1
|
Kain MP, Epstein JH, Ross N. Rethinking statistical approaches for serological data analysis for viral surveillance. J Virol Methods 2025; 335:115149. [PMID: 40122214 DOI: 10.1016/j.jviromet.2025.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
A robust serological surveillance system for zoonotic pathogens is imperative for both early detection and advancing knowledge of emerging diseases. A statistical analysis plan that is aligned to research and epidemiological goals requires a purposeful choice among alternative methods for differentiating seronegative from seropositive samples, estimating seroprevalence, and estimating risk factors associated with seropositivity. The common standard deviation-based cutoff (e.g., 3sd) approach is simple to implement and understand, but fails to appropriately propagate uncertainty in serostatus assignments to any risk factor analysis. Methods such as Gaussian mixture models, which jointly estimate serostatus, risk factors, and their uncertainty, can alleviate the dichotomy created by the cutoff approach. Yet, because of a lack of empirical guidance of method performance, it remains difficult to choose a robust analysis method for a given serological dataset. Here we examine the performance of both cutoff and clustering approaches using simulated datasets that represent the epidemiological, biological, and immunological data generation process. We focus on understudied pathogens for which validated serological assays do not exist, as is common in emerging viruses in wildlife. We quantify coverage (the proportion of time 95 % confidence intervals contain the true value) and bias (systematic differences between true values and model point estimates) of model estimates for individual serostatus assignments, population seroprevalence, and regression coefficients for serostatus risk factors. In nearly all scenarios, Bayesian mixture models provide the highest coverage and lowest bias. Only with very low seroprevalence (∼ < 3 %) and large differences in signal between seronegative and seropositive individuals will a cutoff provide low bias and near-nominal coverage. Given poor coverage of risk factor regression coefficients, we advise against using a cutoff approach for quantifying determinants of seropositivity.
Collapse
Affiliation(s)
| | - Jonathan H Epstein
- EcoHealth Alliance, New York, NY, USA; One Health Science, Mt. Kisco, NY, USA
| | - Noam Ross
- EcoHealth Alliance, New York, NY, USA; rOpenSci, P.O. Box 90596, Austin, TX 78709, USA
| |
Collapse
|
2
|
Ishtiaq B, Paracha RZ, Nisar M, Ejaz S, Hussain Z. Discovering promising drug candidates for Parkinson's disease: integrating miRNA and DEG analysis with molecular dynamics and MMPBSA. J Comput Aided Mol Des 2025; 39:8. [PMID: 39971814 DOI: 10.1007/s10822-025-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder with an increasing prevalence in aging populations. Identifying effective therapeutic targets and treatments remains a critical challenge. This study aimed to discover potential therapeutic targets and design novel compounds for PD treatment. Gene expression analysis was conducted using diverse datasets, including microarray, mRNA sequencing, and miRNA sequencing. While no common genes were identified across all datasets, the RNA-seq dataset GSE-135036 was prioritized. The investigation focused on downregulated miRNAs targeting upregulated mRNAs, revealing that hsa-mir-5585 regulates Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) within the Shigellosis pathway. Given RIPK1's role in cell death and inflammation, it emerged as a promising therapeutic target for PD. To identify RIPK1 inhibitors, 67 compounds were screened via molecular docking, with CHEMBL-3109201 exhibiting the highest binding affinity. A structurally similar compound, CHEMBL-76328382, also demonstrated strong interactions. A fragment-based drug design approach generated two novel compounds, BI-1215 and BI-146, which, along with RIPK1-IN-4 and CHEMBL-70909876, were shortlisted based on docking scores and ADME profiles. Molecular dynamics simulations confirmed the stability of CHEMBL-70909876 and BI-1215, with RMSD fluctuations between 0.005 and 0.2 nm. MM-PBSA analysis further validated their superior thermodynamic stability and binding affinity compared to other candidates. This study offers novel insights into PD pathogenesis and potential therapeutic interventions, marking a significant step toward effective treatment strategies for this debilitating disorder.
Collapse
Affiliation(s)
- Bisma Ishtiaq
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| | - Maryum Nisar
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Saima Ejaz
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Zamir Hussain
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
3
|
Elshafie NO, Gribskov M, Lichti NI, Sayedahmed EE, Childress MO, Pires dos Santos A. MicroRNAs implicated in canine diffuse large B-cell lymphoma prognosis. FEBS Open Bio 2024; 14:1899-1913. [PMID: 39218619 PMCID: PMC11532975 DOI: 10.1002/2211-5463.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most prevalent subtype of non-Hodgkin lymphoma (NHL) in domestic dogs, with many similarities to its human counterpart. The progression of the disease is rapid, and treatment must be initiated early to achieve cancer remission and extend life. This study examined the relationship between progression-free survival (PFS) and microRNA (miRNA) expression in dogs with DLBCL. miRNAs are small non-coding RNA molecules that typically regulate gene expression post-transcriptionally. They are involved in several pathophysiological processes, including the growth and progression of cancer. Based on the analysis of small RNA sequencing (sRNA-seq) data, we validated a group of miRNAs in lymph nodes from 44 DLBCL-affected dogs with known outcomes. We used quantitative PCR to quantify their expression and report a specific subset of miRNAs is associated with decreased PFS in dogs with DLBCL. The miR-192-5p and miR-16-5p expression were significantly downregulated in dogs with increased PFS. These results indicate that miRNA profiling may potentially identify dogs with DLBCL that will experience poor outcomes following treatment. Identifying specific miRNAs that correlate with the progression of canine DLBCL could aid the development of individualized treatment regimens for dogs.
Collapse
Affiliation(s)
- Nelly O. Elshafie
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
| | - Michael Gribskov
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | | | | | - Michael O. Childress
- Department of Veterinary Clinical SciencesPurdue UniversityWest LafayetteINUSA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Andrea Pires dos Santos
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Bindley Bioscience CenterPurdue UniversityWest LafayetteINUSA
- Department of Veterinary Clinical SciencesPurdue UniversityWest LafayetteINUSA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
4
|
Biegała Ł, Kołat D, Gajek A, Płuciennik E, Marczak A, Śliwińska A, Mikula M, Rogalska A. Uncovering miRNA-mRNA Regulatory Networks Related to Olaparib Resistance and Resensitization of BRCA2MUT Ovarian Cancer PEO1-OR Cells with the ATR/CHK1 Pathway Inhibitors. Cells 2024; 13:867. [PMID: 38786089 PMCID: PMC11119970 DOI: 10.3390/cells13100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFβR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFβ1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Jana Matejki 21/23, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland;
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| |
Collapse
|
5
|
Chunikhina E, Logan P, Kovchegov Y, Yambartsev A, Mondal D, Morgun A. The C-SHIFT Algorithm for Normalizing Covariances. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:720-730. [PMID: 35167480 DOI: 10.1109/tcbb.2022.3151840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Omics technologies are powerful tools for analyzing patterns in gene expression data for thousands of genes. Due to a number of systematic variations in experiments, the raw gene expression data is often obfuscated by undesirable technical noises. Various normalization techniques were designed in an attempt to remove these non-biological errors prior to any statistical analysis. One of the reasons for normalizing data is the need for recovering the covariance matrix used in gene network analysis. In this paper, we introduce a novel normalization technique, called the covariance shift (C-SHIFT) method. This normalization algorithm uses optimization techniques together with the blessing of dimensionality philosophy and energy minimization hypothesis for covariance matrix recovery under additive noise (in biology, known as the bias). Thus, it is perfectly suited for the analysis of logarithmic gene expression data. Numerical experiments on synthetic data demonstrate the method's advantage over the classical normalization techniques. Namely, the comparison is made with Rank, Quantile, cyclic LOESS (locally estimated scatterplot smoothing), and MAD (median absolute deviation) normalization methods. We also evaluate the performance of C-SHIFT algorithm on real biological data.
Collapse
|
6
|
Guo L, Li Y, Zhang C, Wang Z, Carlson JE, Yin W, Zhang X, Hou X. Integrated analysis of miRNAome transcriptome and degradome reveals miRNA-target modules governing floral florescence development and senescence across early- and late-flowering genotypes in tree peony. FRONTIERS IN PLANT SCIENCE 2022; 13:1082415. [PMID: 36589111 PMCID: PMC9795019 DOI: 10.3389/fpls.2022.1082415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
As a candidate national flower of China, tree peony has extremely high ornamental, medicinal and oil value. However, the short florescence and rarity of early-flowering and late-flowering varieties restrict further improvement of the economic value of tree peony. Specific miRNAs and their target genes engaged in tree peony floral florescence, development and senescence remain unknown. This report presents the integrated analysis of the miRNAome, transcriptome and degradome of tree peony petals collected from blooming, initial flowering, full blooming and decay stages in early-flowering variety Paeonia ostii 'Fengdan', an early-flowering mutant line of Paeonia ostii 'Fengdan' and late-flowering variety Paeonia suffruticosa 'Lianhe'. Transcriptome analysis revealed a transcript ('psu.G.00014095') which was annotated as a xyloglucan endotransglycosylase/hydrolase precursor XTH-25 and found to be differentially expressed across flower developmental stages in Paeonia ostii 'Fengdan' and Paeonia suffruticosa 'Lianhe'. The miRNA-mRNA modules were presented significant enrichment in various pathways such as plant hormone signal transduction, indole alkaloid biosynthesis, arachidonic acid metabolism, folate biosynthesis, fatty acid elongation, and the MAPK signaling pathway. Multiple miRNA-mRNA-TF modules demonstrated the potential functions of MYB-related, bHLH, Trihelix, NAC, GRAS and HD-ZIP TF families in floral florescence, development, and senescence of tree peony. Comparative spatio-temporal expression investigation of eight floral-favored miRNA-target modules suggested that transcript 'psu.T.00024044' and microRNA mtr-miR166g-5p are involved in the floral florescence, development and senescence associated agronomic traits of tree peony. The results might accelerate the understanding of the potential regulation mechanism in regards to floral florescence, development and abscission, and supply guidance for tree peony breeding of varieties with later and longer florescence characteristics.
Collapse
Affiliation(s)
- Lili Guo
- College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuying Li
- College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chenjie Zhang
- College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhanying Wang
- Department of Horticulture, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang, Henan, China
| | - John E. Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| | - Weinlun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiuxin Zhang
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaogai Hou
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
7
|
Nam TW, Park Y, Jung YS, Park HG. Polychromatic Quantum Dot Array to Compose a Community Signal Ensemble for Multiplexed miRNA Detection. ACS NANO 2022; 16:11115-11123. [PMID: 35704843 DOI: 10.1021/acsnano.2c03806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We herein describe a polychromatic quantum dot array (PQDA) to compose a community signal ensemble enabling accurate and precise quantification of miRNAs in a multiplexed manner. Advanced multicomponent ultrahigh-resolution patterning technique achieved by capsulation-assisted transfer printing following self-assembly-based poly(methyl methacrylate) (PMMA) patterning is utilized to manufacture the PQDA, which is designed to discharge a target miRNAs-specific set of fluorescent quantum dots (QDs) through the activity of duplex-specific nuclease (DSN). On the basis of the community signal ensemble produced by the discharged QD profiles, target miRNAs are very specifically identified down to a femtomolar level (1.27 fM) in a multiplexed manner over a wide dynamic range of up to 6 orders of magnitude. The practical diagnostic capability of this strategy is also demonstrated by reliably identifying breast cancer-specific miRNAs from heterogeneous cancer cell lysates.
Collapse
|
8
|
Horie K, Nanashima N, Yokoyama Y, Yoshioka H, Watanabe J. Exosomal MicroRNA as Biomarkers for Diagnosing or Monitoring the Progression of Ovarian Clear Cell Carcinoma: A Pilot Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123953. [PMID: 35745075 PMCID: PMC9228939 DOI: 10.3390/molecules27123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the most common cause of gynecological malignancy-related mortality since early-stage disease is difficult to diagnose. Advanced clear cell carcinoma of the ovary (CCCO) has dismal prognosis, and its incidence has been increasing in Japan, emphasizing the need for highly sensitive diagnostic and prognostic CCCO biomarkers. Exosomal microRNAs (miRNAs) secreted by tumor cells are known to play a role in carcinogenesis; however, their involvement in ovarian cancer is unclear. In this study, we performed expression profiling of miRNAs from exosomes released by five cell lines representing different histological types of ovarian cancer. Exosomes isolated from culture media of cancer and normal cells were compared for miRNA composition using human miRNA microarray. We detected 143 exosomal miRNAs, whose expression was ≥1.5-fold higher in ovarian cancer cells than in the control. Among them, 28 miRNAs were upregulated in cells of all histological ovarian cancer types compared to control, and three were upregulated in CCCO cells compared to other types. Functional analyses indicated that miR-21 overexpressed in CCCO cells targeted tumor suppressor genes PTEN, TPM1, PDCD4, and MASP1. The identified miRNAs could represent novel candidate biomarkers to diagnose or monitor progression of ovarian cancer, particularly CCCO.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
- Correspondence: ; Tel.: +81-172-39-5527
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8203, Japan;
| | - Haruhiko Yoshioka
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| | - Jun Watanabe
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| |
Collapse
|
9
|
Bernardes JGB, Fernandes MR, Rodrigues JCG, Vinagre LWMS, Pastana LF, Dobbin EAF, Medeiros JAG, Dias Junior LB, Bernardes GM, Bernardes IMM, Santos NPCD, Demachki S, Burbano RMR. Association of Androgenic Regulation and MicroRNAs in Acinar Adenocarcinoma of Prostate. Genes (Basel) 2022; 13:genes13040622. [PMID: 35456428 PMCID: PMC9030213 DOI: 10.3390/genes13040622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Prostate cancer represents 3.8% of cancer deaths worldwide. For most prostate cancer cells to grow, androgens need to bind to a cellular protein called the androgen receptor (AR). This study aims to demonstrate the expression of five microRNAs (miRs) and its influence on the AR formation in patients from the northern region of Brazil. Material and Methods: Eighty-four tissue samples were investigated, including nodular prostatic hyperplasia (NPH) and acinar prostatic adenocarcinoma (CaP). Five miRs (27a-3p, 124, 130a, 488-3p, and 506) were quantified using the TaqMan® Real Time PCR method and AR was measured using Western blotting. Results: Levels of miRs 124, 130a, 488-3p, and 506 were higher in NPH samples. Conversely, in the CaP cases, higher levels of miR 27a-3p and AR were observed. Conclusion: In the future, these microRNAs may be tested as markers of CaP at the serum level. The relative expression of AR was 20% higher in patients with prostate cancer, which suggests its potential as a biomarker for prostate malignancy.
Collapse
Affiliation(s)
- Julio Guilherme Balieiro Bernardes
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66050-160, Brazil; (J.G.B.B.); (L.B.D.J.); (I.M.M.B.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
- Hospital Ophir Loyola, Belém 66063-240, Brazil
- Correspondence:
| | - Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Lui Wallacy Morikawa Souza Vinagre
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Lucas Favacho Pastana
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Elizabeth Ayres Fragoso Dobbin
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Jéssyca Amanda Gomes Medeiros
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Leonidas Braga Dias Junior
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66050-160, Brazil; (J.G.B.B.); (L.B.D.J.); (I.M.M.B.)
| | | | | | - Ney Pereira Carneiro Dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Samia Demachki
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Rommel Mario Rodriguez Burbano
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
- Hospital Ophir Loyola, Belém 66063-240, Brazil
| |
Collapse
|
10
|
Wang M, Dai T, Meng Q, Wang W, Li S. Regulatory effects of miR-28 on osteogenic differentiation of human bone marrow mesenchymal stem cells. Bioengineered 2022; 13:684-696. [PMID: 34978269 PMCID: PMC8805925 DOI: 10.1080/21655979.2021.2012618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We aimed to assess the regulatory effects of miR-28 on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs). HBMMSCs isolated, cultured and induced (at P3) to undergo osteogenic induction. The expressions of miRNAs were detected by gene microarray, and differentially expressed miRNAs in hBMMSCs compared with induced cells were obtained by significance analysis of microarrays. The microarray findings were confirmed by RT-PCR. TargetScan showed that signal transducer and activator of transcription 1 (STAT1) was the downstream target gene of miR-28. The relationship between miR-28 and STAT1 was validated using dual-luciferase reporter gene assay. HBMMSCs were transfected with miR-28 mimics and STAT1 siRNA, respectively. Samples were collected on day 10 after osteogenic differentiation, and the alkaline phosphatase (AKP) activity, Runt-related transcription factor 2 (RUNX2, a key regulator of osteogenic differentiation) and STAT1 expressions were determined using kits, PCR and Western blotting, respectively. Cell proliferation and migration were detected through CCK-8 and Transwell assays, respectively. During the osteogenic differentiation of hBMMSCs, the expression level of miR-28 increased. MiR-28 specifically bound the 3'-untranslated region (3'UTR) of STAT1 mRNA. It inhibited STAT1 expression in a targeted manner during osteogenic differentiation. Interference with STAT1 partially mimicked the regulatory effects of miR-28 overexpression on the osteogenic differentiation of hBMMSCs. Interference with STAT1 or overexpression of miR-28 did not affect proliferation or migration. MiR-28 has gradually increased expression during the osteogenic differentiation of hBMMSCs, which can directly bind STAT1 3'UTR and inhibit its expression, thereby up-regulating AKP and RUNX2, and promoting osteogenic differentiation.
Collapse
Affiliation(s)
- Min Wang
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou Guangdong Province, China
| | - Tianming Dai
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou Guangdong Province, China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou Guangdong Province, China
| | - Wen Wang
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou Guangdong Province, China
| | - Siming Li
- Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou Guangdong Province, China
| |
Collapse
|
11
|
Errington N, Iremonger J, Pickworth JA, Kariotis S, Rhodes CJ, Rothman AM, Condliffe R, Elliot CA, Kiely DG, Howard LS, Wharton J, Thompson AAR, Morrell NW, Wilkins MR, Wang D, Lawrie A. A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine 2021; 69:103444. [PMID: 34186489 PMCID: PMC8243351 DOI: 10.1016/j.ebiom.2021.103444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare but life shortening disease, the diagnosis of which is often delayed, and requires an invasive right heart catheterisation. Identifying diagnostic biomarkers may improve screening to identify patients at risk of PAH earlier and provide new insights into disease pathogenesis. MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated in PAH, and contribute to the disease process in animal models. METHODS Plasma from 64 treatment naïve patients with PAH and 43 disease and healthy controls were profiled for microRNA expression by Agilent Microarray. Following quality control and normalisation, the cohort was split into training and validation sets. Four separate machine learning feature selection methods were applied to the training set, along with a univariate analysis. FINDINGS 20 microRNAs were identified as putative biomarkers by consensus feature selection from all four methods. Two microRNAs (miR-636 and miR-187-5p) were selected by all methods and used to predict PAH diagnosis with high accuracy. Integrating microRNA expression profiles with their associated target mRNA revealed 61 differentially expressed genes verified in two independent, publicly available PAH lung tissue data sets. Two of seven potentially novel gene targets were validated as differentially expressed in vitro in human pulmonary artery smooth muscle cells. INTERPRETATION This consensus of multiple machine learning approaches identified two miRNAs that were able to distinguish PAH from both disease and healthy controls. These circulating miRNA, and their target genes may provide insight into PAH pathogenesis and reveal novel regulators of disease and putative drug targets. FUNDING This work was supported by a National Institute for Health Research Rare Disease Translational Research Collaboration (R29065/CN500) and British Heart Foundation Project Grant (PG/11/116/29288).
Collapse
Affiliation(s)
- Niamh Errington
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - James Iremonger
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Josephine A Pickworth
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Sokratis Kariotis
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - Christopher J Rhodes
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Alexander Mk Rothman
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Robin Condliffe
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Charles A Elliot
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Luke S Howard
- National Pulmonary Hypertension Service, Imperial College Healthcare Trust NHS, Hammersmith Hospital, Du Cane Road, London, UK
| | - John Wharton
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - A A Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK; Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Martin R Wilkins
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Dennis Wang
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Computer Science, University of Sheffield, UK; Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield, UK.
| |
Collapse
|
12
|
Prahm KP, Høgdall CK, Karlsen MA, Christensen IJ, Novotny GW, Høgdall E. MicroRNA characteristics in epithelial ovarian cancer. PLoS One 2021; 16:e0252401. [PMID: 34086724 PMCID: PMC8177468 DOI: 10.1371/journal.pone.0252401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/14/2021] [Indexed: 01/23/2023] Open
Abstract
The purpose of the current study was to clarify differences in microRNA expression according to clinicopathological characteristics, and to investigate if miRNA profiles could predict cytoreductive outcome in patients with FIGO stage IIIC and IV ovarian cancer. Patients enrolled in the Pelvic Mass study between 2004 and 2010, diagnosed and surgically treated for epithelial ovarian cancer, were used for investigation. MicroRNA was profiled from tumour tissue with global microRNA microarray analysis. Differences in miRNA expression profiles were analysed according to histologic subtype, FIGO stage, tumour grade, type I or II tumours and result of primary cytoreductive surgery. One microRNA, miR-130a, which was found to be associated with serous histology and advanced FIGO stage, was also validated using data from external cohorts. Another seven microRNAs (miR-34a, miR-455-3p, miR-595, miR-1301, miR-146-5p, 193a-5p, miR-939) were found to be significantly associated with the clinicopathological characteristics (p ≤ 0.001), in our data, but mere not similarly significant when tested against external cohorts. Further validation in comparable cohorts, with microRNA profiled using newest and similar methods are warranted.
Collapse
Affiliation(s)
- Kira Philipsen Prahm
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Claus Kim Høgdall
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mona Aarenstrup Karlsen
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
| | - Guy Wayne Novotny
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
| |
Collapse
|
13
|
Staehle MM, O’Sullivan S, Vadigepalli R, Kernan KF, Gonye GE, Ogunnaike BA, Schwaber JS. Diurnal Patterns of Gene Expression in the Dorsal Vagal Complex and the Central Nucleus of the Amygdala - Non-rhythm-generating Brain Regions. Front Neurosci 2020; 14:375. [PMID: 32477043 PMCID: PMC7233260 DOI: 10.3389/fnins.2020.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Genes that establish the circadian clock have differential expression with respect to solar time in central and peripheral tissues. Here, we find circadian-time-induced differential expression in a large number of genes not associated with circadian rhythms in two brain regions lacking overt circadian function: the dorsal vagal complex (DVC) and the central nucleus of the amygdala (CeA). These regions primarily engage in autonomic, homeostatic, and emotional regulation. However, we find striking diurnal shifts in gene expression in these regions of male Sprague Dawley rats with no obvious patterns that could be attributed to function or region. These findings have implications for the design of gene expression studies as well as for the potential effects of xenobiotics on these regions that regulate autonomic and emotional states.
Collapse
Affiliation(s)
- Mary M. Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Chemical Engineering, University of Delaware, Newark, DE, United States
| | - Sean O’Sullivan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kate F. Kernan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gregory E. Gonye
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - James S. Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Nersisyan S, Shkurnikov M, Poloznikov A, Turchinovich A, Burwinkel B, Anisimov N, Tonevitsky A. A Post-Processing Algorithm for miRNA Microarray Data. Int J Mol Sci 2020; 21:ijms21041228. [PMID: 32059403 PMCID: PMC7072892 DOI: 10.3390/ijms21041228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
One of the main disadvantages of using DNA microarrays for miRNA expression profiling is the inability of adequate comparison of expression values across different miRNAs. This leads to a large amount of miRNAs with high scores which are actually not expressed in examined samples, i.e., false positives. We propose a post-processing algorithm which performs scoring of miRNAs in the results of microarray analysis based on expression values, time of discovery of miRNA, and correlation level between the expressions of miRNA and corresponding pre-miRNA in considered samples. The algorithm was successfully validated by the comparison of the results of its application to miRNA microarray breast tumor samples with publicly available miRNA-seq breast tumor data. Additionally, we obtained possible reasons why miRNA can appear as a false positive in microarray study using paired miRNA sequencing and array data. The use of DNA microarrays for estimating miRNA expression profile is limited by several factors. One of them consists of problems with comparing expression values of different miRNAs. In this work, we show that situation can be significantly improved if some additional information is taken into consideration in a comparison.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence:
| | - Maxim Shkurnikov
- P.A. Hertsen Moscow Oncology Research Center, Branch of National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Second Botkinsky lane 3, 125284 Moscow, Russia;
| | - Andrey Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, 249036 Obninks, Russia;
- School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia;
| | - Andrey Turchinovich
- Molecular Epidemiology C080, German Cancer Research Center, 69120 Heidelberg, Germany; (A.T.); (B.B.)
- SciBerg e.Kfm, 68309 Mannheim, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology C080, German Cancer Research Center, 69120 Heidelberg, Germany; (A.T.); (B.B.)
- University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Nikita Anisimov
- School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia;
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, 117312 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
15
|
Handgraaf S, Dusaulcy R, Visentin F, Philippe J, Gosmain Y. Let-7e-5p Regulates GLP-1 Content and Basal Release From Enteroendocrine L Cells From DIO Male Mice. Endocrinology 2020; 161:5697307. [PMID: 31905402 DOI: 10.1210/endocr/bqz037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Characterization of enteroendocrine L cells in diabetes is critical for better understanding of the role of glucagon-like peptide-1 (GLP-1) in physiology and diabetes. We studied L-cell transcriptome changes including microRNA (miRNA) dysregulation in obesity and diabetes. We evaluated the regulation of miRNAs through microarray analyses on sorted enteroendocrine L cells from control and obese glucose-intolerant (I-HFD) and hyperglycemic (H-HFD) mice after 16 weeks of respectively low-fat diet (LFD) or high-fat diet (HFD) feeding. The identified altered miRNAs were studied in vitro using the mouse GLUTag cell line to investigate their regulation and potential biological functions. We identified that let-7e-5p, miR-126a-3p, and miR-125a-5p were differentially regulated in L cells of obese HFD mice compared with control LFD mice. While downregulation of let-7e-5p expression was observed in both I-HFD and H-HFD mice, levels of miR-126a-3p increased and of miR-125a-5p decreased significantly only in I-HFD mice compared with controls. Using miRNA inhibitors and mimics we observed that modulation of let-7e-5p expression affected specifically GLP-1 cellular content and basal release, whereas Gcg gene expression and acute GLP-1 secretion and cell proliferation were not affected. In addition, palmitate treatment resulted in a decrease of let-7e-5p expression along with an increase in GLP-1 content and release, suggesting that palmitate acts on GLP-1 through let-7e-5p. By contrast, modulation of miR-125a-5p and miR-126a-3p in the same conditions did not affect content or secretion of GLP-1. We conclude that decrease of let-7e-5p expression in response to palmitate may constitute a compensatory mechanism contributing to maintaining constant glycemia in obese mice.
Collapse
Affiliation(s)
- Sandra Handgraaf
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Rodolphe Dusaulcy
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Florian Visentin
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Yvan Gosmain
- Molecular Diabetes Laboratory, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
16
|
Liu X, Li N, Liu S, Wang J, Zhang N, Zheng X, Leung KS, Cheng L. Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review. Front Bioeng Biotechnol 2019; 7:358. [PMID: 32039167 PMCID: PMC6988798 DOI: 10.3389/fbioe.2019.00358] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Dozens of normalization methods for correcting experimental variation and bias in high-throughput expression data have been developed during the last two decades. Up to 23 methods among them consider the skewness of expression data between sample states, which are even more than the conventional methods, such as loess and quantile. From the perspective of reference selection, we classified the normalization methods for skewed expression data into three categories, data-driven reference, foreign reference, and entire gene set. We separately introduced and summarized these normalization methods designed for gene expression data with global shift between compared conditions, including both microarray and RNA-seq, based on the reference selection strategies. To our best knowledge, this is the most comprehensive review of available preprocessing algorithms for the unbalanced transcriptome data. The anatomy and summarization of these methods shed light on the understanding and appropriate application of preprocessing methods.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Nan Li
- Department of Stomatology Center, Shenzhen People's Hospital, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Sheng Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Jun Wang
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Ning Zhang
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Xubin Zheng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, China
| |
Collapse
|
17
|
Nisenblat V, Sharkey DJ, Wang Z, Evans SF, Healey M, Ohlsson Teague EMC, Print CG, Robertson SA, Hull ML. Plasma miRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J Clin Endocrinol Metab 2019; 104:1999-2022. [PMID: 30608536 DOI: 10.1210/jc.2018-01464] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
CONTEXT Despite extensive searches for novel noninvasive diagnostics, laparoscopy remains the reference test for endometriosis. Circulating miRNAs are purported endometriosis biomarkers; however, the miRNA species and their diagnostic accuracy differ between studies and have not been validated in independent cohorts. OBJECTIVE Identify endometriosis-specific plasma miRNAs and determine their diagnostic test accuracy. SETTING Two university-based, public hospitals and a private gynecology practice in Australia. DESIGN AND PARTICIPANTS Four phases: (i) Explorative phase. Plasma miRNA menstrual cycle fluctuations were evaluated in women with endometriosis and asymptomatic controls (n = 16). (ii) Biomarker discovery. Endometriosis-specific plasma miRNAs were identified in (a) women with endometriosis and asymptomatic controls (n = 16) and (b) women with and without surgically defined endometriosis (n = 20). (iii) Biomarker selection. Plasma miRNAs with the best diagnostic potential for endometriosis were selected in a surgically defined selection cohort (n = 78). (iv) Biomarker validation. The diagnostic test accuracy of these miRNAs was calculated in an independent, surgically defined validation cohort (n = 119). RESULTS Forty-nine miRNAs were differentially expressed in women with endometriosis. Nine maintained dysregulation in the selection cohort, but only three (miR-155, miR574-3p and miR139-3p) did so in the validation cohort. Combined, these three miRNAs demonstrated a sensitivity and specificity of 83% and 51%, respectively. CONCLUSION Plasma miRNAs demonstrated modest sensitivity and specificity as diagnostic tests or triage tools for endometriosis. Other groups' findings were not replicated and accorded poorly with our results. Circulating miRNAs demonstrate diagnostic potential, but stringent, standardized methodological approaches are required for the development of a clinically applicable tool.
Collapse
Affiliation(s)
- Victoria Nisenblat
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Zhao Wang
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan F Evans
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - E Maria C Ohlsson Teague
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Sarah A Robertson
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Obstetrics and Gynaecology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov 2019; 5:71. [PMID: 30854230 PMCID: PMC6397280 DOI: 10.1038/s41420-019-0153-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022] Open
Abstract
Heart failure is a worldwide leading cause of death. Diet and obesity are particularly of high concern in heart disease etiology. Gravely, altered nutrition during developmental windows of vulnerability can have long-term impact on heart health; however, the underlying mechanisms are poorly understood. In the understanding of the initiation of chronic diseases related to developmental exposure to environmental challenges, deregulations in epigenetic mechanisms including micro-RNAs have been proposed as key events. In this context, we aimed at delineating the role of micro-RNAs in the programming of cardiac alterations induced by early developmental exposure to nutritional imbalance. To reach our aim, we developed a human relevant model of developmental exposure to nutritional imbalance by maternally exposing rat to high-fat diet during gestation and lactation. In this model, offspring exposed to maternal high-fat diet developed cardiac hypertrophy and increased extracellular matrix depot compared to those exposed to chow diet. Microarray approach performed on cardiac tissue allowed the identification of a micro-RNA subset which was down-regulated in high-fat diet-exposed animals and which were predicted to regulate transforming growth factor-beta (TGFβ)-mediated remodeling. As indicated by in vitro approaches and gene expression measurement in the heart of our animals, decrease in DiGeorge critical region 8 (DGCR8) expression, involved in micro-RNA biogenesis, seems to be a critical point in the alterations of the micro-RNA profile and the TGFβ-mediated remodeling induced by maternal exposure to high-fat diet. Finally, increasing DGCR8 activity and/or expression through hemin treatment in vitro revealed its potential in the rescue of the pro-fibrotic phenotype in cardiomyocytes driven by DGCR8 decrease. These findings suggest that cardiac alterations induced by maternal exposure to high-fat diet is related to abnormalities in TGFβ pathway and associated with down-regulated micro-RNA processing. Our study highlighted DGCR8 as a potential therapeutic target for heart diseases related to early exposure to dietary challenge.
Collapse
|
19
|
Yu D, Jiao X, Cao T, Huang F. Serum miRNA expression profiling reveals miR-486-3p may play a significant role in the development of autism by targeting ARID1B. Neuroreport 2019; 29:1431-1436. [PMID: 30260819 DOI: 10.1097/wnr.0000000000001107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have implicated microRNAs (miRNAs) in autism and have supported changes in serum miRNA expression profile. We proposed to analyze miRNA expression and its target genes related to regulatory networks in autism within a cohort of Chinese patients. The aim of this study was to explore the dysregulation of miRNAs in autism and investigate the potential mechanistic implications in the pathogenesis of autism. MiRNA was isolated from the serum samples of 20 patients with autism and 23 controls. Dysfunctional miRNAs were identified using miRNA microarray analyses. We used quantitative reverse transcription-PCR to examine the four differentially expressed miRNAs. The target gene of miR-486-3p was confirmed by luciferase assay and miRNA transfection in SH-SY5Y cell lines. A total of 77 differentially expressed miRNAs were found in the miRNA microarray analysis of two patients with autism compared with three controls. On the basis of the microarray results, quantitative reverse transcription-PCR analysis indicated that miR-557 and miR-486-3p expression levels were significantly increased (P<0.05) in 18 patients with autism compared with 20 controls. Overexpression of miR-486-3p decreased ARID1B mRNA and protein levels (P<0.05), whereas inhibition of miR-486-3p increased the mRNA and protein levels of ARID1B in SH-SY5Y cell lines. Luciferase activity was significantly decreased compared with the control group (P<0.05) after cells were co-transfected with miR-486-3p mimics and ARID1B 3'-untranslated region. Our study has highlighted that miR-486-3p expression is increased in serum of patients with autism and supports that miR-486-3p inhibits the expression of ARID1B.
Collapse
Affiliation(s)
- Dan Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
20
|
Varcianna A, Myszczynska MA, Castelli LM, O'Neill B, Kim Y, Talbot J, Nyberg S, Nyamali I, Heath PR, Stopford MJ, Hautbergue GM, Ferraiuolo L. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 2019; 40:626-635. [PMID: 30711519 PMCID: PMC6413467 DOI: 10.1016/j.ebiom.2018.11.067] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background Astrocytes regulate neuronal function, synaptic formation and maintenance partly through secreted extracellular vesicles (EVs). In amyotrophic lateral sclerosis (ALS) astrocytes display a toxic phenotype that contributes to motor neuron (MN) degeneration. Methods We used human induced astrocytes (iAstrocytes) from 3 ALS patients carrying C9orf72 mutations and 3 non-affected donors to investigate the role of astrocyte-derived EVs (ADEVs) in ALS astrocyte toxicity. ADEVs were isolated from iAstrocyte conditioned medium via ultracentrifugation and resuspended in fresh astrocyte medium before testing ADEV impact on HB9-GFP+ mouse motor neurons (Hb9-GFP+ MN). We used post-mortem brain and spinal cord tissue from 3 sporadic ALS and 3 non-ALS cases for PCR analysis. Findings We report that EV formation and miRNA cargo are dysregulated in C9ORF72-ALS iAstrocytes and this affects neurite network maintenance and MN survival in vitro. In particular, we have identified downregulation of miR-494-3p, a negative regulator of semaphorin 3A (SEMA3A) and other targets involved in axonal maintenance. We show here that by restoring miR-494-3p levels through expression of an engineered miRNA mimic we can downregulate Sema3A levels in MNs and increases MN survival in vitro. Consistently, we also report lower levels of mir-494-3p in cortico-spinal tract tissue isolated from sporadic ALS donors, thus supporting the pathological importance of this pathway in MNs and its therapeutic potential. Interpretation ALS ADEVs and their miRNA cargo are involved in MN death in ALS and we have identified miR-494-3p as a potential therapeutic target. Funding: Thierry Latran Fondation and Academy of Medical Sciences.
Collapse
Affiliation(s)
- André Varcianna
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Monika A Myszczynska
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Lydia M Castelli
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Brendan O'Neill
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Yeseul Kim
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Jordan Talbot
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Sophie Nyberg
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Immanuelle Nyamali
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew J Stopford
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Guillaume M Hautbergue
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK.
| |
Collapse
|
21
|
Zheng D, Ding Y, Ma Q, Zhao L, Guo X, Shen Y, He Y, Wei W, Liu F. Identification of Serum MicroRNAs as Novel Biomarkers in Esophageal Squamous Cell Carcinoma Using Feature Selection Algorithms. Front Oncol 2019; 8:674. [PMID: 30719423 PMCID: PMC6348251 DOI: 10.3389/fonc.2018.00674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction: Circulating microRNAs (miRNAs) are promising molecular biomarkers for the early detection of esophageal squamous cell carcinoma (ESCC). We investigated the serum miRNA expression profiles from microarray-based technologies and evaluated the diagnostic value of serum miRNAs as potential biomarkers for ESCC by using feature selection algorithms. Methods: Serum miRNA expression profiles were obtained from 52 ESCC patients and 52 age- and sex-matched controls via performing a high-throughput microarray assay. Five representative feature selection algorithms including the false discovery rate procedure, family-wise error rate procedure, Lasso logistic regression, hybrid huberized support vector machine (SVM), and SVM using the squared-error loss with the elastic-net penalty were jointly carried out to select the significantly differentially expressed miRNAs based on the miRNA profiles. Results: Three miRNAs including miR-16-5p, miR-451a, and miR-574-5p were identified as the powerful biomarkers for the diagnosis of ESCC. The diagnostic accuracy of the combination of these three miRNAs was evaluated by using logistic regression and the SVM. The averages of the area under the receiver operating curve and classification accuracies based on different classifiers were more than 0.80 and 0.79, respectively. The cross-validation results suggested that the three-miRNA-based classifiers could clearly distinguish ESCC patients from healthy controls. Moreover, the classifying performance of the miRNA panel persisted in discriminating the healthy group from patients with ESCC stage I-II (AUC > 0.76) and patients with ESCC stage III-IV (AUC > 0.80). Conclusions: These results in this study have moved forward the identification of novel biomarkers for the diagnosis of ESCC.
Collapse
Affiliation(s)
- Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yuanjie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Qing Ma
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Xudong Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yi Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Wenqiang Wei
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Prahm KP, Høgdall C, Karlsen MA, Christensen IJ, Novotny GW, Høgdall E. Identification and validation of potential prognostic and predictive miRNAs of epithelial ovarian cancer. PLoS One 2018; 13:e0207319. [PMID: 30475821 PMCID: PMC6261038 DOI: 10.1371/journal.pone.0207319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer is the leading cause of death by gynecologic cancers in the Western world. The aim of the study was to identify microRNAs (miRNAs) associated with prognosis and/or resistance to chemotherapy among patients with epithelial ovarian cancer. Methods Using information from the Pelvic Mass Study we identified a cohort of women with epithelial ovarian cancer. Tumor tissues were then collected and analyzed by global miRNA microarrays. MiRNA profiling was then linked to survival and time to progression using Cox proportional-hazards regression models. Logistic regression models were used for the analysis of resistance to chemotherapy. Our results were validated using external datasets retrieved from the NCBI Gene Expression Omnibus database. Results A total of 197 patients with epithelial ovarian cancer were included for miRNA microarray analysis. In multivariate analyses we identified a number of miRNAs significantly correlated with overall survival (miR-1183 (HR: 1.42, 95% CI:1.17–1.74, p = 0.0005), miR-126-3p (HR: 1.38, 95% CI:1.11–1.71, p = 0.0036), time to progression (miR-139-3p (HR: 1.48, 95% CI: 1.13–1.94, p = 0.0047), miR-802 (HR: 0.48, 95% CI: 0.29–0.78, p = 0.0035)), progression free survival (miR-23a-5p (HR:1.32, 95% CI:1.09–1.61, p = 0.004), miR-23a-3p (HR:1.70, 95% CI:1.15–2.51, p = 0.0074), miR-802 (HR: 0.48, 95% CI: 0.29–0.80, p = 0.0048)), and resistance to chemotherapy (miR-1234 (HR: 0.26, 95% CI: 0.11–0.64, p = 0.003)). A few miRNAs identified in our training cohort, were validated in external cohorts with similar results. Conclusion Eight miRNAs were identified as significant predictors of overall survival, progression free survival, time to progression, and chemotherapy resistance. A number of these miRNAs were significantly validated using external datasets. Inter-platform and inter-laboratory variations may have influence on the ability to compare and reproduce miRNA results. The use of miRNAs as potential markers of relapse and survival in ovarian cancer warrants further investigation.
Collapse
Affiliation(s)
- Kira Philipsen Prahm
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
- Gynecological Clinic, The Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Claus Høgdall
- Gynecological Clinic, The Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mona Aarenstrup Karlsen
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
- Gynecological Clinic, The Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
| | - Guy Wayne Novotny
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev, Denmark
| |
Collapse
|
23
|
de Ronde MWJ, Ruijter JM, Moerland PD, Creemers EE, Pinto-Sietsma SJ. Study Design and qPCR Data Analysis Guidelines for Reliable Circulating miRNA Biomarker Experiments: A Review. Clin Chem 2018; 64:1308-1318. [PMID: 29903876 DOI: 10.1373/clinchem.2017.285288] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/08/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND In the past decade, the search for circulating microRNA (miRNA) biomarkers has yielded numerous associations between miRNAs and different types of disease. However, many of these relations could not be replicated in subsequent studies under similar experimental conditions. Although this lack of replicability may be explained by the variation in experimental design and analysis methods, guidelines on the most appropriate design and analysis methods to study circulating miRNAs are scarce. CONTENT miRNA biomarker experiments generally consist of a discovery phase and a validation phase. In the discovery phase, typically hundreds of miRNAs are measured in parallel to identify candidate biomarkers. Because of the costs of such high-throughput experiments, the number of individuals included in those studies is often too small, which can easily lead to false positives and false negatives. In the validation phase, a small number of identified biomarker candidates are measured in a large cohort of cases and controls, generally by quantitative PCR (qPCR). Although qPCR is a sensitive method to measure miRNAs in the circulation, experimental design and qPCR data analysis remain challenging. Omitting some crucial steps in the design and analysis of the qPCR experiment or performing them incorrectly can cause serious biases, ultimately leading to false conclusions. SUMMARY In this review, we aim to expose and discuss the most common sources of interstudy variation in miRNA research from a methodological point of view and to provide guidelines on how to perform these steps correctly to increase replicability of studies on circulating miRNAs.
Collapse
Affiliation(s)
- Maurice W J de Ronde
- Departments of Vascular Medicine.,Clinical Epidemiology, Biostatistics and Bioinformatics
| | | | | | - Esther E Creemers
- Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Mandourah AY, Ranganath L, Barraclough R, Vinjamuri S, Hof RV, Hamill S, Czanner G, Dera AA, Wang D, Barraclough DL. Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci Rep 2018; 8:8421. [PMID: 29849050 PMCID: PMC5976644 DOI: 10.1038/s41598-018-26525-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is the most common age-related bone disease worldwide and is usually clinically asymptomatic until the first fracture happens. MicroRNAs are critical molecular regulators in bone remodelling processes and are stabilised in the blood. The aim of this project was to identify circulatory microRNAs associated with osteoporosis using advanced PCR arrays initially and the identified differentially-expressed microRNAs were validated in clinical samples using RT-qPCR. A total of 161 participants were recruited and 139 participants were included in this study with local ethical approvals prior to recruitment. RNAs were extracted, purified, quantified and analysed from all serum and plasma samples. Differentially-expressed miRNAs were identified using miRNA PCR arrays initially and validated in 139 serum and 134 plasma clinical samples using RT-qPCR. Following validation of identified miRNAs in individual clinical samples using RT-qPCR, circulating miRNAs, hsa-miR-122-5p and hsa-miR-4516 were statistically significantly differentially-expressed between non-osteoporotic controls, osteopaenia and osteoporosis patients. Further analysis showed that the levels of these microRNAs were associated with fragility fracture and correlated with the low bone mineral density in osteoporosis patients. The results show that circulating hsa-miR-122-5p and hsa-miR-4516 could be potential diagnostic biomarkers for osteoporosis in the future.
Collapse
Affiliation(s)
- Abdullah Y Mandourah
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom.,Al Hada Armed Forces Hospital, Taif, Saudi Arabia
| | - Lakshminarayan Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, The Royal Liverpool and Broadgreen University Hospital NHS Trust, Prescot Street, Liverpool, L7 8XP, United Kingdom
| | - Roger Barraclough
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Sobhan Vinjamuri
- Department Of Nuclear Medicine, The Royal Liverpool and Broadgreen University Hospital NHS Trust, Prescot Street, Liverpool, L7 8XP, United Kingdom
| | - Robert Van'T Hof
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Sandra Hamill
- Department Of Nuclear Medicine, The Royal Liverpool and Broadgreen University Hospital NHS Trust, Prescot Street, Liverpool, L7 8XP, United Kingdom
| | - Gabriela Czanner
- Department of Biostatistics and Eye and Vision Science, Faculty of Health and Life Sciences, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Ayed A Dera
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Dong L Barraclough
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom.
| |
Collapse
|
25
|
MicroRNA profiling in plasma samples using qPCR arrays: Recommendations for correct analysis and interpretation. PLoS One 2018; 13:e0193173. [PMID: 29474497 PMCID: PMC5825041 DOI: 10.1371/journal.pone.0193173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
MicroRNA (miRNA) regulate gene expression through posttranscriptional mRNA degradation or suppression of translation. Many (pre)analytical issues remain to be resolved for miRNA screening with TaqMan Low Density Arrays (TLDA) in plasma samples, such as optimal RNA isolation, preamplification and data normalization. We optimized the TLDA protocol using three RNA isolation protocols and preamplification dilutions. By using 100μL elution volume during RNA isolation and adding a preamplification step without dilution, 49% of wells were amplified. Informative target miRNA were defined as having quantification cycle values ≤35 in at least 20% of samples and low technical variability (CV across 2 duplicates of 1 sample <4%). A total of 218 miRNA was considered informative (= 59% of all target miRNA). Different normalization strategies were compared: exogenous Ath-miR-159a, endogenous RNA U6, and three mathematical normalization techniques: geNorm (Qbase, QB) and NormFinder (NF) normalization algorithms, and global mean calculation. To select the best normalization method, technical variability, biological variability, stability, and the extent to which the normalization method reduces data dispersion were calculated. The geNorm normalization algorithm reduced data dispersion to the greatest extent, while endogenous RNA U6 performed worst. In conclusion, for miRNA profiling in plasma samples using TLDA cards we recommend: 1. Implementing a preamplification step in the TLDA protocol without diluting the final preamplification product 2. A stepwise approach to exclude non-informative miRNA based on quality control parameters 3. Against using snoRNA U6 as normalization method for relative quantification 4. Using the geNorm algorithm as normalization method for relative quantification.
Collapse
|
26
|
Zhao L, Wu S, Huang E, Gnatenko D, Bahou WF, Zhu W. Integrated micro/messenger RNA regulatory networks in essential thrombocytosis. PLoS One 2018; 13:e0191932. [PMID: 29420626 PMCID: PMC5805260 DOI: 10.1371/journal.pone.0191932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/15/2018] [Indexed: 01/11/2023] Open
Abstract
Essential thrombocytosis (ET) is a chronic myeloproliferative disorder with an unregulated surplus of platelets. Complications of ET include stroke, heart attack, and formation of blood clots. Although platelet-enhancing mutations have been identified in ET cohorts, genetic networks causally implicated in thrombotic risk remain unestablished. In this study, we aim to identify novel ET-related miRNA-mRNA regulatory networks through comparisons of transcriptomes between healthy controls and ET patients. Four network discovery algorithms have been employed, including (a) Pearson correlation network, (b) sparse supervised canonical correlation analysis (sSCCA), (c) sparse partial correlation network analysis (SPACE), and, (d) (sparse) Bayesian network analysis-all through a combined data-driven and knowledge-based analysis. The result predicts a close relationship between an 8-miRNA set (miR-9, miR-490-5p, miR-490-3p, miR-182, miR-34a, miR-196b, miR-34b*, miR-181a-2*) and a 9-mRNA set (CAV2, LAPTM4B, TIMP1, PKIG, WASF1, MMP1, ERVH-4, NME4, HSD17B12). The majority of the identified variables have been linked to hematologic functions by a number of studies. Furthermore, it is observed that the selected mRNAs are highly relevant to ET disease, and provide an initial framework for dissecting both platelet-enhancing and functional consequences of dysregulated platelet production.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Song Wu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Erya Huang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Dimitri Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Wadie F. Bahou
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
27
|
Ivanov MK, Titov SE, Glushkov SA, Dzyubenko VV, Malek AV, Arkhangelskaya PA, Samsonov RB, Mikhetko AA, Bakhidze EV, Berlev IV, Kolesnikov NN. Detection of high-grade neoplasia in air-dried cervical PAP smears by a microRNA-based classifier. Oncol Rep 2018; 39:1099-1111. [PMID: 29328473 PMCID: PMC5802032 DOI: 10.3892/or.2018.6214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/29/2017] [Indexed: 01/17/2023] Open
Abstract
Recent studies have shown that changes in the expression levels of certain microRNAs correlate with the degree of severity of cervical lesions. The aim of the present study was to develop a microRNA-based classifier for the detection of high-grade cervical intraepithelial neoplasia (CIN ≥2) in cytological samples from patients with different high-risk human papillomavirus (HR-HPV) viral loads. For this purpose, raw RT-qPCR data for 25 candidate microRNAs, U6 snRNA and human DNA in air-dried PAP smears from 174 women with different cervical cytological diagnoses, 144 of which were HR-HPV-positive [40 negative for intraepithelial lesion or malignancy (NILM), 34 low-grade squamous intraepithelial lesions (L-SIL), 57 high-grade squamous intraepithelial lesions (H-SIL), 43 invasive cancers], were statistically processed. The expression level changes of various individual microRNAs were found to be significantly correlated with the cytological diagnosis but the statistical significance of this correlation was critically dependent on the normalization strategy. We developed a linear classifier based on the paired ratios of 8 microRNA concentrations and cellular DNA content. The classifier determines the dimensionless coefficient (DF value), which increases with the severity of cervical lesion. The high- and low-grade CINs were better distinguished by the microRNA classifier than by the measurement of individual microRNA levels with the use of traditional normalization methods. The diagnostic sensitivity of detecting high-grade lesions (CIN ≥2) with the developed microRNA classifier was 83.4%, diagnostic specificity 81.2%, ROC AUC=0.913. The analysis can be performed with the same nucleic acid preparation as used for HPV testing. No statistically significant correlation of the DF value and HR-HPV DNA load was found. The DF value and the HR HPV presence and viral DNA load may be regarded as independent criteria that can complement each other in molecular screening for high-grade cervical intraepithelial neoplasia. Although it has several limitations, the present study showed that the small-scale analysis of microRNA signatures performed by simple PCR-based methods may be useful for improving the diagnostic/prognostic value of cervical screening.
Collapse
Affiliation(s)
| | | | | | | | - Anastasia V Malek
- N.N. Petrov Research Institute of Oncology, 197758 Saint Petersburg, Russia
| | | | - Roman B Samsonov
- N.N. Petrov Research Institute of Oncology, 197758 Saint Petersburg, Russia
| | - Andrey A Mikhetko
- N.N. Petrov Research Institute of Oncology, 197758 Saint Petersburg, Russia
| | - Elena V Bakhidze
- N.N. Petrov Research Institute of Oncology, 197758 Saint Petersburg, Russia
| | - Igor V Berlev
- N.N. Petrov Research Institute of Oncology, 197758 Saint Petersburg, Russia
| | - Nikolay N Kolesnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of The Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
29
|
Hong X, Zhang J, Wu Q, Wang W, Ye AY, Song W, Dai H, Wang X, Wu F, You L, Wu W, Zhao Y. Challenges in detecting pre-malignant pancreatic lesions during acute pancreatitis using a serum microRNA assay: a study based on KrasG12D transgenic mice. Oncotarget 2017; 7:22700-10. [PMID: 27009811 PMCID: PMC5008393 DOI: 10.18632/oncotarget.8148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Caerulein-induced acute pancreatitis accelerates the progression of pancreatic intraepithelial neoplasia (PanIN) lesions in a pancreas-specific KrasG12D mouse model. The purpose of this study was to explore whether serum microRNAs (miRNAs) can serve as sensitive biomarkers to detect occult PanIN in the setting of acute pancreatitis. Serum miRNA profiles were quantified by an array-based method and normalized by both Variance Stabilization Normalization (VSN) and invariant methods. Individual miRNAs were validated by TaqMan real-time PCR with synthetic spike-in C. elegans miRNAs as external controls. Serum miRNA profiles distinguished KrasG12D mice with pancreatitis from wild-type mice without pancreatitis, but failed to differentiate KrasG12D mice with pancreatitis from wild-type mice with pancreatitis. Most individual miRNAs that increased in KrasG12D mice with pancreatitis were not significantly different between KrasG12D mice without pancreatitis and wild-type mice without pancreatitis. Mechanistically, Gene Set Enrichment Analysis (GSEA) of the mRNA array data and immunohistochemical assays showed that caerulein-induced acute pancreatitis involved acinar cell loss and immune cell infiltration, which might contribute to serum miRNA profile changes. This study highlighted the challenges in using sensitive serum miRNA biomarker screening for the early detection of pancreatic malignancies during acute pancreatitis.
Collapse
Affiliation(s)
- Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Zhang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Adam Yongxin Ye
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Hongmei Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fan Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
30
|
Moody L, He H, Pan YX, Chen H. Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics 2017; 9:119. [PMID: 29090038 PMCID: PMC5655825 DOI: 10.1186/s13148-017-0420-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 02/08/2023] Open
Abstract
The screening and diagnosis of colorectal cancer (CRC) currently relies heavily on invasive endoscopic techniques as well as imaging and antigen detection tools. More accessible and reliable biomarkers are necessary for early detection in order to expedite treatment and improve patient outcomes. Recent studies have indicated that levels of specific microRNA (miRNA) are altered in CRC; however, measuring miRNA in biological samples has proven difficult, given the complicated and lengthy PCR-based procedures used by most laboratories. In this manuscript, we examine the potential of miRNA as CRC biomarkers, summarize the methods that have commonly been employed to quantify miRNA, and focus on novel strategies that can improve or replace existing technology for feasible implementation in a clinical setting. These include isothermal amplification techniques that can potentially eliminate the need for specialized thermocycling equipment. Additionally, we propose the use of near-infrared (NIR) probes which can minimize autofluorescence and photobleaching and streamline quantification without tedious sample processing. We suggest that novel miRNA quantification tools will be necessary to encourage new discoveries and facilitate their translation to clinical practice.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Hongshan He
- Department of Chemistry, Eastern Illinois University, Charleston, IL 62910 USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
31
|
MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells. Oncotarget 2017; 8:83384-83406. [PMID: 29137351 PMCID: PMC5663523 DOI: 10.18632/oncotarget.20698] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.
Collapse
|
32
|
Abstract
BACKGROUND miRNA deregulation and vascular modifications constitute promising predictors in the study of hepatocellular carcinoma (HCC). In the literature, the relative miRNA abundance in HCC is usually determined using as control non-matched tumoral tissue, healthy liver, or cirrhotic liver. However, a common standard RNA control for the normalization toward the tissue gene expression was not settled yet. AIM To assess the differences existing in the quantitative miRNA gene expression in HCC on tissue according to two different liver controls. METHODS A wide array of miRNAs was analyzed on 22 HCCs arisen in cirrhotic and non-cirrhotic livers by means of microfluidic cards. Control samples included total RNA extracted from healthy and cirrhotic livers. Immunohistochemistry for CD34 and Nestin was performed to assess the pattern of intratumoral vascular modifications. RESULTS Six miRNAs were deregulated in HCCs using either controls: miR-532, miR-34a, miR-93, miR-149#, miR-7f-2#, and miR-30a-5p. Notably, the miRNA expression changed significantly between HCCs arisen in cirrhotic and non-cirrhotic livers, according to the control used for normalization. Different miRNA profiles were found also in HCCs with different vascular patterns, according to the control used for normalization. CONCLUSIONS Our data confirm that the choice of the methodology, and particularly the control used for normalization, represents the main concern in miRNA evaluation, particularly in a heterogeneous model such as liver pathology. Still we observed the deregulation of some common miRNAs as promising in HCC cancerogenesis and progression. A standardized control will be a crucial achievement to compare miRNA expression among different laboratories.
Collapse
|
33
|
Bellayr IH, Kumar A, Puri RK. MicroRNA expression in bone marrow-derived human multipotent Stromal cells. BMC Genomics 2017; 18:605. [PMID: 28800721 PMCID: PMC5553681 DOI: 10.1186/s12864-017-3997-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Multipotent stromal cells (MSCs) are being studied in the field of regenerative medicine for their multi-lineage differentiation and immunoregulatory capacity. MicroRNAs (miRNAs) are short non-coding RNAs that are responsible for regulating gene expression by targeting transcripts, which can impact MSC functions such as cellular proliferation, differentiation, migration and cell death. miRNAs are expressed in MSCs; however, the impact of miRNAs on cellular functions and donor variability is not well understood. Eight MSC lines were expanded to passages 3, 5 and 7, and their miRNA expression was evaluated using microarray technology. Results Statistical analyses of our data revealed that 71 miRNAs out of 939 examined were expressed by this set of MSC lines at all passages and the expression of 11 miRNAs were significantly different between passages 3 and 7, while the expression of 7 miRNAs was significantly different between passages 3 and 5. The expression of these identified miRNAs was evaluated using RT-qPCR for both the first set of MSC lines (n = 6) and a second set of MSC lines (n = 7) expanded from passages 4 to 8. By RT-qPCR only 2 miRNAs, miR-638 and miR-572 were upregulated at passage 7 compared to passage 3 in the first set of MSC lines by 1.71 and 1.54 fold, respectively; and upregulated at passage 8 compared to passage 4 in the second set of MSC lines, 1.35 and 1.59 fold, respectively. Conclusions The expression of miR-638 and miR-572 can distinguish MSCs from two different passages of cell culture. These results may be useful in establishing critical quality attributes of MSCs and determining whether changes in these two miRNAs impact cellular functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3997-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian H Bellayr
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Abhinav Kumar
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
34
|
Patnaik SK, Kannisto ED, Mallick R, Vachani A, Yendamuri S. Whole blood microRNA expression may not be useful for screening non-small cell lung cancer. PLoS One 2017; 12:e0181926. [PMID: 28742859 PMCID: PMC5526508 DOI: 10.1371/journal.pone.0181926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
At least seven studies have suggested that microRNA levels in whole blood can be diagnostic for lung cancer. We conducted a large bi-institutional study to validate this. Qiagen® PAXgene™ Blood miRNA System was used to collect blood and extract RNA from it for 85 pathologic stage I-IV non-small cell lung cancer (NSCLC) cases and 76 clinically-relevant controls who had a benign pulmonary mass, or a high risk of developing lung cancer because of a history of cigarette smoking or age >60 years. Cases and controls were similar for age, gender, race, and blood hemoglobin and leukocyte but not platelet levels (0.23 and 0.26 million/μl, respectively; t test P = 0.01). Exiqon® MiRCURY™ microarrays were used to quantify microRNAs in RNA isolates. Quantification was also performed using Taqman™ microRNA reverse transcription (RT)-PCR assays for five microRNAs whose lung cancer-diagnostic potential had been suggested in seven published studies. Of the 1,941 human mature microRNAs detectable with the microarray platform, 598 (31%) were identified as expressed and reliably quantified among the study's subjects. However, none of the microRNAs was differentially expressed between cases and controls (P >0.05 at false discovery rate <5% in test using empirical Bayes-moderated t statistics). In classification analyses with leave-one-out internal cross-validation, cases and controls could be identified by microRNA expression with 47% and 50% accuracy with support vector machines and top-scoring pair methods, respectively. Cases and controls did not differ for RT-PCR-based measurements of any of the five microRNAs whose biomarker potential had been suggested by seven previous studies. Additionally, no difference for microRNA expression was noticed in microarray-based microRNA profiles of whole blood of 12 stage IA-IIIB NSCLC cases before and three-four weeks after tumor resection. These findings show that whole blood microRNA expression profiles lack diagnostic value for high-risk screening of NSCLC, though such value may exist for selective sub-groups of NSCLC and control populations.
Collapse
Affiliation(s)
- Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Surgery, State University of New York, Buffalo, New York, United States of America
- * E-mail: (SY); (SP)
| | - Eric D. Kannisto
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Reema Mallick
- Department of Surgery, University of Minnesota, Minneapolis, United States of America
| | - Anil Vachani
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Surgery, State University of New York, Buffalo, New York, United States of America
- * E-mail: (SY); (SP)
| |
Collapse
|
35
|
Kunz M, Göttlich C, Walles T, Nietzer S, Dandekar G, Dandekar T. MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact. Tumour Biol 2017; 39:1010428317706430. [DOI: 10.1177/1010428317706430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| | - Claudia Göttlich
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Sarah Nietzer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
- Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Disease”, Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| |
Collapse
|
36
|
Gutiérrez-Vázquez C, Rodríguez-Galán A, Fernández-Alfara M, Mittelbrunn M, Sánchez-Cabo F, Martínez-Herrera DJ, Ramírez-Huesca M, Pascual-Montano A, Sánchez-Madrid F. miRNA profiling during antigen-dependent T cell activation: A role for miR-132-3p. Sci Rep 2017; 7:3508. [PMID: 28615644 PMCID: PMC5471249 DOI: 10.1038/s41598-017-03689-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are tightly regulated during T lymphocyte activation to enable the establishment of precise immune responses. Here, we analyzed the changes of the miRNA profiles of T cells in response to activation by cognate interaction with dendritic cells. We also studied mRNA targets common to miRNAs regulated in T cell activation. pik3r1 gene, which encodes the regulatory subunits of PI3K p50, p55 and p85, was identified as target of miRNAs upregulated after T cell activation. Using 3′UTR luciferase reporter-based and biochemical assays, we showed the inhibitory relationship between miR-132-3p upregulation and expression of the pik3r1 gene. Our results indicate that specific miRNAs whose expression is modulated during T cell activation might regulate PI3K signaling in T cells.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Rodríguez-Galán
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Marcos Fernández-Alfara
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Mittelbrunn
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Marta Ramírez-Huesca
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain. .,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. .,CIBER Cardiovascular, Madrid, Spain.
| |
Collapse
|
37
|
miRNAs in multiple myeloma--a survival relevant complex regulator of gene expression. Oncotarget 2016; 6:39165-83. [PMID: 26472281 PMCID: PMC4770764 DOI: 10.18632/oncotarget.5381] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 12/24/2022] Open
Abstract
Purpose microRNAs regulate gene-expression in biological and pathophysiological processes, including multiple myeloma. Here we address i) What are the number and magnitude of changes in miRNA-expression between normal plasma cells and myeloma- or MGUS-samples, and the latter two? ii) What is the biological relevance and how does miRNA-expression impact on gene-expression? iii) Is there a prognostic significance, and what is its background? Experimental design Ninety-two purified myeloma-, MGUS-, normal plasma cell- and myeloma cell line-samples were investigated using miChip-arrays interrogating 559 human miRNAs. Impact on gene-expression was assessed by Affymetrix DNA-microarrays in two cohorts of myeloma patients (n = 677); chromosomal aberrations were assessed by iFISH, survival for 592 patients undergoing up-front high-dose chemotherapy. Results Compared to normal plasma cells, 67/559 miRNAs (12%) with fold changes of 4.6 to −3.1 are differentially expressed in myeloma-, 20 (3.6%) in MGUS-samples, and three (0.5%) between MGUS and myeloma. Expression of miRNAs is associated with proliferation, chromosomal aberrations, tumor mass, and gene expression-based risk-scores. This holds true for target-gene signatures of regulated mRNAs. miRNA-expression confers prognostic significance for event-free and overall survival, as do respective target-gene signatures. Conclusions The myeloma-miRNome confers a pattern of small changes of individual miRNAs impacting on gene-expression, biological functions, and survival.
Collapse
|
38
|
Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello-Grand M, Rossi S, Losa M, D'Ambrosio G, Sessa F, Thalmann GN, Garcia-Escudero R, Zitella A, Chiorino G, Catapano CV, Carbone GM. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. J Clin Invest 2016; 126:4585-4602. [PMID: 27820701 DOI: 10.1172/jci86505] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022] Open
Abstract
Mutations and deletions in components of ubiquitin ligase complexes that lead to alterations in protein turnover are important mechanisms in driving tumorigenesis. Here we describe an alternative mechanism involving upregulation of the microRNA miR-424 that leads to impaired ubiquitination and degradation of oncogenic transcription factors in prostate cancers. We found that miR-424 targets the E3 ubiquitin ligase COP1 and identified STAT3 as a key substrate of COP1 in promoting tumorigenic and cancer stem-like properties in prostate epithelial cells. Altered protein turnover due to impaired COP1 function led to accumulation and enhanced basal and cytokine-induced activity of STAT3. We further determined that loss of the ETS factor ESE3/EHF is the initial event that triggers the deregulation of the miR-424/COP1/STAT3 axis. COP1 silencing and STAT3 activation were effectively reverted by blocking of miR-424, suggesting a possible strategy to attack this key node of tumorigenesis in ESE3/EHF-deficient tumors. These results establish miR-424 as an oncogenic effector linked to noncanonical activation of STAT3 and as a potential therapeutic target.
Collapse
|
39
|
Enquobahrie DA, Wander PL, Tadesse MG, Qiu C, Holzman C, Williams MA. Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy. Obes Res Clin Pract 2016; 11:464-474. [PMID: 27789200 DOI: 10.1016/j.orcp.2016.10.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Maternal pre-pregnancy overweight and obese status has been associated with a number of pregnancy complications and adverse offspring outcomes. Mechanisms for observed associations, however, are largely unknown. We investigated associations of pre-pregnancy body mass index with early-mid pregnancy epigenetic biomarkers, circulating microRNAs. METHODS Peripheral blood was collected from participants (16-27 weeks gestation) of two multi-racial pregnancy cohorts, the Omega Study and the Pregnancy Outcomes and Community Health Study. Plasma miRNA expression was characterised using epigenome-wide (319 miRNAs) profiling among 20 pregnant women in each cohort. Cohort-specific linear regression models that included the predictor (pre-pregnancy body mass index), the outcome (microRNA expression), and adjustment factors (maternal age, gestational age at blood collection, and race) were fit. RESULTS Expression of 27 miRNAs was positively associated with pre-pregnancy body mass index in both cohorts (p-values <0.05). A number of these differentially expressed miRNAs have previously been associated with adipogenesis (e.g. let-7d*, miR-103-2*, -130b, -146b-5-p, -29c, and -26b). Identified miRNAs as well as their experimentally validated targets participate in pathways that involve organismal injury, reproductive system disease, connective tissue disorders, cancer, cellular development, growth and proliferation. CONCLUSION Pre-pregnancy body mass index is associated with circulating miRNAs in early-mid pregnancy.
Collapse
Affiliation(s)
- Daniel A Enquobahrie
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Pandora L Wander
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington DC, USA
| | - Chunfang Qiu
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA, USA
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
40
|
Yang SY, Choi SA, Lee JY, Park AK, Wang KC, Phi JH, Koh EJ, Park WY, Park SH, Hwang DW, Jung HW, Kim SK. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of DHFR, integrins, and CD47. Oncotarget 2016; 6:43712-30. [PMID: 26506238 PMCID: PMC4791261 DOI: 10.18632/oncotarget.6227] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. Materials and methods We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. Results A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Conclusions Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability.
Collapse
Affiliation(s)
- Seung Yeob Yang
- Department of Neurosurgery, Dongguk University Ilsan Hospital, Dongguk University, Seoul, Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Ae-Kyung Park
- College of Pharmacy, Sunchon National University, Jeonnam, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Koh
- Department of Neurosurgery, Dongguk University Ilsan Hospital, Dongguk University, Seoul, Korea
| | - Woong-Yang Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Translational Genomics Laboratory, Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Won Jung
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Abstract
Microarray is a high throughput discovery tool that has been broadly used for genomic research. Probe-target hybridization is the central concept of this technology to determine the relative abundance of nucleic acid sequences through fluorescence-based detection. In microarray experiments, variations of expression measurements can be attributed to many different sources that influence the stability and reproducibility of microarray platforms. Normalization is an essential step to reduce non-biological errors and to convert raw image data from multiple arrays (channels) to quality data for further analysis. In general, for the traditional microarray analysis, most established normalization methods are based on two assumptions: (1) the total number of target genes is large enough (>10,000); and (2) the expression level of the majority of genes is kept constant. However, microRNA (miRNA) arrays are usually spotted in low density, due to the fact that the total number of miRNAs is less than 2,000 and the majority of miRNAs are weakly or not expressed. As a result, normalization methods based on the above two assumptions are not applicable to miRNA profiling studies. In this review, we discuss a few representative microarray platforms on the market for miRNA profiling and compare the traditional methods with a few novel strategies specific for miRNA microarrays.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, 411 University BLVD N, Room 325, Mobile, AL 36688, USA; E-Mail:
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-251-445-9857; Fax: 1-251-460-6994
| |
Collapse
|
42
|
Cañón S, Caballero R, Herraiz-Martínez A, Pérez-Hernández M, López B, Atienza F, Jalife J, Hove-Madsen L, Delpón E, Bernad A. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: Implications in human chronic atrial fibrillation. J Mol Cell Cardiol 2016; 99:162-173. [PMID: 27545043 DOI: 10.1016/j.yjmcc.2016.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/29/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miR) have considerable potential as therapeutic tools in cardiac diseases. Alterations in atrial miR are involved in the development of atrial fibrillation (AF), but the molecular mechanism underlying their contribution to atrial remodeling in chronic atrial fibrillation (CAF) is only partially understood. Here we used miR array to analyze the miR profile of atrial biopsies from sinus rhythm (SR) and CAF patients. qRT-PCR identified a distinctive CAF-miR signature and described conserved miR-208b upregulation in human and ovine AF atrial tissue. We used bioinformatics analysis to predict genes and signaling pathways as putative miR-208b targets, which highlighted genes from the cardiac muscle gene program and from canonical WNT, gap-junction and Ca2+ signaling networks. Results from analysis of miR-208b-overexpressing HL-1 atrial myocytes and from myocytes isolated from CAF patients showed that aberrant miR-208b levels reduced the expression and function of L-type Ca2+ channel subunits (CACNA1C and CACNB2) as well as the sarcoplasmic reticulum-Ca2+ pump SERCA2. These findings clearly pointed to CAF-specific upregulated miR-208b as an important mediator in Ca2+ handling impairment during atrial remodeling.
Collapse
Affiliation(s)
- Susana Cañón
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain; Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Adela Herraiz-Martínez
- Cardiovascular Research Centre, CSIC-ICCC, Barcelona, Spain; Instituto de Investigación Biomédica Sant Pau, Hospital de la Santa Creu y Sant Pau, Barcelona, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Begoña López
- Program for Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Felipe Atienza
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José Jalife
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Area of Myocardial Pathophysiology, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Centre, CSIC-ICCC, Barcelona, Spain; Instituto de Investigación Biomédica Sant Pau, Hospital de la Santa Creu y Sant Pau, Barcelona, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Antonio Bernad
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain; Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
43
|
Degueurce G, D'Errico I, Pich C, Ibberson M, Schütz F, Montagner A, Sgandurra M, Mury L, Jafari P, Boda A, Meunier J, Rezzonico R, Brembilla NC, Hohl D, Kolios A, Hofbauer G, Xenarios I, Michalik L. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med 2016; 8:919-36. [PMID: 27250636 PMCID: PMC4967944 DOI: 10.15252/emmm.201505384] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.
Collapse
Affiliation(s)
- Gwendoline Degueurce
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ilenia D'Errico
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Pich
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- INRA ToxAlim, Integrative Toxicology and Metabolism, UMR1331, Toulouse, France
| | - Marie Sgandurra
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lionel Mury
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paris Jafari
- Department of Musculoskeletal Medicine, Service of Plastic and Reconstructive Surgery CHUV, Epalinges, Switzerland
| | - Akash Boda
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Meunier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roger Rezzonico
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France
| | - Nicolò Costantino Brembilla
- Dermatology, University Hospital and School of Medicine, Geneva, Switzerland Immunology and Allergy, University Hospital and School of Medicine, Geneva Switzerland
| | - Daniel Hohl
- Service de dermatologie et venereology, Hôpital de Beaumont CHUV, Lausanne, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital, University of Zürich, Zürich, Switzerland Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Günther Hofbauer
- Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Toll A, Salgado R, Espinet B, Díaz-Lagares A, Hernández-Ruiz E, Andrades E, Sandoval J, Esteller M, Pujol RM, Hernández-Muñoz I. MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression. Mol Cancer 2016; 15:53. [PMID: 27457246 PMCID: PMC4960761 DOI: 10.1186/s12943-016-0537-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to be elicited. Methods Expression of microRNAs in sun-exposed skin, AK and cSCC was analysed by Agilent microarrays. DNA methylation of miR-204 promoter was determined by bisulphite treatment and pyrosequencing. Identification of miR-204 targets and pathways was accomplished in HaCat cells. Immunofluorescence and immunohistochemistry were used to analyze STAT3 activation and PTPN11 expression in human biopsies. Results cSCCs display a marked downregulation of miR-204 expression when compared to AK. DNA methylation of miR-204 promoter was identified as one of the repressive mechanisms that accounts for miR-204 silencing in cSCC. In HaCaT cells miR-204 inhibits STAT3 and favours the MAPK signaling pathway, likely acting through PTPN11, a nuclear tyrosine phosphatase that is a direct miR-204 target. In non-peritumoral AK lesions, activated STAT3, as detected by pY705-STAT3 immunofluorescence, is retained in the membrane and cytoplasm compartments, whereas AK lesions adjacent to cSCCs display activated STAT3 in the nuclei. Conclusions Our data suggest that miR-204 may act as a “rheostat” that controls the signalling towards the MAPK pathway or the STAT3 pathway in the progression from AK to cSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0537-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustí Toll
- Department of Dermatology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Rocío Salgado
- Cytogenetics Molecular Biology Laboratory, Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Blanca Espinet
- Cytogenetics Molecular Biology Laboratory, Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| |
Collapse
|
45
|
Sápi Z, Papp G, Szendrői M, Pápai Z, Plótár V, Krausz T, Fletcher CDM. Epigenetic regulation of SMARCB1 By miR-206, -381 and -671-5p is evident in a variety of SMARCB1 immunonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Genes Chromosomes Cancer 2016; 55:786-802. [PMID: 27223121 DOI: 10.1002/gcc.22379] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 01/06/2023] Open
Abstract
Complete/partial loss of SMARCB1 nuclear-immunopositivity is characteristic of a certain subset of soft tissue sarcomas (STSs). Our previous work showed that oncomiRs-206,-381, and 671-5p could silence the SMARCB1 mRNA and protein expression and that they display significant overexpression in epithelioid sarcomas (ESs). MiR-765 was overexpressed too, but functionally was inactive in the silencing. In the current work, using quantitative PCR, we conducted a miRNA study of 51 ESs, 20 rhabdoid tumors (RTs), 20 synovial sarcomas (SSs), 15 malignant peripheral nerve sheath tumors (MPNSTs), 11 myoepithelial carcinomas (MECs), and 10 extraskeletal myxoid chondrosarcomas (EMCSs) with complete/partial loss of SMARCB1 nuclear immunostain, in contrast to controls (SMARCB1-immunopositive) of 96 STSs, 13 melanomas and 10 sarcomatoid carcinomas. The SMARCB1 genetic status of ESs was determined by MLPA and FISH. A subset of ESs (5/51) showed biallelic deletion of SMARCB1 with no overexpression of any miRNA, suggesting these tumors could be the counterpart of pediatric RT, at least genetically. Another subset (5/51) was genetically either intact or monoallelic deleted with at least threefold overexpression of one of miR-206,-381,-671-5p, suggesting epigenetic regulation only. 39/51 ESs had a biallelic deletion (>20% by FISH and/or by MLPA) but with overexpressed miR-206,-381, and 671-5p, suggesting intratumoral heterogeneity, i.e., both genetic and epigenetic regulation. At least threefold overexpression of one of miR-206,-381, and 671-5p was detected in all MPNSTs, EMCSs, SSs and 7 MCs. Except for ESs, four SSs and one MPNST, there was no event above threefold overexpression of miR-765 among all 195 tested tumors. Our results suggest a general role of miR-206,-381, and 671-5p in SMARCB1 gene silencing of ES, MC, EMCS, MPNST and SS. In the future, miR-765 could possibly be a diagnostic tool for ES because of its 97% specificity and 80% sensitivity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zoltán Sápi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Miklós Szendrői
- Department of Orthopedics, Semmelweis University, Budapest, Hungary
| | | | - Vanda Plótár
- Surgical and Molecular Tumor Pathology Centre, National Institute of Oncology, Budapest, Hungary
| | - Thomas Krausz
- Department of Pathology, University of Chicago Medicine, Chicago, IL
| | | |
Collapse
|
46
|
Wang X, Sundquist K, Elf JL, Strandberg K, Svensson PJ, Hedelius A, Palmer K, Memon AA, Sundquist J, Zöller B. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thromb Haemost 2016; 116:328-36. [PMID: 27197074 DOI: 10.1160/th16-01-0071] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
Abstract
For excluding deep-vein thrombosis (DVT), a negative D-dimer and low clinical probability are used to rule out DVT. Circulating microRNAs (miRNAs) are stably present in the plasma, serum and other body fluids. Their diagnostic function has been investigated in many diseases but not in DVT. The aims of present study were to assess the diagnostic ability of plasma miRNAs in DVT and to examine their correlation with known markers of hypercoagulability, such as D-dimer and APC-PCI complex. Plasma samples were obtained from 238 patients (aged 16-95 years) with suspected DVT included in a prospective multicentre management study (SCORE). We first performed miRNA screening of plasma samples from three plasma pools containing plasma from 12 patients with DVT and three plasma pools containing plasma from 12 patients without DVT using a microRNA Ready-to-use PCR Panel comprising 742 miRNA primer sets. Thirteen miRNAs that differentially expressed were further investigated by quantitative real-time (qRT)-PCR in the entire cohort. The plasma level of miR-424-5p (p=0.01) were significantly higher, whereas the levels of miR-136-5p (p=0.03) were significantly lower in DVT patients compared to patients without DVT. Receiver-operating characteristic curve analysis showed the area under the curve (AUC) values of 0.63 for miR-424-5p and 0.60 for miR-136-5p. The plasma level of miR-424-5p was associated with both D-dimer and APC-PCI complex levels (p<0.0001 and p=0.001, respectively). In conclusions, these findings indicate that certain miRNAs are associated with DVT and markers of hypercoagulability, though their diagnostic abilities are probably too low.
Collapse
Affiliation(s)
- Xiao Wang
- Xiao Wang, Center for Primary Health Care Research, Skåne University Hospital, 205 02 Malmö, Sweden, Tel.: +46 40391382, Fax: +46 40391370, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016; 127:1743-51. [PMID: 26773046 DOI: 10.1182/blood-2015-07-661371] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022] Open
Abstract
Human platelets contain microRNAs (miRNAs) and miRNA processing machinery, but their contribution to platelet function remains incompletely understood. Here, we show that murine megakaryocyte (MK)-specific knockdown of Dicer1, the ribonuclease that cleaves miRNA precursors into mature miRNAs, reduces the level of the majority of miRNAs in platelets. This leads to altered platelet messenger RNA (mRNA) expression profiles and mild thrombocytopenia. Fibrinogen receptor subunits Itga2b (αIIb) and Itgb3 (β3) mRNAs were among the differentially expressed transcripts that are increased in platelets lacking Dicer1. Argonaute 2 (Ago2), a member of the miRNA silencing complex, co-immunoprecipitated with αIIband β3mRNAs in wild-type platelets. Furthermore, co-immunoprecipitation experiments suggested reduced αIIb/β3/Ago2 complexes in miRNA-deficient platelets. These results suggested that miRNAs regulate both integrin subunits. Subsequent 3' untranslated region luciferase reporter assays confirmed that the translation of both αIIband β3mRNAs can be regulated by miRNAs miR-326, miR-128, miR-331, and miR-500. Consistent with these molecular changes, the deletion ofDicer1resulted in increased surface expression of integrins αIIband β3, and enhanced platelet binding to fibrinogen in vivo and in vitro. Heightened platelet reactivity, shortened tail-bleeding time, and reduced survival following collagen/epinephrine-induced pulmonary embolism were also observed in Dicer1-deficient animals. CombinedPf4-cre-mediated deletion of Drosha and Dicer1 did not significantly exacerbate phenotypes observed in single Dicer1 knockout mice. In summary, these findings indicate that Dicer1-dependent generation of mature miRNAs in late-stage MKs and platelets modulates the expression of target mRNAs important for the hemostatic and thrombotic function of platelets.
Collapse
|
48
|
Wang X, Gardiner EJ, Cairns MJ. Optimal consistency in microRNA expression analysis using reference-gene-based normalization. MOLECULAR BIOSYSTEMS 2016; 11:1235-40. [PMID: 25797570 DOI: 10.1039/c4mb00711e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.
Collapse
Affiliation(s)
- Xi Wang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, NSW 2308, Australia.
| | | | | |
Collapse
|
49
|
Uribe JH, Collado-Romero M, Zaldívar-López S, Arce C, Bautista R, Carvajal A, Cirera S, Claros MG, Garrido JJ. Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum. Vet Res 2016; 47:11. [PMID: 26738723 PMCID: PMC4704413 DOI: 10.1186/s13567-015-0286-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/13/2015] [Indexed: 01/16/2023] Open
Abstract
Infected pork meat is an important source of non-typhoidal human salmonellosis. Understanding of molecular mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strategies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcriptional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., IL-1B, IL-6, IL-8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down-regulated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption in ileum. This result was confirmed by decreased high-density lipoprotein cholesterol in serum of infected pigs. Ileal inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., miR-374 and miR-451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were down-regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid metabolism.
Collapse
Affiliation(s)
- Juber Herrera Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Melania Collado-Romero
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Sara Zaldívar-López
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Cristina Arce
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590, Málaga, Spain.
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain.
| | - Susanna Cirera
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Copenhagen, Denmark.
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590, Málaga, Spain.
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain.
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14047, Córdoba, Spain.
| |
Collapse
|
50
|
Mooney C, Raoof R, El-Naggar H, Sanz-Rodriguez A, Jimenez-Mateos EM, Henshall DC. High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers. PLoS One 2015; 10:e0145316. [PMID: 26699132 PMCID: PMC4689368 DOI: 10.1371/journal.pone.0145316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/02/2015] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease opens up a new field for biomarker study. However, diurnal and day-to-day variation in plasma microRNA levels, and differential regulation between males and females, may affect biomarker stability. A QuantStudio 12K Flex Real-Time PCR System was used to profile plasma microRNA levels using OpenArray in male and female healthy volunteers, in the morning and afternoon, and at four time points over a one month period. Using this system we were able to run four OpenArray plates in a single run, the equivalent of 32 traditional 384-well qPCR plates or 12,000 data points. Up to 754 microRNAs can be identified in a single plasma sample in under two hours. 108 individual microRNAs were identified in at least 80% of all our samples which compares favourably with other reports of microRNA profiles in serum or plasma in healthy adults. Many of these microRNAs, including miR-16-5p, miR-17-5p, miR-19a-3p, miR-24-3p, miR-30c-5p, miR-191-5p, miR-223-3p and miR-451a are highly expressed and consistent with previous studies using other platforms. Overall, microRNA levels were very consistent between individuals, males and females, and time points and we did not detect significant differences in levels of microRNAs. These results suggest the suitability of this platform for microRNA profiling and biomarker discovery and suggest minimal confounding influence of sex or sample timing. However, the platform has not been subjected to rigorous validation which must be demonstrated in future biomarker studies where large differences may exist between disease and control samples.
Collapse
Affiliation(s)
- Catherine Mooney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rana Raoof
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anatomy, Mosul Medical College, Mosul, Iraq
| | - Hany El-Naggar
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|