1
|
Xiao W, Liu G, Chen T, Zhang Y, Ke A, Cai R, Lu C. Escherichia coli yybP-ykoY Riboswitch as a Tandem Riboswitch Regulated by Mn 2+ and pH. ACS Chem Biol 2025; 20:1010-1019. [PMID: 40252020 DOI: 10.1021/acschembio.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The Escherichiacoli yybP-ykoY riboswitch regulates mntP and alx gene expression on the translation level. It contains two tandem domains regulated by Mn2+ and pH. This study investigates the tertiary structure and conformational dynamics of the E. coli yybP-ykoY riboswitch using a combination of crystallography, small-angle X-ray scattering (SAXS), and chemical probing. Our crystal structure of the aptamer domain at 3.8 Å reveals that the yybP-ykoY riboswitch aptamer domain forms a coaxial superhelix containing three helices connected by a three-way junction (3WJ), with L1 and L3 creating a pocket-like structure that binds Mg2+ and Mn2+. SHAPE probing and SAXS show that the yybP-ykoY riboswitch maintains a consistent conformation across pH conditions without Mn2+ but exhibits significant conformational changes under alkaline conditions when Mn2+ is present. These findings align with our proposed model, where Mn2+ binding induces a transition from an "OFF" to an "ON" state in alkaline conditions, while the Mn2+ remains bound to the aptamer independent of pH. This regulatory mechanism allows for more sophisticated control of gene expression, providing a finely tuned adaptive response to environmental changes.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Guangfeng Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Zhang S, Chen T, Zhang Y, Lu C. RNA Binding to CCRRM of PABPN1 Induces Conformation Change. BIOLOGY 2025; 14:432. [PMID: 40282297 PMCID: PMC12024694 DOI: 10.3390/biology14040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Poly(A) Binding Protein Nuclear 1 (PABPN1) is a nuclear poly(A)-binding protein that is highly conserved in eukaryotes. It plays multifaceted roles in RNA processing and metabolism, with its dysregulation closely linked to various diseases. PABPN1 contains an alanine-rich N-terminus, a central coiled-coil domain (CC), a conserved RNA recognition motif (RRM) and a C-terminal extension. PABPN1 influences mRNA splicing and stability through its RNA-binding capabilities, thereby modulating gene expression. While PABPN1 is known to interact with RNA, the molecular mechanism underlying this interaction with RNA awaits further investigation. Here, we designed and purified a PABPN1 fragment encompassing the RNA-binding domain (CCRRM fragment, amino acids 114-254). Using a combination of 3D modeling, small-angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) assay, our result indicated that CCRRM exhibits a high affinity for poly(A) RNA, a moderate affinity for GU-rich and CU-rich sequences, and negligible binding to AU-rich and CA-rich sequences. RNA binding induces conformation change in the CC. These results suggest that PABPN1 could potentially be involved in cytoplasmic polyadenylation and may influence the regulation of mRNA translation and degradation, although further investigation is required to confirm this role.
Collapse
Affiliation(s)
| | | | | | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (T.C.); (Y.Z.)
| |
Collapse
|
3
|
Zhang S, Zhang Y, Chen T, Hu HY, Lu C. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Cells 2025; 14:383. [PMID: 40072111 PMCID: PMC11898529 DOI: 10.3390/cells14050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Ataxin-2 (Atx2), an RNA-binding protein, plays a pivotal role in the regulation of RNA, intracellular metabolism, and translation within the cellular environment. Although both the Sm-like (LSm) and LSm-associated (LSmAD) domains are considered to associated with RNA binding, there is still a lack of experimental evidence supporting their functions. To address this, we designed and constructed several recombinants containing the RNA-binding domain (RBD) of Atx2. By employing biophysical and biochemical techniques, such as EMSA and SHAPE chemical detection, we identified that LSm is responsible for RNA binding, whereas LSmAD alone does not bind RNA. NMR and small-angle X-ray scattering (SAXS) analyses have revealed that the LSmAD domain exhibits limited structural integrity and poor folding capability. The EMSA data confirmed that both LSm and LSm-LSmAD bind RNA, whereas LSmAD alone cannot, suggesting that LSmAD may serve as an auxiliary role to the LSm domain. SHAPE chemical probing further demonstrates that LSm binds to the AU-rich, GU-rich, or CU-rich sequence, but not to the CA-rich sequence. These findings indicate that Atx2 can interact with the U-rich sequences in the 3'-UTR, implicating its role in poly(A) tailing and the regulation of mRNA translation and degradation.
Collapse
Affiliation(s)
- Shengping Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| |
Collapse
|
4
|
Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T, Lu C. Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch. Int J Mol Sci 2024; 25:11288. [PMID: 39457069 PMCID: PMC11508383 DOI: 10.3390/ijms252011288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tandem SAM-II/SAM-V riboswitch belongs to a class of riboswitches found in the marine bacterium 'Candidatus Pelagibacter ubique'. Previous studies have demonstrated that these riboswitches have the potential for digital modulation of gene expression at both the transcriptional and translational levels. In this study, we investigate the conformational changes in the tandem SAM-II/SAM-V riboswitch binding to S-adenosylmethionine (SAM) using selective 2'-hydroxyl acylation analyzed by the primer extension (SHAPE) assay, small-angle X-ray scattering (SAXS), and oligos depressing probing. Our findings reveal that the linker between SAM-II/SAM-V aptamers blocks the SAM response of the SAM-II domain. This result proposes a new mechanism for gene expression regulation, where the ligand-binding functions of tandem riboswitches can be selectively masked or released through a linker.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Yingying Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| |
Collapse
|
5
|
Feng S, Chen T, Zhang Y, Lu C. mRNA Fragmentation Pattern Detected by SHAPE. Curr Issues Mol Biol 2024; 46:10249-10258. [PMID: 39329962 PMCID: PMC11431040 DOI: 10.3390/cimb46090610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The success of messenger RNA (mRNA) vaccines in controlling COVID-19 has warranted further developments in new technology. Currently, their quality control process largely relies on low-resolution electrophoresis for detecting chain breaks. Here, we present an approach using multi-primer reverse transcription sequencing (MPRT-seq) to identify degradation fragments in mRNA products. Using this in-house-made mRNA containing two antigens and untranslated regions (UTRs), we analyzed the mRNA completeness and degradation pattern at a nucleotide resolution. We then analyzed the sensitive base sequence and its correlation with the secondary structure. Our MPRT-seq mapping shows that certain sequences on the 5' of bulge-stem-loop structures can result in preferential chain breaks. Our results agree with commonly used capillary electrophoresis (CE) integrity analysis but at a much higher resolution, and can improve mRNA stability by providing information to remove sensitive structures or sequences in the mRNA sequence design.
Collapse
Affiliation(s)
| | | | | | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (T.C.); (Y.Z.)
| |
Collapse
|
6
|
Whittaker A, Goss DJ. Modeling the structure and DAP5-binding site of the FGF-9 5'-UTR RNA utilized in cap-independent translation. RNA (NEW YORK, N.Y.) 2024; 30:1184-1198. [PMID: 38866431 PMCID: PMC11331406 DOI: 10.1261/rna.080013.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Cap-independent or eukaryotic initiation factor (eIF) 4E-independent, translation initiation in eukaryotes requires scaffolding protein eIF4G or its homolog, death-associated protein 5 (DAP5). eIF4G associates with the 40S ribosomal subunit, recruiting the ribosome to the RNA transcript. A subset of RNA transcripts, such as fibroblast growth factor 9 (FGF-9), contain 5' untranslated regions (5' UTRs) that directly bind DAP5 or eIF4GI. For viral mRNA, eIF recruitment usually utilizes RNA structure, such as a pseudoknot or stem-loops, and the RNA-helicase eIF4A is required for DAP5- or 4G-mediated translation, suggesting these 5' UTRs are structured. However, for cellular IRES-like translation, no consensus RNA structures or sequences have yet been identified for eIF binding. However, the DAP5-binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which require an unpaired, accessible 5' end to stimulate cap-independent translation. Using SHAPE-seq, we modeled the 186 nt FGF-9 5'-UTR RNA's complex secondary structure in vitro. Further, DAP5 footprinting, toeprinting, and UV cross-linking experiments identify DAP5-RNA interactions. Modeling of FGF-9 5'-UTR tertiary structure aligns DAP5-interacting nucleotides on one face of the predicted structure. We propose that RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5-binding site. DAP5 appears to contact nucleotides near the start codon. Our findings offer a new perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF-binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Collapse
Affiliation(s)
- Amanda Whittaker
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York 10016, USA
- Department of Chemistry, Hunter College, CUNY, New York, New York 10065, USA
| | - Dixie J Goss
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York 10016, USA
- Department of Chemistry, Hunter College, CUNY, New York, New York 10065, USA
| |
Collapse
|
7
|
Xiao W, Liu G, Chen T, Zhang Y, Lu C. Bifidobacterium bifidum SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation. Biomolecules 2024; 14:742. [PMID: 39062457 PMCID: PMC11274715 DOI: 10.3390/biom14070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Ting Chen
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Yunlong Zhang
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Changrui Lu
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| |
Collapse
|
8
|
Chkuaseli T, White K. Dimerization of an umbravirus RNA genome activates subgenomic mRNA transcription. Nucleic Acids Res 2023; 51:8787-8804. [PMID: 37395397 PMCID: PMC10484742 DOI: 10.1093/nar/gkad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Many eukaryotic RNA viruses transcribe subgenomic (sg) mRNAs during infections to control expression of a subset of viral genes. Such transcriptional events are commonly regulated by local or long-range intragenomic interactions that form higher-order RNA structures within these viral genomes. In contrast, here we report that an umbravirus activates sg mRNA transcription via base pair-mediated dimerization of its plus-strand RNA genome. Compelling in vivo and in vitro evidence demonstrate that this viral genome dimerizes via a kissing-loop interaction involving an RNA stem-loop structure located just upstream from its transcriptional initiation site. Both specific and non-specific features of the palindromic kissing-loop complex were found to contribute to transcriptional activation. Structural and mechanistic aspects of the process in umbraviruses are discussed and compared with genome dimerization events in other RNA viruses. Notably, probable dimer-promoting RNA stem-loop structures were also identified in a diverse group of umbra-like viruses, suggesting broader utilization of this unconventional transcriptional strategy.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
9
|
Whittaker A, Goss DJ. Modeling the Structure and DAP5 Binding Site of a Cap-Independent Translational Enhancer mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.542187. [PMID: 37333283 PMCID: PMC10274784 DOI: 10.1101/2023.06.07.542187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cap-independent translation initiation in eukaryotes involves initiation factor (eIF) binding to a transcript's 5' untranslated region (UTR). Internal-ribosome-entry-site (IRES)-like cap-independent translation initiation does not require a free 5' end for eIF binding, as eIFs recruit the ribosome to or near the start codon. For viral mRNA, recruitment usually utilizes RNA structure, such as a pseudoknot. However, for cellular mRNA cap-independent translation, no consensus RNA structures or sequences have yet been identified for eIF binding. Fibroblast-growth factor 9 (FGF-9) is a member of a subset of mRNA that are cap-independently upregulated in breast and colorectal cancer cells using this IRES-like method. Death-associated factor 5 (DAP5), an eIF4GI homolog, binds directly to the FGF-9 5' UTR to initiate translation. However, the DAP5 binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which need a free 5' end to stimulate cap-independent translation. We propose that a particular RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5 binding site. Using SHAPE-seq, we modeled the FGF-9 5' UTR RNA's complex secondary and tertiary structure in vitro. Further, DAP5 footprinting and toeprinting experiments show DAP5's preference for one face of this structure. DAP5 binding appears to stabilize a higher-energy RNA fold that frees the 5' end to solvent and brings the start codon close to the recruited ribosome. Our findings offer a fresh perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Collapse
|
10
|
Kiliszek A, Rypniewski W, Błaszczyk L. Exploring structural determinants and the role of nucleolin in formation of the long-range interactions between untranslated regions of p53 mRNA. RNA (NEW YORK, N.Y.) 2023; 29:630-643. [PMID: 36653114 PMCID: PMC10158990 DOI: 10.1261/rna.079378.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| |
Collapse
|
11
|
Structure-Based Regulatory Role for the 5′UTR of RCNMV RNA2. Viruses 2023; 15:v15030722. [PMID: 36992432 PMCID: PMC10057905 DOI: 10.3390/v15030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Red clover necrotic mosaic virus (RCNMV) is a segmented positive-strand RNA virus consisting of RNA1 and RNA2. Previous studies demonstrated that efficient translation of RCNMV RNA2 requires de novo synthesis of RNA2 during infections, suggesting that RNA2 replication is required for its translation. We explored a potential mechanism underlying the regulation of replication-associated translation of RNA2 by examining RNA elements in its 5′ untranslated region (5′UTR). Structural analysis of the 5′UTR suggested that it can form two mutually exclusive configurations: a more thermodynamically stable conformation, termed the 5′-basal stem structure (5′BS), in which 5′-terminal sequences are base paired, and an alternative conformation, where the 5′-end segment is single stranded. Functional mutational analysis of the 5′UTR structure indicated that (i) 43S ribosomal subunits enter at the very 5′-end of RNA2; (ii) the alternative conformation, containing unpaired 5′-terminal nucleotides, mediates efficient translation; (iii) the 5′BS conformation, with a paired 5′-end segment, supresses translation; and (iv) the 5′BS conformation confers stability to RNA2 from 5′-to-3′ exoribonuclease Xrn1. Based on our results, we suggest that during infections, newly synthesized RNA2s transiently adopt the alternative conformation to allow for efficient translation, then refold into the 5′BS conformation, which supresses translation and promotes efficient RNA2 replication. The potential advantages of this proposed 5′UTR-based regulatory mechanism for coordinating RNA2 translation and replication are discussed.
Collapse
|
12
|
Palasser M, Breuker K. RNA Chemical Labeling with Site-Specific, Relative Quantification by Mass Spectrometry for the Structural Study of a Neomycin-Sensing Riboswitch Aptamer Domain. Chempluschem 2022; 87:e202200256. [PMID: 36220343 PMCID: PMC9828840 DOI: 10.1002/cplu.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Indexed: 01/12/2023]
Abstract
High-resolution mass spectrometry was used for the label-free, direct localization and relative quantification of CMC+ -modifications of a neomycin-sensing riboswitch aptamer domain in the absence and presence of the aminoglycoside ligands neomycin B, ribostamycin, and paromomycin. The chemical probing and MS data for the free riboswitch show high exposure to solvent of the uridine nucleobases U7, U8, U13, U14, U18 as part of the proposed internal and apical loops, but those of U10 and U21 as part of the proposed internal loop were found to be far less exposed than expected. Thus, our data are in better agreement with the proposed secondary structure of the riboswitch in complexes with aminoglycosides than with that of free RNA. For the riboswitch in complexes with neomycin B, ribostamycin, and paromomycin, we found highly similar CMC+ -modification patterns and excellent agreement with previous NMR studies. Differences between the chemical probing and MS data in the absence and presence of the aminoglycoside ligands were quantitative rather than qualitative (i. e., the same nucleobases were labeled, but to different extents) and can be rationalized by stabilization of both the proposed bulge and the apical loop by aminoglycoside binding. Our study shows that chemical probing and mass spectrometry can provide important structural information and complement other techniques such as NMR spectroscopy.
Collapse
Affiliation(s)
- Michael Palasser
- Institut of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Kathrin Breuker
- Institut of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
13
|
Zawadzka M, Andrzejewska-Romanowska A, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. Cell Compartment-Specific Folding of Ty1 Long Terminal Repeat Retrotransposon RNA Genome. Viruses 2022; 14:2007. [PMID: 36146813 PMCID: PMC9503155 DOI: 10.3390/v14092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The structural transitions RNAs undergo during trafficking are not well understood. Here, we used the well-developed yeast Ty1 retrotransposon to provide the first structural model of genome (g) RNA in the nucleus from a retrovirus-like transposon. Through a detailed comparison of nuclear Ty1 gRNA structure with those established in the cytoplasm, virus-like particles (VLPs), and those synthesized in vitro, we detected Ty1 gRNA structural alterations that occur during retrotransposition. Full-length Ty1 gRNA serves as the mRNA for Gag and Gag-Pol proteins and as the genome that is reverse transcribed within VLPs. We show that about 60% of base pairs predicted for the nuclear Ty1 gRNA appear in the cytoplasm, and active translation does not account for such structural differences. Most of the shared base pairs are represented by short-range interactions, whereas the long-distance pairings seem unique for each compartment. Highly structured motifs tend to be preserved after nuclear export of Ty1 gRNA. In addition, our study highlights the important role of Ty1 Gag in mediating critical RNA-RNA interactions required for retrotransposition.
Collapse
Affiliation(s)
- Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Angelika Andrzejewska-Romanowska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
14
|
Chkuaseli T, White KA. Complex and simple translational readthrough signals in pea enation mosaic virus 1 and potato leafroll virus, respectively. PLoS Pathog 2022; 18:e1010888. [PMID: 36174104 PMCID: PMC9553062 DOI: 10.1371/journal.ppat.1010888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Different essential viral proteins are translated via programmed stop codon readthrough. Pea enation mosaic virus 1 (PEMV1) and potato leafroll virus (PLRV) are related positive-sense RNA plant viruses in the family Solemoviridae, and are type members of the Enamovirus and Polerovirus genera, respectively. Both use translational readthrough to express a C-terminally extended minor capsid protein (CP), termed CP-readthrough domain (CP-RTD), from a viral subgenomic mRNA that is transcribed during infections. Limited incorporation of CP-RTD subunits into virus particles is essential for aphid transmission, however the functional readthrough structures that mediate CP-RTD translation have not yet been defined. Through RNA solution structure probing, RNA secondary structure modeling, site-directed mutagenesis, and functional in vitro and in vivo analyses, we have investigated in detail the readthrough elements and complex structure involved in expression of CP-RTD in PEMV1, and assessed and deduced a comparatively simpler readthrough structure for PLRV. Collectively, this study has (i) generated the first higher-order RNA structural models for readthrough elements in an enamovirus and a polerovirus, (ii) revealed a stark contrast in the complexity of readthrough structures in these two related viruses, (iii) provided compelling experimental evidence for the strict requirement for long-distance RNA-RNA interactions in generating the active readthrough signals, (iv) uncovered what could be considered the most complex readthrough structure reported to date, that for PEMV1, and (v) proposed plausible assembly pathways for the formation of the elaborate PEMV1 and simple PLRV readthrough structures. These findings notably advance our understanding of this essential mode of gene expression in these agriculturally important plant viruses.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Leeder WM, Geyer FK, Göringer HU. Fuzzy RNA recognition by the Trypanosoma brucei editosome. Nucleic Acids Res 2022; 50:5818-5833. [PMID: 35580050 PMCID: PMC9178004 DOI: 10.1093/nar/gkac357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The assembly of high molecular mass ribonucleoprotein complexes typically relies on the binary interaction of defined RNA sequences or precisely folded RNA motifs with dedicated RNA-binding domains on the protein side. Here we describe a new molecular recognition principle of RNA molecules by a high molecular mass protein complex. By chemically probing the solvent accessibility of mitochondrial pre-mRNAs when bound to the Trypanosoma brucei editosome, we identified multiple similar but non-identical RNA motifs as editosome contact sites. However, by treating the different motifs as mathematical graph objects we demonstrate that they fit a consensus 2D-graph consisting of 4 vertices (V) and 3 edges (E) with a Laplacian eigenvalue of 0.5477 (λ2). We establish that synthetic 4V(3E)-RNAs are sufficient to compete for the editosomal pre-mRNA binding site and that they inhibit RNA editing in vitro. Furthermore, we demonstrate that only two topological indices are necessary to predict the binding of any RNA motif to the editosome with a high level of confidence. Our analysis corroborates that the editosome has adapted to the structural multiplicity of the mitochondrial mRNA folding space by recognizing a fuzzy continuum of RNA folds that fit a consensus graph descriptor.
Collapse
Affiliation(s)
| | - Felix Klaus Geyer
- Molecular Genetics, Technical University Darmstadt, 64287 Darmstadt, Germany
| | | |
Collapse
|
16
|
Powell P, Bhardwaj U, Goss D. Eukaryotic initiation factor 4F promotes a reorientation of eukaryotic initiation factor 3 binding on the 5' and the 3' UTRs of barley yellow dwarf virus mRNA. Nucleic Acids Res 2022; 50:4988-4999. [PMID: 35446425 PMCID: PMC9122605 DOI: 10.1093/nar/gkac284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
Abstract
Viral mRNAs that lack a 5′ m7GTP cap and a 3′ poly-A tail rely on structural elements in their untranslated regions (UTRs) to form unique RNA-protein complexes that regulate viral translation. Recent studies of the barley yellow dwarf virus (BYDV) have revealed eukaryotic initiation factor 3 (eIF3) plays a significant role in facilitating communication between its 5′ and 3′ UTRs by binding both UTRs simultaneously. This report uses in vitro translation assays, fluorescence anisotropy binding assays, and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting to identify secondary structures that are selectively interacting with eIF3. SHAPE data also show that eIF3 alters its interaction with BYDV structures when another factor crucial for BYDV translation, eIF4F, is introduced by the 3′ BYDV translational enhancer (BTE). The observed BTE and eIF4F-induced shift of eIF3 position on the 5’ UTR and the translational effects of altering eIF3-binding structures (SLC and SLII) support a new model for BYDV translation initiation that requires the reorientation of eIF3 on BYDV UTRs. This eIF3 function in BYDV translation initiation is both reminiscent of and distinct from eIF3–RNA interactions found in other non-canonically translating mRNAs (e.g. HCV). This characterization of a new role in translation initiation expands the known functionality of eIF3 and may be broadly applicable to other non-canonically translating mRNAs.
Collapse
Affiliation(s)
- Paul Powell
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Usha Bhardwaj
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA
| | - Dixie Goss
- Department of Chemistry, Hunter College, CUNY, New York, NY 10065, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
17
|
Secondary Structure of Influenza A Virus Genomic Segment 8 RNA Folded in a Cellular Environment. Int J Mol Sci 2022; 23:ijms23052452. [PMID: 35269600 PMCID: PMC8910647 DOI: 10.3390/ijms23052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.
Collapse
|
18
|
Vamva E, Griffiths A, Vink CA, Lever AML, Kenyon JC. A novel role for gag as a cis-acting element regulating RNA structure, dimerization and packaging in HIV-1 lentiviral vectors. Nucleic Acids Res 2021; 50:430-448. [PMID: 34928383 PMCID: PMC8754630 DOI: 10.1093/nar/gkab1206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Clinical usage of lentiviral vectors is now established and increasing but remains constrained by vector titer with RNA packaging being a limiting factor. Lentiviral vector RNA is packaged through specific recognition of the packaging signal on the RNA by the viral structural protein Gag. We investigated structurally informed modifications of the 5′ leader and gag RNA sequences in which the extended packaging signal lies, to attempt to enhance the packaging process by facilitating vector RNA dimerization, a process closely linked to packaging. We used in-gel SHAPE to study the structures of these mutants in an attempt to derive structure-function correlations that could inform optimized vector RNA design. In-gel SHAPE of both dimeric and monomeric species of RNA revealed a previously unreported direct interaction between the U5 region of the HIV-1 leader and the downstream gag sequences. Our data suggest a structural equilibrium exists in the dimeric viral RNA between a metastable structure that includes a U5–gag interaction and a more stable structure with a U5–AUG duplex. Our data provide clarification for the previously unexplained requirement for the 5′ region of gag in enhancing genomic RNA packaging and provide a basis for design of optimized HIV-1 based vectors.
Collapse
Affiliation(s)
- Eirini Vamva
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Alex Griffiths
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Conrad A Vink
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Andrew M L Lever
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Department of Medicine, Yong Loo Lin School of Medicine 119228, Singapore
| | - Julia C Kenyon
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, 117545, Singapore.,Homerton College, Hills Road, Cambridge CB2 8PH, UK
| |
Collapse
|
19
|
Soszynska-Jozwiak M, Pszczola M, Piasecka J, Peterson JM, Moss WN, Taras-Goslinska K, Kierzek R, Kierzek E. Universal and strain specific structure features of segment 8 genomic RNA of influenza A virus-application of 4-thiouridine photocrosslinking. J Biol Chem 2021; 297:101245. [PMID: 34688660 PMCID: PMC8666676 DOI: 10.1016/j.jbc.2021.101245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
RNA structure in the influenza A virus (IAV) has been the focus of several studies that have shown connections between conserved secondary structure motifs and their biological function in the virus replication cycle. Questions have arisen on how to best recognize and understand the pandemic properties of IAV strains from an RNA perspective, but determination of the RNA secondary structure has been challenging. Herein, we used chemical mapping to determine the secondary structure of segment 8 viral RNA (vRNA) of the pandemic A/California/04/2009 (H1N1) strain of IAV. Additionally, this long, naturally occurring RNA served as a model to evaluate RNA mapping with 4-thiouridine (4sU) crosslinking. We explored 4-thiouridine as a probe of nucleotides in close proximity, through its incorporation into newly transcribed RNA and subsequent photoactivation. RNA secondary structural features both universal to type A strains and unique to the A/California/04/2009 (H1N1) strain were recognized. 4sU mapping confirmed and facilitated RNA structure prediction, according to several rules: 4sU photocross-linking forms efficiently in the double-stranded region of RNA with some flexibility, in the ends of helices, and across bulges and loops when their structural mobility is permitted. This method highlighted three-dimensional properties of segment 8 vRNA secondary structure motifs and allowed to propose several long-range three-dimensional interactions. 4sU mapping combined with chemical mapping and bioinformatic analysis could be used to enhance the RNA structure determination as well as recognition of target regions for antisense strategies or viral RNA detection.
Collapse
Affiliation(s)
| | - Maciej Pszczola
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Julita Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jake M Peterson
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | | | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
20
|
D’Souza AR, Jayaraman D, Long Z, Zeng J, Prestwood LJ, Chan C, Kappei D, Lever AML, Kenyon JC. HIV-1 Packaging Visualised by In-Gel SHAPE. Viruses 2021; 13:v13122389. [PMID: 34960658 PMCID: PMC8707378 DOI: 10.3390/v13122389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-1 packages two copies of its gRNA into virions via an interaction with the viral structural protein Gag. Both copies and their native RNA structure are essential for virion infectivity. The precise stepwise nature of the packaging process has not been resolved. This is largely due to a prior lack of structural techniques that follow RNA structural changes within an RNA-protein complex. Here, we apply the in-gel SHAPE (selective 2'OH acylation analysed by primer extension) technique to study the initiation of HIV-1 packaging, examining the interaction between the packaging signal RNA and the Gag polyprotein, and compare it with that of the NC domain of Gag alone. Our results imply interactions between Gag and monomeric packaging signal RNA in switching the RNA conformation into a dimerisation-competent structure, and show that the Gag-dimer complex then continues to stabilise. These data provide a novel insight into how HIV-1 regulates the translation and packaging of its genome.
Collapse
Affiliation(s)
- Aaron R. D’Souza
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dhivya Jayaraman
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Liam J. Prestwood
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew M. L. Lever
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| | - Julia C. Kenyon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| |
Collapse
|
21
|
Im JSH, Newburn LR, Kent G, White KA. Trans-Activator Binding Site Context in RCNMV Modulates Subgenomic mRNA Transcription. Viruses 2021; 13:v13112252. [PMID: 34835058 PMCID: PMC8622197 DOI: 10.3390/v13112252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Many positive-sense RNA viruses transcribe subgenomic (sg) mRNAs during infections that template the translation of a subset of viral proteins. Red clover necrotic mosaic virus (RCNMV) expresses its capsid protein through the transcription of a sg mRNA from RNA1 genome segment. This transcription event is activated by an RNA structure formed by base pairing between a trans-activator (TA) in RNA2 and a trans-activator binding site (TABS) in RNA1. In this study, the impact of the structural context of the TABS in RNA1 on the TA–TABS interaction and sg mRNA transcription was investigated using in vitro and in vivo approaches. The results (i) generated RNA secondary structure models for the TA and TABS, (ii) revealed that the TABS is partially base paired with proximal upstream sequences, which limits TA access, (iii) demonstrated that the aforementioned intra-RNA1 base pairing involving the TABS modulates the TA–TABS interaction in vitro and sg mRNA levels during infections, and (iv) revealed that the TABS in RNA1 can be modified to mediate sg mRNA transcription in a TA-independent manner. These findings advance our understanding of transcriptional regulation in RCNMV and provide novel insights into the origin of the TA–TABS interaction.
Collapse
|
22
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
23
|
Gumna J, Andrzejewska-Romanowska A, Garfinkel DJ, Pachulska-Wieczorek K. RNA Binding Properties of the Ty1 LTR-Retrotransposon Gag Protein. Int J Mol Sci 2021; 22:ijms22169103. [PMID: 34445809 PMCID: PMC8396678 DOI: 10.3390/ijms22169103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
| | - Angelika Andrzejewska-Romanowska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
- Correspondence: ; Tel.: +48-61-852-85-03; Fax: +48-61-852-05-32
| |
Collapse
|
24
|
Mapping the RNA Chaperone Activity of the T. brucei Editosome Using SHAPE Chemical Probing. Methods Mol Biol 2021; 2106:161-178. [PMID: 31889257 DOI: 10.1007/978-1-0716-0231-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondrial pre-mRNAs in African trypanosomes adopt intricately folded, highly stable 2D and 3D structures. The RNA molecules are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction, which is catalyzed by a 0.8 MDa protein complex known as the editosome. RNA binding to the editosome is followed by a chaperone-mediated RNA remodeling reaction. The reaction increases the dynamic of specifically U-nucleotides to lower their base-pairing probability and as a consequence generates a simplified RNA folding landscape that is critical for the progression of the editing reaction cycle. Here we describe a chemical mapping method to quantitatively monitor the chaperone-driven structural changes of pre-edited mRNAs upon editosome binding. The method is known as selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE is based on the differential electrophilic modification of ribose 2'-hydroxyl groups in structurally constraint (double-stranded) versus structurally unconstrained (single-stranded) nucleotides. Electrophilic anhydrides such as 1-methyl-7-nitroisatoic anhydride are used as probing reagents, and the ribose 2'-modified nucleotides are mapped as abortive cDNA synthesis products. As a result, SHAPE allows the identification of all single-stranded and base-paired regions in a given RNA, and the data are used to compute experimentally derived RNA 2D structures. A side-by-side comparison of the RNA 2D folds in the pre- and post-chaperone states finally maps the chaperone-induced dynamic of the different pre-mRNAs with single-nucleotide resolution.
Collapse
|
25
|
Qi Y, Zhang Y, Zheng G, Chen B, Zhang M, Li J, Peng T, Huang J, Wang X. In Vivo and In Vitro Genome-Wide Profiling of RNA Secondary Structures Reveals Key Regulatory Features in Plasmodium falciparum. Front Cell Infect Microbiol 2021; 11:673966. [PMID: 34079769 PMCID: PMC8166286 DOI: 10.3389/fcimb.2021.673966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that the structure of RNA plays important roles in a number of biological processes, such as polyadenylation, splicing, and catalytic functions. Dynamic changes in RNA structure are able to regulate the gene expression programme and can be used as a highly specific and subtle mechanism for governing cellular processes. However, the nature of most RNA secondary structures in Plasmodium falciparum has not been determined. To investigate the genome-wide RNA secondary structural features at single-nucleotide resolution in P. falciparum, we applied a novel high-throughput method utilizing the chemical modification of RNA structures to characterize these structures. Structural data from parasites are in close agreement with the known 18S ribosomal RNA secondary structures of P. falciparum and can help to predict the in vivo RNA secondary structure of a total of 3,396 transcripts in the ring-stage and trophozoite-stage developmental cycles. By parallel analysis of RNA structures in vivo and in vitro during the Plasmodium parasite ring-stage and trophozoite-stage intraerythrocytic developmental cycles, we identified some key regulatory features. Recent studies have established that the RNA structure is a ubiquitous and fundamental regulator of gene expression. Our study indicate that there is a critical connection between RNA secondary structure and mRNA abundance during the complex biological programme of P. falciparum. This work presents a useful framework and important results, which may facilitate further research investigating the interactions between RNA secondary structure and the complex biological programme in P. falciparum. The RNA secondary structure characterized in this study has potential applications and important implications regarding the identification of RNA structural elements, which are important for parasite infection and elucidating host-parasite interactions and parasites in the environment.
Collapse
Affiliation(s)
- Yanwei Qi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuhong Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guixing Zheng
- Department of Blood Transfusion, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Bingxia Chen
- The Third Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Mengxin Zhang
- The Third Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tao Peng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Andrzejewska A, Zawadzka M, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. In vivo structure of the Ty1 retrotransposon RNA genome. Nucleic Acids Res 2021; 49:2878-2893. [PMID: 33621339 PMCID: PMC7969010 DOI: 10.1093/nar/gkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
Collapse
Affiliation(s)
- Angelika Andrzejewska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
27
|
Conserved Structural Motifs of Two Distant IAV Subtypes in Genomic Segment 5 RNA. Viruses 2021; 13:v13030525. [PMID: 33810157 PMCID: PMC8004953 DOI: 10.3390/v13030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The functionality of RNA is fully dependent on its structure. For the influenza A virus (IAV), there are confirmed structural motifs mediating processes which are important for the viral replication cycle, including genome assembly and viral packaging. Although the RNA of strains originating from distant IAV subtypes might fold differently, some structural motifs are conserved, and thus, are functionally important. Nowadays, NGS-based structure modeling is a source of new in vivo data helping to understand RNA biology. However, for accurate modeling of in vivo RNA structures, these high-throughput methods should be supported with other analyses facilitating data interpretation. In vitro RNA structural models complement such approaches and offer RNA structures based on experimental data obtained in a simplified environment, which are needed for proper optimization and analysis. Herein, we present the secondary structure of the influenza A virus segment 5 vRNA of A/California/04/2009 (H1N1) strain, based on experimental data from DMS chemical mapping and SHAPE using NMIA, supported by base-pairing probability calculations and bioinformatic analyses. A comparison of the available vRNA5 structures among distant IAV strains revealed that a number of motifs present in the A/California/04/2009 (H1N1) vRNA5 model are highly conserved despite sequence differences, located within previously identified packaging signals, and the formation of which in in virio conditions has been confirmed. These results support functional roles of the RNA secondary structure motifs, which may serve as candidates for universal RNA-targeting inhibitory methods.
Collapse
|
28
|
van Cruchten RTP, Wansink DG. In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA. Methods Mol Biol 2020; 2056:187-202. [PMID: 31586349 DOI: 10.1007/978-1-4939-9784-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant RNA structure plays a central role in the molecular mechanisms guided by repeat RNAs in diseases like myotonic dystrophy (DM), C9orf72-linked amyotrophic lateral sclerosis (ALS) and fragile X tremor/ataxia syndrome (FXTAS). Much knowledge remains to be gained about how these repeat-expanded transcripts are actually folded, especially regarding the properties specific to very long and interrupted repeats. RNA structure can be interrogated by chemical as well as enzymatic probes. These probes usually bind or cleave single-stranded nucleotides, which can subsequently be detected using reverse transcriptase primer extension. In this chapter, we describe methodology for in vitro synthesis and structure probing of expanded CUG repeat RNAs associated with DM type 1 and approaches for the associated data analysis.
Collapse
Affiliation(s)
- Remco T P van Cruchten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
New RNA Structural Elements Identified in the Coding Region of the Coxsackie B3 Virus Genome. Viruses 2020; 12:v12111232. [PMID: 33143071 PMCID: PMC7692623 DOI: 10.3390/v12111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Here we present a set of new structural elements formed within the open reading frame of the virus, which are highly probable, evolutionarily conserved and may interact with host proteins. This work focused on the coding regions of the CVB3 genome (particularly the V4-, V1-, 2C-, and 3D-coding regions), which, with the exception of the cis-acting replication element (CRE), have not yet been subjected to experimental analysis of their structures. The SHAPE technique, chemical modification with DMS and RNA cleavage with Pb2+, were performed in order to characterize the RNA structure. The experimental results were used to improve the computer prediction of the structural models, whereas a phylogenetic analysis was performed to check universality of the newly identified structural elements for twenty CVB3 genomes and 11 other enteroviruses. Some of the RNA motifs turned out to be conserved among different enteroviruses. We also observed that the 3'-terminal region of the genome tends to dimerize in a magnesium concentration-dependent manner. RNA affinity chromatography was used to confirm RNA-protein interactions hypothesized by database searches, leading to the discovery of several interactions, which may be important for virus propagation.
Collapse
|
30
|
Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol 2020; 55:662-690. [PMID: 33043695 DOI: 10.1080/10409238.2020.1828259] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
31
|
Gumna J, Zok T, Figurski K, Pachulska-Wieczorek K, Szachniuk M. RNAthor - fast, accurate normalization, visualization and statistical analysis of RNA probing data resolved by capillary electrophoresis. PLoS One 2020; 15:e0239287. [PMID: 33002005 PMCID: PMC7529196 DOI: 10.1371/journal.pone.0239287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
RNAs adopt specific structures to perform their functions, which are critical to fundamental cellular processes. For decades, these structures have been determined and modeled with strong support from computational methods. Still, the accuracy of the latter ones depends on the availability of experimental data, for example, chemical probing information that can define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse computational tools have been developed to facilitate analysis and visualization of data from RNA structure probing experiments followed by capillary electrophoresis or next-generation sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE and DMS probing data resolved by capillary electrophoresis, has recently joined this collection. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity information to a uniform scale and uses it in the RNA secondary structure prediction. Our web server also provides tools for fast and easy RNA probing data visualization and statistical analysis that facilitates the comparison of multiple data sets. RNAthor is freely available at http://rnathor.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Kacper Figurski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- * E-mail: (KPW); (MS)
| |
Collapse
|
32
|
Del Campo C, Leeder WM, Reißig P, Göringer HU. Analyzing editosome function in high-throughput. Nucleic Acids Res 2020; 48:e99. [PMID: 32756897 PMCID: PMC7515698 DOI: 10.1093/nar/gkaa658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial gene expression in African trypanosomes and other trypanosomatid pathogens requires a U-nucleotide specific insertion/deletion-type RNA-editing reaction. The process is catalyzed by a macromolecular protein complex known as the editosome. Editosomes are restricted to the trypanosomatid clade and since editing is essential for the parasites, the protein complex represents a near perfect target for drug intervention strategies. Here, we report the development of an improved in vitro assay to monitor editosome function. The test system utilizes fluorophore-labeled substrate RNAs to analyze the processing reaction by automated, high-throughput capillary electrophoresis (CE) in combination with a laser-induced fluorescence (LIF) readout. We optimized the assay for high-throughput screening (HTS)-experiments and devised a multiplex fluorophore-labeling regime to scrutinize the U-insertion/U-deletion reaction simultaneously. The assay is robust, it requires only nanogram amounts of materials and it meets all performance criteria for HTS-methods. As such the test system should be helpful in the search for trypanosome-specific pharmaceuticals.
Collapse
Affiliation(s)
- Cristian Del Campo
- Molecular Genetics, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Wolf-Matthias Leeder
- Molecular Genetics, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Paul Reißig
- Molecular Genetics, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - H Ulrich Göringer
- Molecular Genetics, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
33
|
Chkuaseli T, White KA. Activation of viral transcription by stepwise largescale folding of an RNA virus genome. Nucleic Acids Res 2020; 48:9285-9300. [PMID: 32785642 PMCID: PMC7498350 DOI: 10.1093/nar/gkaa675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
34
|
Newburn LR, White KA. A trans-activator-like structure in RCNMV RNA1 evokes the origin of the trans-activator in RNA2. PLoS Pathog 2020; 16:e1008271. [PMID: 31905231 PMCID: PMC6964918 DOI: 10.1371/journal.ppat.1008271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 12/10/2019] [Indexed: 11/19/2022] Open
Abstract
The Red clover necrotic mosaic virus (RCNMV) genome consists of two plus-strand RNA genome segments, RNA1 and RNA2. RNA2 contains a multifunctional RNA structure known as the trans-activator (TA) that (i) promotes subgenomic mRNA transcription from RNA1, (ii) facilitates replication of RNA2, and (iii) mediates particle assembly and copackaging of genome segments. The TA has long been considered a unique RNA element in RCNMV. However, by examining results from RCNMV genome analyses in the ViRAD virus (re-)annotation database, a putative functional RNA element in the polymerase-coding region of RNA1 was identified. Structural and functional analyses revealed that the novel RNA element adopts a TA-like structure (TALS) and, similar to the requirement of the TA for RNA2 replication, the TALS is necessary for the replication of RNA1. Both the TA and TALS possess near-identical asymmetrical internal loops that are critical for efficient replication of their corresponding genome segments, and these structural motifs were found to be functionally interchangeable. Moreover, replacement of the TA in RNA2 with a stabilized form of the TALS directed both RNA2 replication and packaging of both genome segments. Based on their comparable properties and considering evolutionary factors, we propose that the TALS appeared de novo in RNA1 first and, subsequently, the TA arose de novo in RNA2 as a functional mimic of the TALS. This and other related information were used to formulate a plausible evolutionary pathway to describe the genesis of the bi-segmented RCNMV genome. The resulting scenario provides an evolutionary framework to further explore and test possible origins of this segmented RNA plant virus.
Collapse
Affiliation(s)
- Laura R. Newburn
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Mahmud B, Horn CM, Tapprich WE. Structure of the 5' Untranslated Region of Enteroviral Genomic RNA. J Virol 2019; 93:e01288-19. [PMID: 31534036 PMCID: PMC6854513 DOI: 10.1128/jvi.01288-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Enteroviral RNA genomes share a long, highly structured 5' untranslated region (5' UTR) containing a type I internal ribosome entry site (IRES). The 5' UTR is composed of stably folded RNA domains connected by unstructured RNA regions. Proper folding and functioning of the 5' UTR underlies the efficiency of viral replication and also determines viral virulence. We have characterized the structure of 5' UTR genomic RNA from coxsackievirus B3 using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) and base-specific chemical probes in solution. Our results revealed novel structural features, including realignment of major domains, newly identified long-range interactions, and an intrinsically disordered connecting region. Together, these newly identified features contribute to a model for enteroviral 5' UTRs with type I IRES elements that links structure to function during the hierarchical processes directed by genomic RNA during viral infection.IMPORTANCE Enterovirus infections are responsible for human diseases, including myocarditis, pancreatitis, acute flaccid paralysis, and poliomyelitis. The virulence of these viruses depends on efficient recognition of the RNA genome by a large family of host proteins and protein synthesis factors, which in turn relies on the three-dimensional folding of the first 750 nucleotides of the molecule. Structural information about this region of the genome, called the 5' untranslated region (5' UTR), is needed to assist in the process of vaccine and antiviral development. This work presents a model for the structure of the enteroviral 5' UTR. The model includes an RNA element called an intrinsically disordered RNA region (IDRR). Intrinsically disordered proteins (IDPs) are well known, but correlates in RNA have not been proposed. The proposed IDRR is a 20-nucleotide region, long known for its functional importance, where structural flexibility helps explain recognition by factors controlling multiple functional states.
Collapse
Affiliation(s)
- Bejan Mahmud
- Biology Department, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Christopher M Horn
- Biology Department, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - William E Tapprich
- Biology Department, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
36
|
Gumna J, Purzycka KJ, Ahn HW, Garfinkel DJ, Pachulska-Wieczorek K. Retroviral-like determinants and functions required for dimerization of Ty1 retrotransposon RNA. RNA Biol 2019; 16:1749-1763. [PMID: 31469343 PMCID: PMC6844567 DOI: 10.1080/15476286.2019.1657370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During replication of long terminal repeat (LTR)-retrotransposons, their proteins and genome (g) RNA assemble into virus-like particles (VLPs) that are not infectious but functionally related to retroviral virions. Both virions and VLPs contain gRNA in a dimeric form, but contrary to retroviruses, little is known about how gRNA dimerization and packaging occurs in LTR-retrotransposons. The LTR-retrotransposon Ty1 from Saccharomyces cerevisiae is an informative model for studying LTR-retrotransposon and retrovirus replication. Using structural, mutational and functional analyses, we explored dimerization of Ty1 genomic RNA. We provide direct evidence that interactions of self-complementary PAL1 and PAL2 palindromic sequences localized within the 5′UTR are essential for Ty1 gRNA dimer formation. Mutations disrupting PAL1-PAL2 complementarity restricted RNA dimerization in vitro and Ty1 mobility in vivo. Although dimer formation and mobility of these mutants was inhibited, our work suggests that Ty1 RNA can dimerize via alternative contact points. In contrast to previous studies, we cannot confirm a role for PAL3, tRNAiMet as well as recently proposed initial kissing-loop interactions in dimer formation. Our data also supports the critical role of Ty1 Gag in RNA dimerization. Mature Ty1 Gag binds in the proximity of sequences involved in RNA dimerization and tRNAiMet annealing, but the 5′ pseudoknot in Ty1 RNA may constitute a preferred Gag-binding site. Taken together, these results expand our understanding of genome dimerization and packaging strategies utilized by LTR-retroelements.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Hyo Won Ahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
37
|
Azad RN, Zafiropoulos D, Ober D, Jiang Y, Chiu TP, Sagendorf JM, Rohs R, Tullius TD. Experimental maps of DNA structure at nucleotide resolution distinguish intrinsic from protein-induced DNA deformations. Nucleic Acids Res 2019; 46:2636-2647. [PMID: 29390080 PMCID: PMC5946862 DOI: 10.1093/nar/gky033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Recognition of DNA by proteins depends on DNA sequence and structure. Often unanswered is whether the structure of naked DNA persists in a protein–DNA complex, or whether protein binding changes DNA shape. While X-ray structures of protein–DNA complexes are numerous, the structure of naked cognate DNA is seldom available experimentally. We present here an experimental and computational analysis pipeline that uses hydroxyl radical cleavage to map, at single-nucleotide resolution, DNA minor groove width, a recognition feature widely exploited by proteins. For 11 protein–DNA complexes, we compared experimental maps of naked DNA minor groove width with minor groove width measured from X-ray co-crystal structures. Seven sites had similar minor groove widths as naked DNA and when bound to protein. For four sites, part of the DNA in the complex had the same structure as naked DNA, and part changed structure upon protein binding. We compared the experimental map with minor groove patterns of DNA predicted by two computational approaches, DNAshape and ORChID2, and found good but not perfect concordance with both. This experimental approach will be useful in mapping structures of DNA sequences for which high-resolution structural data are unavailable. This approach allows probing of protein family-dependent readout mechanisms.
Collapse
Affiliation(s)
- Robert N Azad
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | - Douglas Ober
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Yining Jiang
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Tsu-Pei Chiu
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Jared M Sagendorf
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas D Tullius
- Department of Chemistry, Boston University, Boston, MA 02215, USA.,Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
38
|
Voigt C, Dobrychlop M, Kruse E, Czerwoniec A, Kasprzak JM, Bytner P, Campo CD, Leeder WM, Bujnicki JM, Göringer HU. The OB-fold proteins of the Trypanosoma brucei editosome execute RNA-chaperone activity. Nucleic Acids Res 2019; 46:10353-10367. [PMID: 30060205 PMCID: PMC6212840 DOI: 10.1093/nar/gky668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
Sequence-deficient mitochondrial pre-mRNAs in African trypanosomes are substrates of a U-nucleotide-specific RNA editing reaction to generate translation-competent mRNAs. The reaction is catalyzed by a macromolecular protein complex termed the editosome. Editosomes execute RNA-chaperone activity to overcome the highly folded nature of pre-edited substrate mRNAs. The molecular basis for this activity is unknown. Here we test five of the OB-fold proteins of the Trypanosoma brucei editosome as candidates. We demonstrate that all proteins execute RNA-chaperone activity albeit to different degrees. We further show that the activities correlate to the surface areas of the proteins and we map the protein-induced RNA-structure changes using SHAPE-chemical probing. To provide a structural context for our findings we calculate a coarse-grained model of the editosome. The model has a shell-like structure: Structurally well-defined protein domains are separated from an outer shell of intrinsically disordered protein domains, which suggests a surface-driven mechanism for the chaperone activity.
Collapse
Affiliation(s)
- Christin Voigt
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Mateusz Dobrychlop
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Elisabeth Kruse
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Anna Czerwoniec
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna M Kasprzak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Patrycja Bytner
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Cristian Del Campo
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Janusz M Bujnicki
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
39
|
Frezza E, Courban A, Allouche D, Sargueil B, Pasquali S. The interplay between molecular flexibility and RNA chemical probing reactivities analyzed at the nucleotide level via an extensive molecular dynamics study. Methods 2019; 162-163:108-127. [PMID: 31145972 DOI: 10.1016/j.ymeth.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Determination of the tridimensional structure of ribonucleic acid molecules is fundamental for understanding their function in the cell. A common method to investigate RNA structures of large molecules is the use of chemical probes such as SHAPE (2'-hydroxyl acylation analyzed by primer extension) reagents, DMS (dimethyl sulfate) and CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate), the reaction of which is dependent on the local structural properties of each nucleotide. In order to understand the interplay between local flexibility, sugar pucker, canonical pairing and chemical reactivity of the probes, we performed all-atom molecular dynamics simulations on a set of RNA molecules for which both tridimensional structure and chemical probing data are available and we analyzed the correlations between geometrical parameters and the chemical reactivity. Our study confirms that SHAPE reactivity is guided by the local flexibility of the different chemical moieties but suggests that a combination of multiple parameters is needed to better understand the implications of the reactivity at the molecular level. This is also the case for DMS and CMCT for which the reactivity appears to be more complex than commonly accepted.
Collapse
Affiliation(s)
- Elisa Frezza
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| | - Antoine Courban
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France
| | - Delphine Allouche
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France
| | - Bruno Sargueil
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| | - Samuela Pasquali
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| |
Collapse
|
40
|
Cole KH, Lupták A. High-throughput methods in aptamer discovery and analysis. Methods Enzymol 2019; 621:329-346. [PMID: 31128787 DOI: 10.1016/bs.mie.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aptamers are small, functional nucleic acids that bind a variety of targets, often with high specificity and affinity. Genomic aptamers constitute the ligand-binding domains of riboswitches, whereas synthetic aptamers find applications as diagnostic and therapeutic tools, and as ligand-binding domains of regulatory RNAs in synthetic biology. Discovery and characterization of aptamers has been limited by a lack of high-throughput approaches that uncover the target-binding domains and the biochemical properties of individual sequences. With the advent of high-throughput sequencing, large-scale analysis of in vitro selected populations of aptamers (and catalytic nucleic acids, such as ribozymes and DNAzmes) became possible. In recent years the development of new experimental approaches and software tools has led to significant streamlining of the selection-pool analysis. This article provides an overview of post-selection data analysis and describes high-throughput methods that facilitate rapid discovery and biochemical characterization of aptamers.
Collapse
Affiliation(s)
- Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States; Department of Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|
41
|
Michalak P, Soszynska-Jozwiak M, Biala E, Moss WN, Kesy J, Szutkowska B, Lenartowicz E, Kierzek R, Kierzek E. Secondary structure of the segment 5 genomic RNA of influenza A virus and its application for designing antisense oligonucleotides. Sci Rep 2019; 9:3801. [PMID: 30846846 PMCID: PMC6406010 DOI: 10.1038/s41598-019-40443-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza virus causes seasonal epidemics and dangerous pandemic outbreaks. It is a single stranded (-)RNA virus with a segmented genome. Eight segments of genomic viral RNA (vRNA) form the virion, which are then transcribed and replicated in host cells. The secondary structure of vRNA is an important regulator of virus biology and can be a target for finding new therapeutics. In this paper, the secondary structure of segment 5 vRNA is determined based on chemical mapping data, free energy minimization and structure-sequence conservation analysis for type A influenza. The revealed secondary structure has circular folding with a previously reported panhandle motif and distinct novel domains. Conservations of base pairs is 87% on average with many structural motifs that are highly conserved. Isoenergetic microarray mapping was used to additionally validate secondary structure and to discover regions that easy bind short oligonucleotides. Antisense oligonucleotides, which were designed based on modeled secondary structure and microarray mapping, inhibit influenza A virus proliferation in MDCK cells. The most potent oligonucleotides lowered virus titer by ~90%. These results define universal for type A structured regions that could be important for virus function, as well as new targets for antisense therapeutics.
Collapse
Affiliation(s)
- Paula Michalak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Marta Soszynska-Jozwiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ewa Biala
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Julita Kesy
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Barbara Szutkowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Elzbieta Lenartowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland.
| |
Collapse
|
42
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
43
|
Okamoto K, Rausch JW, Wakashin H, Fu Y, Chung JY, Dummer PD, Shin MK, Chandra P, Suzuki K, Shrivastav S, Rosenberg AZ, Hewitt SM, Ray PE, Noiri E, Le Grice SFJ, Hoek M, Han Z, Winkler CA, Kopp JB. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol 2018; 1:188. [PMID: 30417125 PMCID: PMC6220249 DOI: 10.1038/s42003-018-0188-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
APOL1 risk alleles associate with chronic kidney disease in African Americans, but the mechanisms remain to be fully understood. We show that APOL1 risk alleles activate protein kinase R (PKR) in cultured cells and transgenic mice. This effect is preserved when a premature stop codon is introduced to APOL1 risk alleles, suggesting that APOL1 RNA but not protein is required for the effect. Podocyte expression of APOL1 risk allele RNA, but not protein, in transgenic mice induces glomerular injury and proteinuria. Structural analysis of the APOL1 RNA shows that the risk variants possess secondary structure serving as a scaffold for tandem PKR binding and activation. These findings provide a mechanism by which APOL1 variants damage podocytes and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Koji Okamoto
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Jason W Rausch
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Hidefumi Wakashin
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Yulong Fu
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Joon-Yong Chung
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Myung K Shin
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Preeti Chandra
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Kosuke Suzuki
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shashi Shrivastav
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD, 21287, USA
| | - Stephen M Hewitt
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patricio E Ray
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Eisei Noiri
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Stuart F J Le Grice
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Maarten Hoek
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Zhe Han
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Frederick National Laboratory, 8560 Progress Dr., Frederick, MD, 21702, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Hao Y, Bohon J, Hulscher R, Rappé MC, Gupta S, Adilakshmi T, Woodson SA. Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays. ACTA ACUST UNITED AC 2018; 73:e52. [PMID: 29927103 DOI: 10.1002/cpnc.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yumeng Hao
- Johns Hopkins University, Baltimore, Maryland
| | - Jen Bohon
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, Ohio
| | | | | | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | |
Collapse
|
45
|
Lepeta K, Purzycka KJ, Pachulska-Wieczorek K, Mitjans M, Begemann M, Vafadari B, Bijata K, Adamiak RW, Ehrenreich H, Dziembowska M, Kaczmarek L. A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms. EMBO Mol Med 2018. [PMID: 28623238 PMCID: PMC5538295 DOI: 10.15252/emmm.201707723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Matrix metalloproteinase 9 (MMP‐9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype‐based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the MMP‐9 rs20544 C/T single‐nucleotide polymorphism (SNP) located in the 3′untranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP‐9 activity and the morphology of dendritic spines. We demonstrated that Fragile X mental retardation protein (FMRP) bound the MMP‐9 3′UTR. We also found dramatic changes in RNA structure folding and alterations in the affinity of FMRP for MMP‐9 RNA, depending on the SNP variant. Finally, we observed greater sensitivity to psychosis‐related locomotor hyperactivity in Mmp‐9 heterozygous mice. We propose a novel mechanism that involves MMP‐9‐dependent changes in dendritic spine morphology and the pathophysiology of schizophrenia, providing the first mechanistic insights into the way in which the single base change in the MMP‐9 gene (rs20544) influences gene function and results in phenotypic changes observed in schizophrenia patients.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna J Purzycka
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Katarzyna Pachulska-Wieczorek
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Marina Mitjans
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Behnam Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krystian Bijata
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of RNA Biology and Functional Genomics, Warsaw, Poland
| | - Ryszard W Adamiak
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Magdalena Dziembowska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland .,Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Ingemarsdotter CK, Zeng J, Long Z, Lever AML, Kenyon JC. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation. Retrovirology 2018. [PMID: 29540207 PMCID: PMC5853050 DOI: 10.1186/s12977-018-0407-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Results Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. Conclusions NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594 the flexibility of SL3 appears to be a unique requirement for genome encapsidation and identifies this process as a highly specific drug target. This study is proof of principle that development of a new class of antiretroviral drugs that specifically target viral packaging by binding to the viral genomic RNA is achievable. Electronic supplementary material The online version of this article (10.1186/s12977-018-0407-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK.,Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Homerton College, University of Cambridge, Cambridge, UK.
| |
Collapse
|
47
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
48
|
Watters KE, Lucks JB. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq). Methods Mol Biol 2018; 1490:135-62. [PMID: 27665597 DOI: 10.1007/978-1-4939-6433-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.
Collapse
Affiliation(s)
- Kyle E Watters
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Julius B Lucks
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
49
|
Filippova JA, Semenov DV, Juravlev ES, Komissarov AB, Richter VA, Stepanov GA. Modern Approaches for Identification of Modified Nucleotides in RNA. BIOCHEMISTRY (MOSCOW) 2018; 82:1217-1233. [PMID: 29223150 DOI: 10.1134/s0006297917110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review considers approaches for detection of modified monomers in the RNA structure of living organisms. Recently, some data on dynamic alterations in the pool of modifications of the key RNA species that depend on external factors affecting the cells and physiological conditions of the whole organism have been accumulated. The recent studies have presented experimental data on relationship between the mechanisms of formation of modified/minor nucleotides of RNA in mammalian cells and the development of various pathologies. The development of novel methods for detection of chemical modifications of RNA nucleotides in the cells of living organisms and accumulation of knowledge on the contribution of modified monomers to metabolism and functioning of individual RNA species establish the basis for creation of novel diagnostic and therapeutic approaches. This review includes a short description of routine methods for determination of modified nucleotides in RNA and considers in detail modern approaches that enable not only detection but also quantitative assessment of the modification level of various nucleotides in individual RNA species.
Collapse
Affiliation(s)
- J A Filippova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
50
|
Chea EE, Jones LM. Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting. Analyst 2018; 143:798-807. [DOI: 10.1039/c7an01323j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydroxyl radical footprinting (HRF) has been successfully used to study the structure of both nucleic acids and proteins in live cells.
Collapse
Affiliation(s)
- Emily E. Chea
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| |
Collapse
|