, Dong H, Lim CC, Chao AT, Lee CB, Nilar S, Lescar J, Shi PY, Beer D, Lim SP. Stabilization of dengue virus polymerase in de novo initiation assay provides advantages for compound screening. Antiviral Res 2015; 119:36-46. [PMID: 25896272 DOI: 10.1016/j.antiviral.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) NS5 protein comprises an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain (RdRp). DENV RdRp is responsible for viral RNA synthesis via a de novo initiation mechanism and represents an attractive target for anti-viral therapy. Herein we describe the characterization of its de novo initiation activities by PAGE analyses and the knowledge gained was used to develop a fluorescent-based assay. A highly processive and robust assay was achieved by addition of cysteine in the assay buffer. This stabilized the apo-enzyme, and rendered optimal de novo initiation activity while balancing its intrinsic terminal transferase activity. Steady-state kinetic parameters of the NTP and RNA substrates under these optimal conditions were determined for DENV1-4 FL NS5. Heavy metal ions such as Zn(++) and Co(++) as well as high levels of monovalent salts, suppressed DENV polymerase de novo initiation activities. This assay was validated with nucleotide chain terminators and used to screen two diverse small library sets. The screen data obtained was further compared with concurrent screens performed with a DENV polymerase elongation fluorescent assay utilizing pre-complexed enzyme-RNA. A higher hit-rate was obtained for the de novo initiation assay compared to the elongation assay (∼2% versus ∼0.1%). All the hits from the latter assay are also identified in the de novo initiation assay, indicating that the de novo initiation assay performed with the stabilized apo-enzyme has the advantage of providing additional chemical starting entities for inhibiting this enzyme.
Collapse
Affiliation(s)
- Pornwaratt Niyomrattanakit
- Novartis Institute for Tropical Diseases, Singapore; Maveta Company Limited, 26/522 Paholyothin 62/1 S, Saimai, Bangkok 10220, Thailand(1)
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore.
| | - Ka Yan Chung
- Novartis Institute for Tropical Diseases, Singapore; Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | - Shahul Nilar
- Novartis Institute for Tropical Diseases, Singapore
| | - Julien Lescar
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore; INSERM UMRS 945 "Immunité et Infection", Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine et Université Pierre et Marie Curie, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore
| | - David Beer
- Novartis Institute for Tropical Diseases, Singapore
| | | |
Collapse
|
9
|
Manzano M, Padmanabhan R. Targeted mutagenesis of dengue virus type 2 replicon RNA by yeast in vivo recombination. Methods Mol Biol 2014; 1138:151-60. [PMID: 24696336 DOI: 10.1007/978-1-4939-0348-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.
Collapse
Affiliation(s)
- Mark Manzano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
10
|
Abstract
Flaviviruses are a genus of (+)ssRNA (positive ssRNA) enveloped viruses that replicate in the cytoplasm of cells of diverse species from arthropods to mammals. Many are important human pathogens such as DENV-1-4 (dengue virus types 1-4), WNV (West Nile virus), YFV (yellow fever virus), JEV (Japanese encephalitis virus) and TBEV (tick-borne encephalitis). Given their RNA genomes it is not surprising that flaviviral life cycles revolve around critical RNA transactions. It is these we highlight in the present article. First, we summarize the mechanisms governing flaviviral replication and the central role of conserved RNA elements and viral protein-RNA interactions in RNA synthesis, translation and packaging. Secondly, we focus on how host RNA-binding proteins both benefit and inhibit flaviviral replication at different stages of their life cycle in mammalian hosts. Thirdly, we cover recent studies on viral non-coding RNAs produced in flavivirus-infected cells and how these RNAs affect various aspects of cellular RNA metabolism. Together, the article puts into perspective the central role of flaviviral RNAs in modulating both viral and cellular functions.
Collapse
|
11
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
12
|
te Velthuis AJW. Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci 2014; 71:4403-20. [PMID: 25080879 PMCID: PMC4207942 DOI: 10.1007/s00018-014-1695-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Eukaryotes and bacteria can be infected with a wide variety of RNA viruses. On average, these pathogens share little sequence similarity and use different replication and transcription strategies. Nevertheless, the members of nearly all RNA virus families depend on the activity of a virally encoded RNA-dependent polymerase for the condensation of nucleotide triphosphates. This review provides an overview of our current understanding of the viral RNA-dependent polymerase structure and the biochemistry and biophysics that is involved in replicating and transcribing the genetic material of RNA viruses.
Collapse
Affiliation(s)
- Aartjan J W te Velthuis
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands,
| |
Collapse
|
13
|
Teramoto T, Boonyasuppayakorn S, Handley M, Choi KH, Padmanabhan R. Substitution of NS5 N-terminal domain of dengue virus type 2 RNA with type 4 domain caused impaired replication and emergence of adaptive mutants with enhanced fitness. J Biol Chem 2014; 289:22385-400. [PMID: 24904061 DOI: 10.1074/jbc.m114.584466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Flavivirus NS3 and NS5 are required in viral replication and 5'-capping. NS3 has NS2B-dependent protease, RNA helicase, and 5'-RNA triphosphatase activities. NS5 has 5'-RNA methyltransferase (MT)/guanylyltransferase (GT) activities within the N-terminal 270 amino acids and the RNA-dependent RNA polymerase (POL) activity within amino acids 271-900. A chimeric NS5 containing the D4MT/D4GT and the D2POL domains in the context of wild-type (WT) D2 RNA was constructed. RNAs synthesized in vitro were transfected into baby hamster kidney cells. The viral replication was analyzed by an indirect immunofluorescence assay to monitor NS1 expression and by quantitative real-time PCR. WT D2 RNA-transfected cells were NS1- positive by day 5, whereas the chimeric RNA-transfected cells became NS1-positive ∼30 days post-transfection in three independent experiments. Sequence analysis covering the entire genome revealed the appearance of a single K74I mutation within the D4MT domain ∼16 days post-transfection in two experiments. In the third, D290N mutation in the conserved NS3 Walker B motif appeared ≥16 days post-transfection. A time course study of serial passages revealed that the 30-day supernatant had gradually evolved to gain replication fitness. Trans-complementation by co-expression of WT D2 NS5 accelerated viral replication of chimeric RNA without changing the K74I mutation. However, the MT and POL activities of NS5 WT D2 and the chimeric NS5 proteins with or without the K74I mutation are similar. Taken together, our results suggest that evolution of the functional interactions involving the chimeric NS5 protein encoded by the viral genome species is essential for gain of viral replication fitness.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057 and
| | - Siwaporn Boonyasuppayakorn
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057 and
| | - Misty Handley
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057 and
| | - Kyung H Choi
- the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0156
| | - Radhakrishnan Padmanabhan
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057 and
| |
Collapse
|
14
|
Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antiviral Res 2014; 106:125-34. [PMID: 24680954 PMCID: PMC4523242 DOI: 10.1016/j.antiviral.2014.03.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/14/2022]
Abstract
Dengue virus serotypes 1-4 (DENV1-4) are transmitted by mosquitoes which cause most frequent arboviral infections in the world resulting in ∼390 million cases with ∼25,000 deaths annually. There is no vaccine or antiviral drug currently available for human use. Compounds containing quinoline scaffold were shown to inhibit flavivirus NS2B-NS3 protease (NS2B-NS3pro) with good potencies. In this study, we screened quinoline derivatives, which are known antimalarial drugs for inhibition of DENV2 and West Nile virus (WNV) replication using the corresponding replicon expressing cell-based assays. Amodiaquine (AQ), one of the 4-aminoquinoline drugs, inhibited DENV2 infectivity measured by plaque assays, with EC50 and EC90 values of 1.08±0.09μM and 2.69±0.47 μM, respectively, and DENV2 RNA replication measured by Renilla luciferase reporter assay, with EC50 value of 7.41±1.09μM in the replicon expressing cells. Cytotoxic concentration (CC50) in BHK-21 cells was 52.09±4.25μM. The replication inhibition was confirmed by plaque assay of the extracellular virions as well as by qRT-PCR of the intracellular and extracellular viral RNA levels. AQ was stable for at least 96h and had minor inhibitory effect on entry, translation, and post-replication stages in the viral life cycle. DENV protease, 5'-methyltransferase, and RNA-dependent RNA polymerase do not seem to be targets of AQ. Both p-hydroxyanilino and diethylaminomethyl moieties are important for AQ to inhibit DENV2 replication and infectivity. Our results support AQ as a promising candidate for anti-flaviviral therapy.
Collapse
|
15
|
Teramoto T, Chiang HS, Takhampunya R, Manzano M, Padmanabhan R, Maric M. Gamma interferon-inducible lysosomal thioreductase (GILT) ablation renders mouse fibroblasts sensitive to dengue virus replication. Virology 2013; 441:146-51. [DOI: 10.1016/j.virol.2013.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/05/2013] [Accepted: 03/20/2013] [Indexed: 12/29/2022]
|
16
|
Selisko B, Potisopon S, Agred R, Priet S, Varlet I, Thillier Y, Sallamand C, Debart F, Vasseur JJ, Canard B. Molecular basis for nucleotide conservation at the ends of the dengue virus genome. PLoS Pathog 2012; 8:e1002912. [PMID: 23028313 PMCID: PMC3441707 DOI: 10.1371/journal.ppat.1002912] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/03/2012] [Indexed: 12/02/2022] Open
Abstract
The dengue virus (DV) is an important human pathogen from the Flavivirus genus, whose genome- and antigenome RNAs start with the strictly conserved sequence pppAG. The RNA-dependent RNA polymerase (RdRp), a product of the NS5 gene, initiates RNA synthesis de novo, i.e., without the use of a pre-existing primer. Very little is known about the mechanism of this de novo initiation and how conservation of the starting adenosine is achieved. The polymerase domain NS5PolDV of NS5, upon initiation on viral RNA templates, synthesizes mainly dinucleotide primers that are then elongated in a processive manner. We show here that NS5PolDV contains a specific priming site for adenosine 5′-triphosphate as the first transcribed nucleotide. Remarkably, in the absence of any RNA template the enzyme is able to selectively synthesize the dinucleotide pppAG when Mn2+ is present as catalytic ion. The T794 to A799 priming loop is essential for initiation and provides at least part of the ATP-specific priming site. The H798 loop residue is of central importance for the ATP-specific initiation step. In addition to ATP selection, NS5PolDV ensures the conservation of the 5′-adenosine by strongly discriminating against viral templates containing an erroneous 3′-end nucleotide in the presence of Mg2+. In the presence of Mn2+, NS5PolDV is remarkably able to generate and elongate the correct pppAG primer on these erroneous templates. This can be regarded as a genomic/antigenomic RNA end repair mechanism. These conservational mechanisms, mediated by the polymerase alone, may extend to other RNA virus families having RdRps initiating RNA synthesis de novo. The 5′- and 3′-ends of RNA virus genomes have evolved towards efficient replication, translation, and escape from defense mechanisms of the host cell. Little is known about how RNA viruses conserve or restore the correct ends of their genomes. The Flavivirus genus of positive-strand RNA viruses contains important human pathogens such as yellow fever virus, West Nile virus, Japanese encephalitis virus and dengue virus (DV). The Flavivirus genome ends are strictly conserved as 5′-AG…CU-3′. We demonstrate here the primary role of the DV polymerase in the conservation of the first and last genomic residue. We show that DV polymerase contains an ATP-specific priming site, which imposes a strong preference for the de novo synthesis of a dinucleotide primer starting with an ATP. Furthermore, the polymerase is able to indirectly correct erroneous sequences by producing the correct primer in the absence of template and on templates containing incorrect nucleotides at the 3′-end. The correct primer is productively elongated on either correct or incorrect templates. Our findings provide a direct demonstration of the implication of a viral RNA polymerase in the conservation and repair of genome ends. Other polymerases from other RNA virus families are likely to employ similar mechanisms.
Collapse
Affiliation(s)
- Barbara Selisko
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 163, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Takeshita D, Yamashita S, Tomita K. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Structure 2012; 20:1661-9. [PMID: 22884418 DOI: 10.1016/j.str.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
The genomic RNA of Qβ virus is replicated by Qβ replicase, a template-dependent RNA polymerase complex. Qβ replicase has an intrinsic template-independent RNA 3'-adenylation activity, which is required for efficient viral RNA amplification in the host cells. However, the mechanism of the template-independent 3'-adenylation of RNAs by Qβ replicase has remained elusive. We determined the structure of a complex that includes Qβ replicase, a template RNA, a growing RNA complementary to the template RNA, and ATP. The structure represents the terminal stage of RNA polymerization and reveals that the shape and size of the nucleotide-binding pocket becomes available for ATP accommodation after the 3'-penultimate template-dependent C-addition. The stacking interaction between the ATP and the neighboring Watson-Crick base pair, between the 5'-G in the template and the 3'-C in the growing RNA, contributes to the nucleotide specificity. Thus, the template for the template-independent 3'-adenylation by Qβ replicase is the RNA and protein ribonucleoprotein complex.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
18
|
Gebhard LG, Filomatori CV, Gamarnik AV. Functional RNA elements in the dengue virus genome. Viruses 2011; 3:1739-56. [PMID: 21994804 PMCID: PMC3187688 DOI: 10.3390/v3091739] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5′ and 3′ UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5′ end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3′ end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.
Collapse
Affiliation(s)
- Leopoldo G Gebhard
- Fundación Instituto Leloir-CONICET, Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| | | | | |
Collapse
|
19
|
The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. J Virol 2011; 85:5745-56. [PMID: 21471248 DOI: 10.1128/jvi.02343-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanism by which viral RNA-dependent RNA polymerases (RdRp) specifically amplify viral genomes is still unclear. In the case of flaviviruses, a model has been proposed that involves the recognition of an RNA element present at the viral 5' untranslated region, stem-loop A (SLA), that serves as a promoter for NS5 polymerase binding and activity. Here, we investigated requirements for specific promoter-dependent RNA synthesis of the dengue virus NS5 protein. Using mutated purified NS5 recombinant proteins and infectious viral RNAs, we analyzed the requirement of specific amino acids of the RdRp domain on polymerase activity and viral replication. A battery of 19 mutants was designed and analyzed. By measuring polymerase activity using nonspecific poly(rC) templates or specific viral RNA molecules, we identified four mutants with impaired polymerase activity. Viral full-length RNAs carrying these mutations were found to be unable to replicate in cell culture. Interestingly, one recombinant NS5 protein carrying the mutations K456A and K457A located in the F1 motif lacked RNA synthesis dependent on the SLA promoter but displayed high activity using a poly(rC) template. Promoter RNA binding of this NS5 mutant was unaffected while de novo RNA synthesis was abolished. Furthermore, the mutant maintained RNA elongation activity, indicating a role of the F1 region in promoter-dependent initiation. In addition, four NS5 mutants were selected to have polymerase activity in the recombinant protein but delayed or impaired virus replication when introduced into an infectious clone, suggesting a role of these amino acids in other functions of NS5. This work provides new molecular insights on the specific RNA synthesis activity of the dengue virus NS5 polymerase.
Collapse
|
20
|
Bronzoni RVM, Madrid MCFS, Duarte DVB, Pellegrini VOA, Pacca CC, Carmo ACV, Zanelli CF, Valentini SR, Santacruz-Pérez C, Barbosa JARG, Lutz CS, Rahal P, Nogueira ML. The small nuclear ribonucleoprotein U1A interacts with NS5 from yellow fever virus. Arch Virol 2011; 156:931-8. [PMID: 21298455 DOI: 10.1007/s00705-011-0927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
The flavivirus NS5 protein is one of the most important proteins of the replication complex, and cellular proteins can interact with it. This study shows for the first time that the yellow fever virus (YFV) NS5 protein is able to interact with U1A, a protein involved in splicing and polyadenylation. We confirmed this interaction by GST-pulldown assay and by co-immunoprecipitation in YFV-infected cells. A region between amino acids 368 and 448 was identified as the site of interaction of the NS5 protein with U1A. This region was conserved among some flaviviruses of medical importance. The implications of this interaction for flavivirus replication are discussed.
Collapse
Affiliation(s)
- Roberta V M Bronzoni
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de Rio Preto, São José do Rio Preto 15090-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Filomatori CV, Iglesias NG, Villordo SM, Alvarez DE, Gamarnik AV. RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem 2010; 286:6929-39. [PMID: 21183683 DOI: 10.1074/jbc.m110.162289] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3' end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3'-UTR, we found that the RNA-RNA interaction mediated by 5'-3'-hybridization was able to release the silencing effect of the 3'-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.
Collapse
Affiliation(s)
- Claudia V Filomatori
- Fundación Instituto Leloir-CONICET, Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | | | | | |
Collapse
|
22
|
Villordo SM, Alvarez DE, Gamarnik AV. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA (NEW YORK, N.Y.) 2010; 16:2325-2335. [PMID: 20980673 PMCID: PMC2995394 DOI: 10.1261/rna.2120410] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
The plasticity of viral plus strand RNA genomes is fundamental for the multiple functions of these molecules. Local and long-range RNA-RNA interactions provide the scaffold for interacting proteins of the translation, replication, and encapsidation machinery. Using dengue virus as a model, we investigated the relevance of the interplay between two alternative conformations of the viral genome during replication. Flaviviruses require long-range RNA-RNA interactions and genome cyclization for RNA synthesis. Here, we define a sequence present in the viral 3'UTR that overlaps two mutually exclusive structures. This sequence can form an extended duplex by long-range 5'-3' interactions in the circular conformation of the RNA or fold locally into a small hairpin (sHP) in the linear form of the genome. A mutational analysis of the sHP structure revealed an absolute requirement of this element for viral viability, suggesting the need of a linear conformation of the genome. Viral RNA replication showed high vulnerability to changes that alter the balance between circular and linear forms of the RNA. Mutations that shift the equilibrium toward the circular or the linear conformation of the genome spontaneously revert to sequences with different mutations that tend to restore the relative stability of the two competing structures. We propose a model in which the viral genome exists in at least two alternative conformations and the balance between these two states is critical for infectivity.
Collapse
|
23
|
Alcaraz-Estrada SL, Yocupicio-Monroy M, del Angel RM. Insights into dengue virus genome replication. Future Virol 2010. [DOI: 10.2217/fvl.10.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since many antiviral drugs are designed to interfere with viral genome replication, understanding this step in the viral replicative cycle has gained importance in recent years. Replication for many RNA viruses occurs in cellular compartments mainly originated from the production and reorganization of virus-induced membranes. Dengue virus translates, replicates and assembles new viral particles within virus-induced membranes from endoplasmic reticulum. In these compartments, all of the components required for replication are recruited, making the process efficient. In addition, membranes protect replication complexes from RNAases and proteases, and ultimately make them less visible to cellular defense sensors. Although several aspects in dengue virus replication are known, many others are yet to be understood. This article aims to summarize the advances in the understanding of dengue virus genome replication, highlighting the cis as well as trans elements that may have key roles in this process.
Collapse
Affiliation(s)
- Sofia Lizeth Alcaraz-Estrada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F. C.P. 07360
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México, D.F. México
| | | |
Collapse
|
24
|
Abstract
RNA genomes are vulnerable to corruption by a range of activities, including inaccurate replication by the error-prone replicase, damage from environmental factors, and attack by nucleases and other RNA-modifying enzymes that comprise the cellular intrinsic or innate immune response. Damage to coding regions and loss of critical cis-acting signals inevitably impair genome fitness; as a consequence, RNA viruses have evolved a variety of mechanisms to protect their genome integrity. These include mechanisms to promote replicase fidelity, recombination activities that allow exchange of sequences between different RNA templates, and mechanisms to repair the genome termini. In this article, we review examples of these processes from a range of RNA viruses to showcase the diverse approaches that viruses have evolved to maintain their genome sequence integrity, focusing first on mechanisms that viruses use to protect their entire genome, and then concentrating on mechanisms that allow protection of the genome termini, which are especially vulnerable. In addition, we discuss examples in which it might be beneficial for a virus to 'lose' its genomic termini and reduce its replication efficiency.
Collapse
Affiliation(s)
- John N Barr
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|